Skip to main content

Imaging Techniques for Tuberculosis

  • Chapter
  • First Online:
Imaging of Tuberculosis

Abstract

Imaging has an important complementary role in the diagnosis of pulmonary and extrapulmonary tuberculosis, particularly in patients with non-specific symptoms. It helps to detect lesions and confirm the diagnosis, evaluate the extent of disease and its complications, monitor its progress and response to treatment, as well as demonstrate residual or recurring disease after completion of therapy. Radiographs are an excellent screening tool and typically the initial radiological investigation, particularly for pulmonary and musculoskeletal tuberculosis. Computed tomography is utilized to further evaluate pulmonary, abdominal, urinary tract, and head and neck tuberculosis. Magnetic resonance imaging is the modality of choice for assessing tuberculosis in the brain, spine, and musculoskeletal system. Imaging modalities such as contrast fluoroscopy studies, ultrasound imaging, and nuclear medicine imaging, particularly positron-emission tomography, may also be of benefit in the management of selected patients suspected to have tuberculosis. Imaging techniques, such as ultrasound and computed tomography, are also used to guide diagnostic and therapeutic aspirations and drainages, as well as biopsies for histopathological confirmation of tuberculosis. As each of these modalities have their own advantages, disadvantages, and limitations, the modality of choice therefore varies, depending on the clinical indications, and should be tailored to each individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CT:

Computed tomography

IVU:

Intravenous urography

MRI:

Magnetic resonance imaging

PET:

Positron-emission tomography

TB :

Tuberculosis

US:

Ultrasound

References

  • Ahmadihosseini H, Sadeghi R, Zakavi R et al (2008) Application of technetium-99m-sestamibi in differentiation of active from inactive pulmonary tuberculosis using a single photon emission computed tomography method. Nucl Med Commun 29:690–694

    Article  CAS  PubMed  Google Scholar 

  • Allisy-Roberts P, Williams J (2008) Imaging with x-rays, digital radiography, and magnetic resonance imaging. In: Allisy-Roberts P, Williams J (eds) Farr’s physics for medical imaging, 2nd edn. Saunders Elsevier, Philadelphia, pp 49–64. 79–90, 169–195

    Chapter  Google Scholar 

  • Asher KA, Bangerter NK, Watkins RD et al (2010) Radiofrequency coils for musculoskeletal magnetic resonance imaging. Top Magn Reson Imaging 21:315–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett J, Keat N (2014) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691

    Article  Google Scholar 

  • Bomanji JB, Gupta N, Gulati P, Das CJ (2015) Imaging in tuberculosis. Cold Spring Harb Perspect Med 5:a017814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brant W (2012) Diagnostic imaging methods. In: Brant W, Helms C (eds) Fundamentals of diagnostic radiology, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1–25

    Google Scholar 

  • Chaudhary V, Bano S, Garga UC (2017) Central nervous system tuberculosis: an imaging perspective. Can Assoc Radiol J 68:161–170

    Article  PubMed  Google Scholar 

  • Chen CJ, Lee BF, Yao WJ et al (2008) Dual-phase 18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5. AJR Am J Roentgenol 191:475–479

    Article  PubMed  Google Scholar 

  • Dunn DP, Lee KS, Smith MP, Mortele KJ (2015) Non-oncologic applications of diffusion-weighted imaging in the gastrointestinal system. AJR Am J Roentgenol 204:758–767

    Article  PubMed  Google Scholar 

  • Engin G, Acunas B, Acunas G, Tunaci M (2000) Imaging of extrapulmonary tuberculosis. Radiographics 20:471–488

    Article  CAS  PubMed  Google Scholar 

  • Gambhir S, Ravina M, Rangan K (2017) Imaging in extrapulmonary tuberculosis. Int J Infect Dis 56:237–247

    Article  PubMed  Google Scholar 

  • Gibson MS, Puckett ML, Shelly ME (2004) Renal tuberculosis. Radiographics 24:251–256

    Article  PubMed  Google Scholar 

  • Goo JM, Im JG, Do KH et al (2000) Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology 216:117–121

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK, Poptani H, Kohli A et al (1995) In vivo localized proton magnetic resonance spectroscopy of intracranial tuberculomas. Indian J Med Res 101:19–24

    CAS  PubMed  Google Scholar 

  • Hara T, Kosaka N, Suzuki T, Kudo K, Niino H (2003) Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: a positron emission tomography study. Chest 124:893–901

    Article  CAS  PubMed  Google Scholar 

  • Huda W, Mettler FA (2011) Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology 258:236–242

    Article  PubMed  Google Scholar 

  • Kaewlai R, Abujuneh H (2012) Nephrogenic systemic fibrosis. AJR Am J Roentgenol 199:W17–W23

    Article  PubMed  Google Scholar 

  • Kartamihardja AHS, Kurniawati Y, Gunawan R (2018) Diagnostic value of 99mTc-ethambutol scintigraphy in tuberculosis: compared to microbiological and histopathological tests. Ann Nucl Med 32:60–68

    Article  CAS  PubMed  Google Scholar 

  • Kashimada A (1998) Diagnostic abilities of high-resolution CT, dynamic CT, and 201T1 SPECT in evaluating pulmonary masses. Nihon Igaku Hoshasen Gakkai Zasshi 58:407–419

    CAS  PubMed  Google Scholar 

  • Kenney PJ (1990) Imaging of chronic renal infections. AJR Am J Roentgenol 155:485–494

    Article  CAS  PubMed  Google Scholar 

  • Kim IJ, Lee JS, Kim SJ et al (2008) Double-phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity. Eur J Nucl Med Mol Imaging 35:808–814

    Article  PubMed  Google Scholar 

  • Leder RA, Low VH (1995) Tuberculosis of the abdomen. Radiol Clin North Am 33:691–705

    Google Scholar 

  • Lee KS, Hwang JW, Chung MP, Kwon OJ (1996) Utility of CT in the evaluation of pulmonary tuberculosis in patients without AIDS. Chest 110:977–984

    Article  CAS  PubMed  Google Scholar 

  • Leone A, Dell’Atti C, Magarelli N et al (2012) Imaging of spondylodiscitis. Eur Rev Med Pharmacol Sci 2:8–19

    Google Scholar 

  • Leow KS, Low KTA, Peh WCG (2021) Magnetic resonance imaging of spinal infection. In: Ladeb MF, Peh WCG (eds) Imaging of spinal infection. Springer Nature, Switzerland AG, pp 52–69

    Google Scholar 

  • Mathur M, Jones JR, Weinreb JC (2020) Gadolinium deposition and nephrogenic systemic fibrosis: a radiologist’s primer. Radiographics 40:153–162

    Article  PubMed  Google Scholar 

  • Mayo-Smith WW, Hara AK, Mahesh M, Sahani DV, Pavlicek W (2014) How I do it: managing radiation dose in CT. Radiology 273:657–672

    Article  PubMed  Google Scholar 

  • Mukherjee P, Berman JI, Chung SW et al (2008) Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol 29:632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachiappan AC, Rahbar K, Shi X et al (2017) Pulmonary tuberculosis: role of radiology in diagnosis and management. Radiographics 37:52–72

    Article  PubMed  Google Scholar 

  • Nakano H, Jaramillo E, Watanabe M et al (1992) Intestinal tuberculosis: findings on double-contrast barium enema. Gastrointest Radiol 17:108–114

    Article  CAS  PubMed  Google Scholar 

  • Pache G, Krauss B, Strohm P et al (2010) Dual-energy CT virtual noncalcium technique: detecting post traumatic bone marrow lesions—feasibility study. Radiology 256:617–624

    Article  PubMed  Google Scholar 

  • Pai M, Nicol MP, Boehme CC (2016) Tuberculosis diagnostics: state of the art and future directions. Microbiol Spectr 4(5). https://doi.org/10.1128/microbiolspec.TBTB2-0019-2016

  • Park IN, Ryu JS, Shim TS (2008) Evaluation of therapeutic response of tuberculoma using F-18 FDG positron emission tomography. Clin Nucl Med 33:1–3

    Article  CAS  PubMed  Google Scholar 

  • Peh WCG, Chan JHM (2001) MR artifacts in musculoskeletal imaging—identification and correction. Skeletal Radiol 30:179–191

    Google Scholar 

  • Peh WCG, Siu TH, Chan JHM (1999) Determining the lumbar vertebral segments on magnetic resonance imaging. Spine 24:1852–1855

    Article  CAS  PubMed  Google Scholar 

  • Peto HM, Pratt RH, Harrington TA et al (2009) Epidemiology of extrapulmonary tuberculosis in the United States, 1993–2006. Clin Infect Dis 49:1350–1357

    Article  PubMed  Google Scholar 

  • Regan F, Cavaluzzi J, Nguyen B (1998) Fast MR abdominal imaging using the HASTE sequence. AJR Am J Roentgenol 170:1471–1476

    Article  CAS  PubMed  Google Scholar 

  • Rivas-Garcia A, Sarria-Estrada S, Torrents-Odin C, Casas-Gomila L, Franquet E (2013) Imaging findings of Pott’s disease. Eur Spine J 22:567–578

    Article  PubMed  Google Scholar 

  • Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ (2019) Extrapulmonary tuberculosis: pathophysiology and imaging findings. Radiographics 39:2023–2037

    Article  PubMed  Google Scholar 

  • Roth CG, Deshmukh S (2017) Introduction and physics of body MRI. In: Fundamentals of body MRI. 2nd ed. Elsevier, Philadelphia, pp1-44

    Google Scholar 

  • Sathekge M, Maes A, Kgomo M et al (2010a) Impact of FDG PET on the management of TB treatment. Nuklearmedizin 49:35–40

    Article  CAS  PubMed  Google Scholar 

  • Sathekge M, Maes A, Kgomo M et al (2010b) FDG uptake in lymph-nodes of HIV+ and tuberculosis patients: implications for cancer staging. Q J Nucl Med Mol Imaging 54:698–703

    CAS  PubMed  Google Scholar 

  • Sathekge M, Maes A, D’Asseler Y, Vorster M, Van De Wiele C (2012) Nuclear medicine imaging in tuberculosis using commercially available radiopharmaceuticals. Nucl Med Commun 33:581–590

    Article  CAS  PubMed  Google Scholar 

  • Sathekge M, Maes A, Van De WC (2013) FDG-PET imaging in HIV infection and tuberculosis. Semin Nucl Med 43:349–366

    Article  PubMed  Google Scholar 

  • Seedat UF, Seedat F (2018) Post-primary pulmonary TB haemoptysis—when there is more than meets the eye. Respir Med Case Rep 25:96–99

    PubMed  PubMed Central  Google Scholar 

  • Sener RN (2001) Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput Med Imaging Graph 25:299–326

    Article  CAS  PubMed  Google Scholar 

  • Shikhare SN, Singh DS, Peh WCG (2014) Variants and pitfalls in MR imaging of the spine. Semin Musculoskelet Radiol 18:23–35

    Article  PubMed  Google Scholar 

  • Skoura E, Zumla A, Bomanji J (2015) Imaging in tuberculosis. Int J Infect Dis 32:87–93

    Article  PubMed  Google Scholar 

  • Soussan M, Brillet PY, Mekinian A et al (2012) Patterns of pulmonary tuberculosis on FDG-PET/CT. Eur J Radiol 81:2872–2876

    Article  PubMed  Google Scholar 

  • Suga K, Kume N, Orihashi N et al (1993) Difference in 201Tl accumulation on single photon emission computed tomography in benign and malignant thoracic lesions. Nucl Med Commun 14:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Taylor Z, Marks SM, Rios Burrows NM et al (2000) Causes and costs of hospitalization of tuberculosis patients in the United States. Int J Tuberc Lung Dis 4:931–939

    CAS  PubMed  Google Scholar 

  • Tong KA, Ashwal S, Obenaus A et al (2008) Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 29:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi R, Saksena S, Gupta RK (2009) Magnetic resonance imaging in central nervous system tuberculosis. Indian J Radiol Imaging 19:256–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Vorster M, Sathekge M, Bomanji J (2014) Advances in imaging of tuberculosis. Curr Opin Pulm Med 20:287–293

    Article  PubMed  Google Scholar 

  • Weinreb JC, Rodby RA, Yee J et al (2021) Use of intravenous Gadolinium-based contrast media in patients with kidney disease: consensus statements from the American College of Radiology and the National Kidney Foundation. Radiology 298:28–35

    Article  PubMed  Google Scholar 

  • World Health Organization (WHO) (2018) Latent TB infection: updated and consolidated guidelines for programmatic management. World Health Organization, Geneva, pp 1–64. https://www.who.int/tb/publications/2018/latent-tuberculosis-infection/en/

    Google Scholar 

  • World Health Organization (WHO) (2020) Definitions and reporting framework for tuberculosis—2013 revision. Updated December 2014 and January 2020. World Health Organization, Geneva, pp. 3 https://apps.who.int/iris/bitstream/handle/10665/79199/9789241505345_eng.pdf?sequence=1

  • Yin XH, Zhang HQ, Hu XK et al (2015) Treatment of pediatric spinal tuberculosis abscess with percutaneous drainage and low-dose local antituberculous therapy: a preliminary report. Childs Nerv Syst 31:1149–1155

    Article  PubMed  Google Scholar 

  • Yousem DM, Grossman RI (2010) Techniques in neuroimaging. In: Yousem DM, Grossman RI (eds) Neuroradiology: the requisites, 3rd edn. Mosby Elsevier, Philadelphia, pp 1–22

    Google Scholar 

  • Yu YH, Hsu WH, Hsu N et al (2004) The use of dual phase 201Tl SPECT for differentiating pulmonary malignancies from benign lesions. Jpn J Clin Oncol 34:445–451

    Article  PubMed  Google Scholar 

  • Zhao S, Wang Z, Li Y, Wang H, Zhao Y (2019) Endovascular treatment of multiple tuberculous mycotic aneurysm. Medicine (Baltimore) 98:e15268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffanie S. F. Teo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teo, T.S.F., Kannivelu, A., Srinivasan, S., Peh, W.C.G. (2022). Imaging Techniques for Tuberculosis. In: Ladeb, M.F., Peh, W.C.G. (eds) Imaging of Tuberculosis. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-031-07040-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07040-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07039-6

  • Online ISBN: 978-3-031-07040-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics