Skip to main content

Body Composition Changes During Pregnancy and Effects of Physical Exercise

  • Chapter
  • First Online:
  • 926 Accesses

Abstract

The study of body composition is a fascinating branch of the biological sciences where research and clinical practice stimulate and complement each other. A strong theoretical background is needed to support the assessment and interpretation of body composition measurements, in order to have an impact and usefulness in the clinical setting, and clinical practice underscores the usefulness and makes sense of research. Body composition is a key component of health-related fitness with physical, morphological, and particularly important health-related implications during pregnancy. Pregnancy poses a major challenge for the study of body composition, as several techniques and overall methods and related assumptions are often not applicable, and pregnancy therefore requires specific assessment approaches. In the present chapter, we present a look into body composition fundamentals, how body composition can be assessed during pregnancy, and what adaptations should be taken into consideration in the assessment and interpretation of body composition data. In the final section of the present chapter, a focus will be put on the effect of exercise on body composition during pregnancy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. CDC. Physical activity and health: a report of the surgeon general. Atlanta, GA: Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion; 1996.

    Google Scholar 

  2. ACSM. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia, PA: Wolters Kluwer; 2017. 480 p. Revised.

    Google Scholar 

  3. Vernini JM, Moreli JB, Costa RAA, Negrato CA, Rudge MVC, Calderon IMP. Maternal adipokines and insulin as biomarkers of pregnancies complicated by overweight and obesity. Diabetol Metab Syndr. 2016;8(1):68. http://dmsjournal.biomedcentral.com/articles/10.1186/s13098-016-0184-y. Accessed 25 Oct 2017.

    PubMed  PubMed Central  Google Scholar 

  4. Mitanchez D, Jacqueminet S, Nizard J, Tanguy M-L, Ciangura C, Lacorte J-M, et al. Effect of maternal obesity on birthweight and neonatal fat mass: a prospective clinical trial. PLoS One. 2017;12(7):e0181307.

    PubMed  PubMed Central  Google Scholar 

  5. Schmitt NM, Nicholson WK, Schmitt J. The association of pregnancy and the development of obesity–results of a systematic review and meta-analysis on the natural history of postpartum weight retention. Int J Obes. 2007;31(11):1642–51.

    CAS  Google Scholar 

  6. Cedergren MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol. 2004;103(2):219–24.

    PubMed  Google Scholar 

  7. Rooney BL, Schauberger CW. Excess pregnancy weight gain and long-term obesity: one decade later. Obstet Gynecol. 2002;100(2):245–52.

    PubMed  Google Scholar 

  8. McCarthy EA, Strauss BJ, Walker SP, Permezel M. Determination of maternal body composition in pregnancy and its relevance to perinatal outcomes. Obstet Gynecol Surv. 2004;59(10):731–42.

    PubMed  Google Scholar 

  9. Wang Z-M, Pierson RN, Heymsfield SB. The five-level model: a new approach to organizing body-composition research. Am J Clin Nutr. 1992;56(1):19–28.

    CAS  PubMed  Google Scholar 

  10. Shen W, St-Onge M, Wang Z, Heymsfield S. Study of body composition: an overview. In: Heymsfield S, Lohman TG, Wang Z, Going S, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. p. 3–16.

    Google Scholar 

  11. Lederman SA. Pregnancy. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. p. 299–312.

    Google Scholar 

  12. Shen W, Wang Z, Punyanita M, Lei J, Sinav A, Kral JG, et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes Res. 2003;11(1):5–16.

    PubMed  PubMed Central  Google Scholar 

  13. Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev. 1994;74(4):761–811.

    CAS  PubMed  Google Scholar 

  14. Bray G. Overweight, mortality, and morbidity. In: Bouchard C, editor. Physical activity and obesity. Champaign, IL: Human Kinetics; 2000. p. 31–54.

    Google Scholar 

  15. Vague J. [Importance of the measurement of fat distribution in pathology]. Bull Mem Soc Med Hop Paris 1950;66(31–32):1572–4.

    Google Scholar 

  16. Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956;4(1):20–34.

    CAS  PubMed  Google Scholar 

  17. Canoy D, Boekholdt SM, Wareham N, Luben R, Welch A, Bingham S, et al. Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study. Circulation. 2007;116(25):2933–43.

    PubMed  Google Scholar 

  18. Nishida C, Ko GT, Kumanyika S. Body fat distribution and noncommunicable diseases in populations: overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur J Clin Nutr. 2010;64(1):2–5.

    CAS  PubMed  Google Scholar 

  19. Zhang S, Folsom AR, Flack JM, Liu K. Body fat distribution before pregnancy and gestational diabetes: findings from coronary artery risk development in young adults (CARDIA) study. BMJ. 1995;311(7013):1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stevens-Simons C, Thureen P, Barret J, Stamm E. Regional body fat distribution and insulin resistance during adolescent pregnancy. J Am Diet Assoc. 2002;102(4):563–5.

    Google Scholar 

  21. Landon MB, Osei K, Platt M, O’dorisio T, Samuels P, Gabbe SG. The differential effects of body fat distribution on insulin and glucose metabolism during pregnancy. Am J Obstet Gynecol. 1994;171(4):875–84.

    CAS  PubMed  Google Scholar 

  22. Ozias MK, Li S, Hull HR, Brooks WM, Petroff MG, Carlson SE. Abdominal visceral adiposity influences CD4+ T cell cytokine production in pregnancy. Cytokine. 2015;71(2):405–8.

    CAS  PubMed  Google Scholar 

  23. Rossner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santago P, et al. Adipose tissue determinations in cadavers--a comparison between cross-sectional planimetry and computed tomography. Int J Obes. 1990;14(10):893–902.

    CAS  PubMed  Google Scholar 

  24. Abate N, Burns D, Peshock RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res. 1994;35(8):1490–6.

    CAS  PubMed  Google Scholar 

  25. Widen EM, Gallagher D. Body composition changes in pregnancy: measurement, predictors and outcomes. Eur J Clin Nutr. 2014;68(6):643–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazaki-Tovi S, Vaisbuch E, Tarca AL, Kusanovic JP, Than NG, Chaiworapongsa T, et al. Characterization of visceral and subcutaneous adipose tissue transcriptome and biological pathways in pregnant and non-pregnant women: evidence for pregnancy-related regional-specific differences in adipose tissue. Sanchez-Margalet V, editor. PLoS One. 2015;10(12):e0143779.

    PubMed  PubMed Central  Google Scholar 

  27. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359–404.

    CAS  PubMed  Google Scholar 

  28. Goodpaster BH. Measuring body fat distribution and content in humans. Curr Opin Clin Nutr Metab Care. 2002;5(5):481–7.

    PubMed  Google Scholar 

  29. Sardinha LB, Teixeira PJ. Measuring adiposity and fat distribution in relation to health. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. p. 177–202.

    Google Scholar 

  30. Despres JP. Abdominal obesity and cardiovascular disease: is inflammation the missing link? Can J Cardiol. 2012;28(6):642–52.

    PubMed  Google Scholar 

  31. Ghezzi F, Franchi M, Balestreri D, Lischetti B, Mele MC, Alberico S, et al. Bioelectrical impedance analysis during pregnancy and neonatal birth weight. Eur J Obestet Gynecol. 2001;98(2):171–6.

    CAS  Google Scholar 

  32. Forbes GB. Human body composition - growth, aging, nutrition, and activity. Berlin: Springer; 1987. www.springer.com/cn/book/9781461291008. Accessed 9 Nov 2017.

    Google Scholar 

  33. Kopp-Hoolihan LE, Van Loan MD, Wong WW, King JC. Fat mass deposition during pregnancy using a four-component model. J Appl Physiol. 1999;87(1):196–202.

    CAS  PubMed  Google Scholar 

  34. Ikenoue S, Waffarn F, Sumiyoshi K, Ohashi M, Ikenoue C, Buss C, et al. Association of ultrasound-based measures of fetal body composition with newborn adiposity: fetal body composition and newborn adiposity. Pediatr Obes. 2017;12:86–93.

    PubMed  Google Scholar 

  35. Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutrition. 2001;17(1):26–30.

    CAS  PubMed  Google Scholar 

  36. WHO. Measuring obesity-classification and description of anthropometric data. Report on a WHO consultation on the epidemiology of obesity. Warsaw: WHO Regional Office for Europe; 1987.

    Google Scholar 

  37. WHO. Obesity: preventing and managing the global epidemic - report of a WHO consultation on obesity. Executive summary. Geneva: World Health Organization; 1997.

    Google Scholar 

  38. NIH. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults--the evidence report. National Institutes of Health. Obes Res. 1998;6(Suppl 2):51S–209S.

    Google Scholar 

  39. CSEP. Canadian Society for Exercise Physiology-Physical Activity Training for Health (CSEP-PATH). 2nd ed. Ottawa, ON: Canadian Society for Exercise Physiology; 2019.

    Google Scholar 

  40. IOM (Institute of Medicine). Weight gain during pregnancy: reexamining the guidelines. Washington, DC: The National Academies Press; 2009. http://www.nap.edu/catalog/12584. Accessed 18 Dec 2017.

    Google Scholar 

  41. Rasmussen KM, Abrams B, Bodnar LM, Butte NF, Catalano PM, Maria Siega-Riz A. Recommendations for weight gain during pregnancy in the context of the obesity epidemic. Obstet Gynecol. 2010;116(5):1191–5.

    PubMed  PubMed Central  Google Scholar 

  42. Forsum E, Henriksson P, Löf M. The Two-component model for calculating total body fat from body density: an evaluation in healthy women before, during and after pregnancy. Nutrients. 2014;6(12):5888–99.

    PubMed  PubMed Central  Google Scholar 

  43. Gaillard R. Maternal obesity during pregnancy and cardiovascular development and disease in the offspring. Eur J Epidemiol. 2015;30(11):1141–52.

    PubMed  PubMed Central  Google Scholar 

  44. Athukorala C, Rumbold AR, Willson KJ, Crowther CA. The risk of adverse pregnancy outcomes in women who are overweight or obese. BMC Pregnan Childb. 2010;10(1):56.

    Google Scholar 

  45. Höhn N, Junge S. [The relationship of maternal obesity, excessive weight gain in pregnancy and pre-eclampsia]. Geburtshilfe Frauenheilkd 1979;39(12):1079–82.

    Google Scholar 

  46. Kosus A, Eser A, Kosus N, Usluogullari B, Hizli D. Hyperemesis gravidarum and its relation with maternal body fat composition. J Obstet Gynaecol. 2016;36(6):822–6.

    PubMed  Google Scholar 

  47. Aune D, Saugstad OD, Henriksen T, Tonstad S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: a systematic review and meta-analysis. JAMA. 2014;311(15):1536.

    CAS  PubMed  Google Scholar 

  48. Chu SY, Kim SY, Lau J, Schmid CH, Dietz PM, Callaghan WM, et al. Maternal obesity and risk of stillbirth: a metaanalysis. Am J Obstet Gynecol. 2007;197(3):223–8.

    PubMed  Google Scholar 

  49. Yao R, Ananth CV, Park BY, Pereira L, Plante LA. Obesity and the risk of stillbirth: a population-based cohort study. Am J Obstet Gynecol. 2014;210(5):457.e1–9.

    Google Scholar 

  50. Lee H-J, Ha J-E, Bae K-H. Synergistic effect of maternal obesity and periodontitis on preterm birth in women with pre-eclampsia: a prospective study. J Clin Periodontol. 2016;43(8):646–51.

    PubMed  Google Scholar 

  51. Rasmussen S, Irgens L, Espinoza J. Maternal obesity and excess of fetal growth in pre-eclampsia. BJOG Int J Obstet Gynaecol. 2014;121(11):1351–8.

    CAS  Google Scholar 

  52. Leonard SA, Rasmussen KM, King JC, Abrams B. Trajectories of maternal weight from before pregnancy through postpartum and associations with childhood obesity. Am J Clin Nutr. 2017;106:1295.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai G, Sun X, Zhang L, Hong Q. Association between maternal body mass index and congenital heart defects in offspring: a systematic review. Am J Obstet Gynecol. 2014;211(2):91–117.

    PubMed  Google Scholar 

  54. Lawlor DA. The Society for Social Medicine John Pemberton Lecture 2011. Developmental overnutrition—an old hypothesis with new importance?*. Int J Epidemiol. 2013;42(1):7–29.

    PubMed  Google Scholar 

  55. Lindell N, Carlsson A, Josefsson A, Samuelsson U. Maternal obesity as a risk factor for early childhood type 1 diabetes: a nationwide, prospective, population-based case–control study. Diabetologia. 2018;61(1):130–7.

    PubMed  Google Scholar 

  56. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10.

    CAS  PubMed  Google Scholar 

  57. Koska J, Stefan N, Permana PA, Weyer C, Sonoda M, Bogardus C, et al. Increased fat accumulation in liver may link insulin resistance with subcutaneous abdominal adipocyte enlargement, visceral adiposity, and hypoadiponectinemia in obese individuals. Am J Clin Nutr. 2008;87(2):295–302.

    CAS  PubMed  Google Scholar 

  58. Tanaka S, Togashi K, Rankinen T, Perusse L, Leon AS, Rao DC, et al. Is adiposity at normal body weight relevant for cardiovascular disease risk? Int J Obes Relat Metab Disord. 2002;26(2):176–83.

    CAS  PubMed  Google Scholar 

  59. IOM (Institute of Medicine). Nutrition during pregnancy: Part I: Weight gain, Part II: Nutrient supplements. Washington, DC: National Academies Press; 1990. http://www.nap.edu/catalog/1451. Accessed 18 Dec 2017.

    Google Scholar 

  60. Lederman SA, Paxton A, Heymsfield SB, Wang J, Thornton J, Pierson RN. Body fat and water changes during pregnancy in women with different body weight and weight gain. Obstet Gynecol. 1997;90(4 Pt 1):483–8.

    CAS  PubMed  Google Scholar 

  61. Gunderson EP, Abrams B, Selvin S. Does the pattern of postpartum weight change differ according to pregravid body size? Int J Obes. 2001;25(6):853.

    CAS  Google Scholar 

  62. Butte NF, Ellis KJ, Wong WW, Hopkinson JM, Smith EO. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am J Obstet Gynecol. 2003;189(5):1423–32.

    PubMed  Google Scholar 

  63. Bodnar LM, Pugh SJ, Abrams B, Himes KP, Hutcheon JA. Gestational weight gain in twin pregnancies and maternal and child health: a systematic review. J Perinatol. 2014;34(4):252–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mohammadbeigi A, Farhadifar F, Zadeh NS, Mohammadsalehi N, Rezaiee M, Aghaei M. Fetal macrosomia: risk factors, maternal, and perinatal outcome. Ann Med Health Sci Res. 2013;3(4):546.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Han Z, Lutsiv O, Mulla S, Rosen A, Beyene J, Mcdonald SD, et al. Low gestational weight gain and the risk of preterm birth and low birthweight: a systematic review and meta-analyses: low gestational weight gain and PTB/LBW. Acta Obstet Gynecol Scand. 2011;90(9):935–54.

    PubMed  Google Scholar 

  66. Huang A, Ji Z, Zhao W, Hu H, Yang Q, Chen D. Rate of gestational weight gain and preterm birth in relation to prepregnancy body mass indices and trimester: a follow-up study in China. Reprod Health. 2016;13:93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4983027/. Accessed 12 Aug 2016.

    PubMed  PubMed Central  Google Scholar 

  67. Jayabalan N, Nair S, Nuzhat Z, Rice GE, Zuñiga FA, Sobrevia L, et al. Cross talk between adipose tissue and placenta in obese and gestational diabetes mellitus pregnancies via exosomes. Front Endocrinol. 2017;8:239. http://www.frontiersin.org.https.sci-hub.hk/articles/10.3389/fendo.2017.00239/full#B126. Accessed 26 Dec 2017.

    Google Scholar 

  68. Barbour LA, Shao J, Qiao L, Pulawa LK, Jensen DR, Bartke A, et al. Human placental growth hormone causes severe insulin resistance in transgenic mice. Am J Obstet Gynecol. 2002;186(3):512–7.

    CAS  PubMed  Google Scholar 

  69. Ruhstaller K, Bastek J, Thomas A, Mcelrath T, Parry S, Durnwald C. The effect of early excessive weight gain on the development of hypertension in pregnancy. Am J Perinatol. 2016;33(12):1205–10.

    PubMed  Google Scholar 

  70. Friedmann I, Balayla J. Gestational weight gain and the risk of infant mortality amongst women with normal prepregnancy BMI: the Friedmann-Balayla model. J Matern Fetal Neonatal Med. 2018;31(3):325–32.

    PubMed  Google Scholar 

  71. Sharma AJ, Vesco KK, Bulkley J, Callaghan WM, Bruce FC, Staab J, et al. Associations of Gestational Weight Gain with preterm birth among underweight and normal weight women. Matern Child Health J. 2015;19(9):2066–73.

    PubMed  PubMed Central  Google Scholar 

  72. Widen EM, Factor-Litvak PR, Gallagher D, Paxton A, Pierson RN, Heymsfield SB, et al. The pattern of gestational weight gain is associated with changes in maternal body composition and neonatal size. Matern Child Health J. 2015;19(10):2286–94.

    PubMed  PubMed Central  Google Scholar 

  73. Wang Y, Mao J, Wang W, Qiou J, Yang L, Chen S. Maternal fat free mass during pregnancy is associated with birth weight. Reprod Health. 2017;14(1):47. http://reproductive-health-journal.biomedcentral.com/articles/10.1186/s12978-017-0308-3. Accessed 9 Nov 2017.

    PubMed  PubMed Central  Google Scholar 

  74. Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev. 1997;18(6):832–72.

    CAS  PubMed  Google Scholar 

  75. O’Sullivan SM, Grey AB, Singh R, Reid IR. Bisphosphonates in pregnancy and lactation-associated osteoporosis. Osteoporos Int. 2006;17(7):1008–12.

    PubMed  Google Scholar 

  76. Kovacs CS, Ralston SH. Presentation and management of osteoporosis presenting in association with pregnancy or lactation. Osteoporos Int. 2015;26(9):2223–41.

    CAS  PubMed  Google Scholar 

  77. Medicine AC of S. Exercise testing and prescription for population with other chronic diseases and health conditions. In: ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2017. p. 297–376. Revised.

    Google Scholar 

  78. Berggren EK, Groh-Wargo S, Presley L, Hauguel-de Mouzon S, Catalano PM. Maternal fat, but not lean, mass is increased among overweight/obese women with excess gestational weight gain. Am J Obstet Gynecol. 2016;214(6):745.e1–5.

    Google Scholar 

  79. Gunderson EP, Abrams B. Epidemiology of gestational weight gain and body weight changes after pregnancy. Epidemiol Rev. 1999;21(2):261–75.

    CAS  PubMed  Google Scholar 

  80. Bogaerts A, De Baetselier E, Ameye L, Dilles T, Van Rompaey B, Devlieger R. Postpartum weight trajectories in overweight and lean women. Midwifery. 2017;49:134–41.

    PubMed  Google Scholar 

  81. Sobhonslidsuk A, Jongjirasiri S, Thakkinstian A, Wisedopas N, Bunnag P, Puavilai G. Visceral fat and insulin resistance as predictors of non-alcoholic steatohepatitis. World J Gastroenterol. 2007;13(26):3614–8.

    CAS  PubMed  Google Scholar 

  82. Brunzell JD, Hokanson JE. Dyslipidemia of central obesity and insulin resistance. Diabetes Care. 1999;22(Suppl 3):C10–3.

    PubMed  Google Scholar 

  83. Goodpaster B, Kelley DE. Obesity and diabetes: body composition determinants of insulin resistance. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. 2nd ed. Champaign, IL: Human Kinetics; 2005. p. 356–76.

    Google Scholar 

  84. Akagiri S, Naito Y, Ichikawa H, Mizushima K, Takagi T, Handa O, et al. A mouse model of metabolic syndrome; increase in visceral adipose tissue precedes the development of fatty liver and insulin resistance in high-fat diet-fed male KK/Ta mice. J Clin Biochem Nutr. 2008;42(2):150–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sonagra AD. Normal pregnancy- a state of insulin resistance. J Clin Diagn Res. 2014;8:CC01. http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2014&volume=8&issue=11&page=CC01&issn=0973-709x&id=5081. Accessed 3 Jan 2018.

    PubMed  PubMed Central  Google Scholar 

  86. Díaz P, Powell TL, Jansson T. The role of placental nutrient sensing in maternal-fetal resource allocation. Biol Reprod. 2014;91(4):82. https://academic.oup.com/biolreprod/article-lookup/doi/10.1095/biolreprod.114.121798. Accessed 3 Jan 2018.

    PubMed  PubMed Central  Google Scholar 

  87. Coppack SW. Adipose tissue changes in obesity. Biochem Soc Trans. 2005;33(5):1049–52.

    CAS  PubMed  Google Scholar 

  88. Poulos SP, Hausman DB, Hausman GJ. The development and endocrine functions of adipose tissue. Mol Cell Endocrinol. 2010;323(1):20–34.

    CAS  PubMed  Google Scholar 

  89. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29(3):274–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Aleksandrova K, Mozaffarian D, Pischon T. Addressing the perfect storm: biomarkers in obesity and pathophysiology of cardiometabolic risk. Clin Chem. 2018;64(1):142–53.

    CAS  PubMed  Google Scholar 

  91. Bakhai A. Adipokines--targeting a root cause of cardiometabolic risk. QJM. 2008;101(10):767–76.

    CAS  PubMed  Google Scholar 

  92. Amash A, Holcberg G, Sapir O, Huleihel M. Placental secretion of interleukin-1 and interleukin-1 receptor antagonist in preeclampsia: effect of magnesium sulfate. J Interf Cytokine Res. 2012;32(9):432–41.

    CAS  Google Scholar 

  93. Leme Galvão LP, Menezes FE, Mendonca C, Barreto I, Alvim-Pereira C, Alvim-Pereira F, et al. Analysis of association of clinical aspects and IL1B tagSNPs with severe preeclampsia. Hypertens Pregnan. 2016;35(1):112–22.

    Google Scholar 

  94. Kalinderis M, Papanikolaou A, Kalinderi K, Ioannidou E, Giannoulis C, Karagiannis V, et al. Elevated serum levels of interleukin-6, interleukin-1β and human chorionic gonadotropin in pre-eclampsia: IL-6, IL-1β and HCG in pre-eclampsia. Am J Reprod Immunol. 2011;66(6):468–75.

    CAS  PubMed  Google Scholar 

  95. Phillips J, McBride CA, Morris E, Crocker AM, Bernstein I. Adiposity, but not obesity, is associated with arterial stiffness in young nulliparous women. Reprod Sci. 2018;25:909.

    PubMed  Google Scholar 

  96. Huda SS, Jordan F, Bray J, Love G, Payne R, Sattar N, et al. Visceral adipose tissue activated macrophage content and inflammatory adipokine secretion is higher in pre-eclampsia than in healthy pregnancys. Clin Sci. 2017;131(13):1529–40.

    CAS  Google Scholar 

  97. D’anna R, Baviera G, Corrado F, Giordano D, Di Benedetto A, Jasonni VM. Plasma adiponectin concentration in early pregnancy and subsequent risk of hypertensive disorders. Obstet Gynecol. 2005;106(2):340–4.

    PubMed  Google Scholar 

  98. Rosso P, Donoso E, Braun S, Espinoza R, Fernández C, Salas SP. Maternal hemodynamic adjustments in idiopatic fetal growth retardation. Gynecol Obstet Investig. 1993;35:162–5.

    CAS  Google Scholar 

  99. Piuri G, Ferrazzi E, Bulfoni C, Mastricci L, Di Martino D, Speciani AF. Longitudinal changes and correlations of bioimpedance and anthropometric measurements in pregnancy: simple possible bed-side tools to assess pregnancy evolution. J Matern Fetal Neonatal Med. 2017;30(23):2824–30.

    CAS  PubMed  Google Scholar 

  100. Toro-Ramos T, Paley C, Pi-Sunyer FX, Gallagher D. Body composition during fetal development and infancy through the age of 5 years. Eur J Clin Nutr. 2015;69(12):1279–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chang S, Lodico L, Williams Z. Nutritional composition and heavy metal content of the human placenta. Placenta. 2017;60:100–2.

    CAS  PubMed  Google Scholar 

  102. Pratt JP, Kaucher M, Richards AJ, Williams HH, Macy IC. Composition of the human placenta: I. Proximate composition. Am J Obstet Gynecol. 1946;52(3):402–8.

    CAS  PubMed  Google Scholar 

  103. Paxton A, Lederman SA, Heymsfield SB, Wang J, Thornton JC, Pierson RN. Anthropometric equations for studying body fat in pregnant women. Am J Clin Nutr. 1998;67(1):104–10.

    CAS  PubMed  Google Scholar 

  104. Denne SC, Patel D, Kalhan SC. Total body water measurement in normal and diabetic pregnancy: evidence for maternal and amniotic fluid equilibrium. Neonatology. 1990;57(5):284–91.

    CAS  Google Scholar 

  105. Wong WW, Lee LS, Klein PD. Deuterium and oxygen-18 measurements on microliter samples of urine, plasma, saliva, and human milk. Am J Clin Nutr. 1987;45(5):905–13.

    CAS  PubMed  Google Scholar 

  106. Larciprete G, Valensise H, Vasapollo B, Altomare F, Sorge R, Casalino B, et al. Body composition during normal pregnancy: reference ranges. Acta Diabetol. 2003;40(S1):s225–32.

    PubMed  Google Scholar 

  107. Lof M, Forsum E. Evaluation of bioimpedance spectroscopy for measurements of body water distribution in healthy women before, during, and after pregnancy. J Appl Physiol. 2004;96(3):967–73.

    PubMed  Google Scholar 

  108. Anderson EC, Schuch RL, Fisher WR, Langham W. Radioactivity of people and foods. Science. 1957;125(3261):1273–8.

    CAS  PubMed  Google Scholar 

  109. Smith T, Cronquist A. A versatile and economic whole-body counter based on liquid scintillation detector modules. Br J Radiol. 1977;50:332–9.

    CAS  PubMed  Google Scholar 

  110. Ellis KJ. Whole-body counting and neutron activation analysis. In: Human body composition. 2nd ed. Champaign, IL: Human Kinetics Publishers; 2005. p. 51–62. Revised.

    Google Scholar 

  111. Pipe NGJ, Smith T, Halliday D, Edmonds CJ, Williams C, Coltart TM. Changes in fat, fat-free mass and body water in human normal pregnancy. BJOG Int J Obstet Gynaecol. 1979;86(12):929–40.

    CAS  Google Scholar 

  112. Gilmore LA, Butte NF, Ravussin E, Han H, Burton JH, Redman LM. Energy intake and energy expenditure for determining excess weight gain in pregnant women. Obstet Gynecol. 2016;127(5):884–92.

    PubMed  PubMed Central  Google Scholar 

  113. Fuller NJ, Jebb SA, Laskey MA, Coward WA, Elia M. Four-component model for the assessment of body composition in humans: comparison with alternative methods, and evaluation of the density and hydration of fat-free mass. Clin Sci. 1992;82(6):687–93.

    CAS  Google Scholar 

  114. Marshall NE, Murphy EJ, King JC, Haas EK, Lim JY, Wiedrick J, et al. Comparison of multiple methods to measure maternal fat mass in late gestation. Am J Clin Nutr. 2016;103(4):1055–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hopkinson JM, Butte NF, Ellis KJ, Wong WW, Puyau MR, Smith EO. Body fat estimation in late pregnancy and early postpartum: comparison of two-, three-, and four-component models. Am J Clin Nutr. 1997;65(2):432–8.

    CAS  PubMed  Google Scholar 

  116. Van Raaij JM, Peek ME, Vermaat-Miedema SH, Schonk CM, Hautvast JG. New equations for estimating body fat mass in pregnancy from body density or total body water. Am J Clin Nutr. 1988;48(1):24–9.

    PubMed  Google Scholar 

  117. De Lorenzo A, Andreoli A, Matthie J, Withers P. Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J Appl Physiol. 1997;82(5):1542–58.

    PubMed  Google Scholar 

  118. To WWK, Wong MWN. Changes in bone mineral density of the os calcis as measured by quantitative ultrasound during pregnancy and 24 months after delivery: bone mineral density changes after pregnancy. Aust N Z J Obstet Gynaecol. 2011;51(2):166–71.

    PubMed  Google Scholar 

  119. Kennedy N, Peek M, Quinton A, Lanzarone V, Martin A, Benzie R, et al. Maternal abdominal subcutaneous fat thickness as a predictor for adverse pregnancy outcome: a longitudinal cohort study. BJOG Int J Obstet Gynaecol. 2016;123(2):225–32.

    CAS  Google Scholar 

  120. Bartha JL, Marín-Segura P, González-González NL, Wagner F, Aguilar-Diosdado M, Hervias-Vivancos B. Ultrasound evaluation of visceral fat and metabolic risk factors during early pregnancy. Obesity. 2007;15(9):2233–9.

    PubMed  Google Scholar 

  121. Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol. 2015;39(2):73–104.

    PubMed  PubMed Central  Google Scholar 

  122. Norgan NG. Maternal body composition: methods for measuring short-term changes. J Biosoc Sci. 1992;24(3):367–77.

    CAS  PubMed  Google Scholar 

  123. Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. Indices of relative weight and obesity. J Chronic Dis. 1972;25(6):329–43.

    CAS  PubMed  Google Scholar 

  124. Craig P, Samaras K, Freund J, Culton N, Halavatau V, Campbell L. BMI inaccurately reflects total body and abdominal fat in Tongans. Acta Diabetol. 2003;40(Suppl 1):S282–5.

    PubMed  Google Scholar 

  125. Sewell MF, Huston-Presley L, Amini SB, Catalano PM. Body mass index: a true indicator of body fat in obese gravidas. J Reprod Med. 2007;52(10):907–11.

    PubMed  Google Scholar 

  126. Lindsay CA, Huston L, Amini SB, Catalano PM. Longitudinal changes in the relationship between body mass index and percent body fat in pregnancy. Obstet Gynecol. 1997;89(3):377–82.

    CAS  PubMed  Google Scholar 

  127. Gernand AD, Christian P, Schulze KJ, Shaikh S, Labrique AB, Shamim AA, et al. Maternal nutritional status in early pregnancy is associated with body water and plasma volume changes in a pregnancy cohort in rural Bangladesh. J Nutr. 2012;142(6):1109–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Contreras Campos ME, Rodríguez-Cervantes N, Reza-López S, Ávila-Esparza M, Chávez-Corral DV, Levario-Carrillo M. Body composition and newborn birthweight in pregnancies of adolescent and mature women: body composition in pregnant adolescents. Matern Child Nutr. 2015;11(2):164–72.

    PubMed  Google Scholar 

  129. Dittmar M, Reber H. Validation of different bioimpedance analyzers for predicting cell mass against whole-body counting of potassium (40K) as a reference method. Am J Hum Biol. 2004;16(6):697–703.

    PubMed  Google Scholar 

  130. Berlit S, Tuschy B, Stojakowits M, Weiss C, Leweling H, Suetterlin M, et al. Bioelectrical impedance analysis in pregnancy: reference ranges. In Vivo. 2013;27(6):851–4.

    PubMed  Google Scholar 

  131. Lukaski HC, Siders WA, Nielsen EJ, Hall CB. Total body water in pregnancy: assessment by using bioelectrical impedance. Am J Clin Nutr. 1994;59(3):578–85.

    CAS  PubMed  Google Scholar 

  132. Obuchowska A, Standyło A, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B. The possibility of using bioelectrical impedance analysis in pregnant and postpartum women. Diagnostics. 2021;11(8):1370.

    PubMed  PubMed Central  Google Scholar 

  133. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–53.

    PubMed  Google Scholar 

  134. Trindade CR, Torloni MR, Mattar R, Sun SY. Good performance of bioimpedance in early pregnancy to predict preeclampsia. Pregnan Hypertens. 2021;26:24–30.

    Google Scholar 

  135. Liu Y, Liu J, Gao Y, Zheng D, Pan W, Nie M, et al. The body composition in early pregnancy is associated with the risk of development of gestational diabetes mellitus late during the second trimester. Diabetes Metab Syndr Obes Targets Ther. 2020;13:2367–74.

    CAS  Google Scholar 

  136. Bijlholt M, Maslin K, Ameye L, Shawe J, Bogaerts A, Devlieger R. Phase angle and bio-impedance values during the first year after delivery in women with previous excessive gestational weight gain: innovative data from the Belgian INTER-ACT study. Int J Environ Res Public Health. 2021;18(14):7482.

    PubMed  PubMed Central  Google Scholar 

  137. Lopez LB, Calvo EB, Poy MS, del Valle Balmaceda Y, Camera K. Changes in skinfolds and mid-upper arm circumference during pregnancy in Argentine women. Matern Child Nutr. 2011;7(3):253–62.

    PubMed  Google Scholar 

  138. Kannieapan LM, Deussen AR, Grivell RM, Yelland L, Dodd JM. Developing a tool for obtaining maternal skinfold thickness measurements and assessing inter-observer variability among pregnant women who are overweight and obese. BMC Pregnan Childb. 2013;13(42):1–6.

    Google Scholar 

  139. Stevens-Simon C, Thureen P, Barrett J, Stamm E. Skinfold caliper and ultrasound assessments of change in the distribution of subcutaneous fat during adolescent pregnancy. Int J Obes Relat Metab Disord. 2001;25(9):1340.

    CAS  PubMed  Google Scholar 

  140. Durnin J, Grant S, McKillop FM, Fitzgerald G. Energy requirements of pregnancy in Scotland. Lancet. 1987;330(8564):897–900.

    Google Scholar 

  141. Durnin J. Energy requirements of pregnancy: an integrated study in five countries: background and methods. Lancet. 1987;330(8564):895–6.

    Google Scholar 

  142. Durnin JVGA. Energy requirements of pregnancy. Diabetes. 1991;40(S2):152–6.

    PubMed  Google Scholar 

  143. Sohlström A, Forsum E. Changes in total body fat during the human reproductive cycle as assessed by magnetic resonance imaging, body water dilution, and skinfold thickness: a comparison of methods. Am J Clin Nutr. 1997;66(6):1315–22.

    PubMed  Google Scholar 

  144. Presley LH, Wong WW, Roman NM, Amini SB, Catalano PM. Anthropometric estimation of maternal body composition in late gestation. Obstet Gynecol. 2000;96(1):33–7.

    Google Scholar 

  145. Soltani H, Fraser RB. A longitudinal study of maternal anthropometric changes in normal weight, overweight and obese women during pregnancy and postpartum. Br J Nutr. 2000;84(01):95.

    CAS  PubMed  Google Scholar 

  146. Taggart NR, Holliday RM, Billewicz WZ, Hytten FE, Thomson AM. Changes in skinfolds during pregnancy. Br J Nutr. 1967;21(02):439.

    CAS  PubMed  Google Scholar 

  147. Ehrenberg HM, Huston-Presley L, Catalano PM. The influence of obesity and gestational diabetes mellitus on accretion and the distribution of adipose tissue in pregnancy. Am J Obstet Gynecol. 2003;189(4):944–8.

    PubMed  Google Scholar 

  148. Villar J, Cogswell M, Kestler E, Castillo P, Menendez R, Repke JT. Effect of fat and fat-free mass deposition during pregnancy on birth weight. Am J Obstet Gynecol. 1992;167(5):1344–52.

    CAS  PubMed  Google Scholar 

  149. Tuazon MAG, Van Raaij JMA, Hautvast JGA, Barba CVC. Energy requirements of pregnancy in the Philippines. Lancet. 1987;330(8568):1129–31.

    Google Scholar 

  150. Catalano PM, Roman-Drago NM, Amini SB, Sims EA. Longitudinal changes in body composition and energy balance in lean women with normal and abnormal glucose tolerance during pregnancy. Am J Obstet Gynecol. 1998;179(1):156–65.

    CAS  PubMed  Google Scholar 

  151. Branco M, Santos-Rocha R, Vieira F, Silva M-R, Aguiar L, Veloso AP. Influence of body composition on gait kinetics throughout pregnancy and postpartum period. Scientifica. 2016;2016:1–12.

    Google Scholar 

  152. Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign, IL: Human Kinetics; 1988.

    Google Scholar 

  153. López LB, Calvo EB, Poy MS, del Valle Balmaceda Y, Cámera K. Changes in skinfolds and mid-upper arm circumference during pregnancy in Argentine women: skinfolds and MUAC changes in pregnant Argentine women. Matern Child Nutr. 2011;7(3):253–62.

    PubMed  Google Scholar 

  154. Heyward V, Wagner DR. Applied body composition assessment. Champaign, IL: Human Kinetics; 2004.

    Google Scholar 

  155. Stewart A, Marfell-Jones M, Olds T, de Ridder H. International standards for anthropometric assessment. Lower Hutt: ISAK; 2011.

    Google Scholar 

  156. Bern C, Nathanail L. Is mid-upper-arm circumference a useful tool for screening in emergency settings? Lancet. 1995;345(8950):631–3.

    CAS  PubMed  Google Scholar 

  157. Vijayaraghavan K, Sastry JG. The efficacy of arm circumference as a substitute for weight in assessment of protein-calorie malnutrition. Ann Hum Biol. 1976;3(3):229–33.

    CAS  PubMed  Google Scholar 

  158. Lindtjorn B. Measuring acute malnutrition: a need to redefine cut-off points for arm circumference? Lancet. 1985;2(8466):1229–30.

    CAS  PubMed  Google Scholar 

  159. Carter EP. Comparison of weight:height ratio and arm circumference in assessment of acute malnutrition. Arch Child. 1987;62(8):833–5.

    CAS  Google Scholar 

  160. Hall G, Chowdhury S, Bloem M. Use of mid-upper-arm circumference Z scores in nutritional assessment. Lancet. 1993;341(8858):1481.

    CAS  PubMed  Google Scholar 

  161. Demanet JC, Rorive G, Samii K, Van Cauwenberge H, Smets P. Effect of weight on prevalence of hypertension, and its interaction with the arm circumference: Belgian Hypertension Committee epidemiological study. Clin Sci Mol Med Suppl. 1976;3:665s–7s.

    CAS  PubMed  Google Scholar 

  162. Harries AD, Jones LA, Heatley RV, Newcombe RG, Rhodes J. Precision of anthropometric measurements: the value of mid-arm circumference. Clin Nutr. 1984;2(3-4):193–6. PubMed PMID: 16829433.

    Google Scholar 

  163. Olukoya AA. Identification of underweight women by measurement of the arm circumference. International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics. 1990;31(3):231–5. PubMed PMID: 1969363.

    Google Scholar 

  164. Shao J-T, Yu J, Qi J-Q, Liu X-D. The relationship between neck circumference and pregnancy-induced hypertension in the third trimester pregnant women. Hypertens Pregnan. 2014;33(3):291–8.

    Google Scholar 

  165. He F, He H, Liu W, Lin J, Chen B, Lin Y, et al. Neck circumference might predict gestational diabetes mellitus in Han Chinese women: a nested case-control study. J Diabetes Investig. 2017;8(2):168–73.

    Google Scholar 

  166. Anglim B, O’Higgins A, Daly N, Farren M, Turner MJ. Maternal obesity and neck circumference. Ir Med J. 2015;108(6):179–80.

    CAS  PubMed  Google Scholar 

  167. Clapp JF, Capeless EL. Neonatal morphometrics after endurance exercise during pregnancy. Am J Obstet Gynecol. 1990;163(6 Pt 1):1805–11.

    PubMed  Google Scholar 

  168. Bisson M, Tremblay F, St-Onge O, Robitaille J, Pronovost E, Simonyan D, et al. Influence of maternal physical activity on infant’s body composition: maternal activity and neonatal adiposity. Pediatr Obes. 2017;12:38–46.

    PubMed  Google Scholar 

  169. Ferrari N, Bae-Gartz I, Bauer C, Janoschek R, Koxholt I, Mahabir E, et al. Exercise during pregnancy and its impact on mothers and offspring in humans and mice. J Dev Orig Health Dis. 2018;9(1):63–76.

    CAS  PubMed  Google Scholar 

  170. Collings PJ, Farrar D, Gibson J, West J, Barber SE, Wright J. Associations of Pregnancy Physical Activity with Maternal Cardiometabolic Health, Neonatal delivery outcomes and body composition in a biethnic cohort of 7305 mother–child Pairs: the born in Bradford study. Sports Med. 2020;50(3):615–28.

    PubMed  Google Scholar 

  171. Leppänen MH, Raitanen J, Husu P, Kujala UM, Tuominen PP, Vähä-Ypyä H, et al. Physical activity and body composition in children and their mothers according to mother’s gestational diabetes risk: a seven-year follow-up study. Medicina. 2019;55(10):635.

    PubMed Central  Google Scholar 

  172. ACOG. Physical activity and exercise during pregnancy and the postpartum period. Obstet Gynecol. 2020;135(4):e178–85.

    Google Scholar 

  173. Mottola MF, Davenport MH, Ruchat S-M, Davies GA, Poitras VJ, Gray CE, et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br J Sports Med. 2018;52(21):1339–46.

    PubMed  Google Scholar 

  174. Smith R, Reid H, Matthews A, Calderwood C, Knight M, Foster C. Infographic: physical activity for pregnant women. Br J Sports Med. 2018;52(8):532–3.

    PubMed  Google Scholar 

  175. Gaston A, Cramp A. Exercise during pregnancy: a review of patterns and determinants. J Sci Med Sport. 2011;14(4):299–305.

    PubMed  Google Scholar 

  176. Rogozińska E, Zamora J, Marlin N, Betrán AP, Astrup A, Bogaerts A, et al. Gestational weight gain outside the Institute of Medicine recommendations and adverse pregnancy outcomes: analysis using individual participant data from randomised trials. BMC Pregnan Childb. 2019;19(1):322.

    Google Scholar 

  177. Rasmussen KM, Yaktine AL, Institute of Medicine (U.S.). Weight gain during pregnancy: reexamining the guidelines. Washington, DC: National Academies Press; 2009. 854 p.

    Google Scholar 

  178. Pellonperä O, Koivuniemi E, Vahlberg T, Mokkala K, Tertti K, Rönnemaa T, et al. Body composition measurement by air displacement plethysmography in pregnancy: comparison of predicted versus measured thoracic gas volume. Nutrition. 2019;60:227–9.

    PubMed  Google Scholar 

  179. Wasenius NS, Simonen M, Penttinen L, Salonen MK, Sandboge S, Eriksson JG. Effect of maternal weight during pregnancy on offspring muscle strength response to resistance training in late adulthood. Adv Med Sci. 2018;63(2):353–8.

    PubMed  Google Scholar 

  180. Muhammad HFL, Pramono A, Rahman MN. The safety and efficacy of supervised exercise on pregnant women with overweight/obesity: a systematic review and meta-analysis of randomized controlled trials. Clin Obes. 2021;11(2):e12428. https://onlinelibrary.wiley.com/doi/10.1111/cob.12428. Accessed 20 Sep 2021.

    PubMed  Google Scholar 

  181. da Silva SG, Ricardo LI, Evenson KR, Hallal PC. Leisure-time physical activity in pregnancy and maternal-child health: a systematic review and meta-analysis of randomized controlled trials and cohort studies. Sports Med. 2017;47(2):295–317.

    PubMed  Google Scholar 

  182. Garnæs KK, Mørkved S, Salvesen KÅ, Salvesen Ø, Moholdt T. Exercise training during pregnancy reduces circulating insulin levels in overweight/obese women postpartum: secondary analysis of a randomised controlled trial (the ETIP trial). BMC Pregnan Childb. 2018;18(1):18. https://bmcpregnancychildbirth.biomedcentral.com/articles/10.1186/s12884-017-1653-5. Accessed 12 Jan 2018.

    Google Scholar 

  183. Thangaratinam S, Rogozinska E, Jolly K, Glinkowski S, Roseboom T, Tomlinson JW, et al. Effects of interventions in pregnancy on maternal weight and obstetric outcomes: meta-analysis of randomised evidence. BMJ. 2012;344(4):e2088.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. The International Weight Management in Pregnancy (i-WIP) Collaborative Group. Effect of diet and physical activity based interventions in pregnancy on gestational weight gain and pregnancy outcomes: meta-analysis of individual participant data from randomised trials. BMJ. 2017;358:j3119.

    Google Scholar 

  185. Thangaratinam S, Rogozińska E, Jolly K, Glinkowski S, Duda W, Borowiack E, et al. Interventions to reduce or prevent obesity in pregnant women: a systematic review. Health Technol Assess. 2012;16(31):iii. https://www.journalslibrary.nihr.ac.uk/hta/hta16310/. Accessed 20 Sep 2021.

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Choi J, Fukuoka Y, Lee JH. The effects of physical activity and physical activity plus diet interventions on body weight in overweight or obese women who are pregnant or in postpartum: a systematic review and meta-analysis of randomized controlled trials. Prev Med. 2013;56(6):351–64.

    PubMed  PubMed Central  Google Scholar 

  187. Phelan S, Phipps MG, Abrams B, Darroch F, Grantham K, Schaffner A, et al. Does behavioral intervention in pregnancy reduce postpartum weight retention? Twelve-month outcomes of the Fit for Delivery randomized trial. Am J Clin Nutr. 2014;99(2):302–11.

    CAS  PubMed  Google Scholar 

  188. Sagedal L, Sanda B, Øverby N, Bere E, Torstveit M, Lohne-Seiler H, et al. The effect of prenatal lifestyle intervention on weight retention 12 months postpartum: results of the Norwegian Fit for Delivery randomised controlled trial. BJOG Int J Obstet Gynaecol. 2017;124(1):111–21.

    CAS  Google Scholar 

  189. Huberty JL, Buman MP, Leiferman JA, Bushar J, Hekler EB, Adams MA. Dose and timing of text messages for increasing physical activity among pregnant women: a randomized controlled trial. Transl Behav Med. 2017;7(2):212–23.

    PubMed  Google Scholar 

  190. Hayman M, Reaburn P, Browne M, Vandelanotte C, Alley S, Short CE. Feasibility, acceptability and efficacy of a web-based computer-tailored physical activity intervention for pregnant women - the Fit4Two randomised controlled trial. BMC Pregnan Childb. 2017;17(1):96.

    Google Scholar 

  191. Willcox J, Wilkinson S, Lappas M, Ball K, Crawford D, McCarthy E, et al. A mobile health intervention promoting healthy gestational weight gain for women entering pregnancy at a high body mass index: the txt4two pilot randomised controlled trial. BJOG Int J Obstet Gynaecol. 2017;124(11):1718–28.

    CAS  Google Scholar 

  192. Choi J, Hyeon LJ, Vittinghoff E, Fukuoka Y. mHealth physical activity intervention: a randomized pilot study in physically inactive pregnant women. Matern Child Health J. 2016;20(5):1091–101.

    PubMed  PubMed Central  Google Scholar 

  193. Sandborg J, Söderström E, Henriksson P, Bendtsen M, Henström M, Leppänen MH, et al. Effectiveness of a smartphone app to promote healthy weight gain, diet, and physical activity during pregnancy (HealthyMoms): randomized controlled trial. JMIR MHealth UHealth. 2021;9(3):e26091.

    PubMed  PubMed Central  Google Scholar 

  194. Walker R, Bennett C, Blumfield M, Gwini S, Ma J, Wang F, et al. Attenuating pregnancy weight gain—what works and why: a systematic review and meta-analysis. Nutrients. 2018;10(7):944.

    PubMed Central  Google Scholar 

  195. Tanner-Smith EE, Steinka-Fry KT, Gesell SB. Comparative effectiveness of group and individual prenatal care on gestational weight gain. Matern Child Health J. 2014;18(7):1711–20.

    PubMed  PubMed Central  Google Scholar 

  196. Agha M, Agha RA, Sandell J. Interventions to reduce and prevent obesity in pre-conceptual and pregnant women: a systematic review and meta-analysis. PLoS One. 2014;9(5):e95132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020754/. Accessed 14 May 2014.

    PubMed  PubMed Central  Google Scholar 

  197. Chiavaroli V, Hopkins SA, Derraik JGB, Biggs JB, Rodrigues RO, Brennan CH, et al. Exercise in pregnancy: 1-year and 7-year follow-ups of mothers and offspring after a randomized controlled trial. Sci Rep. 2018;8(1):12915.

    PubMed  PubMed Central  Google Scholar 

  198. Forsum E, Janerot-Sjöberg B, Löf M. MET-values of standardised activities in relation to body fat: studies in pregnant and non-pregnant women. Nutr Metab. 2018;15(1):45.

    Google Scholar 

  199. Clapp JF III, Kiess W. Effects of pregnancy and exercise on concentrations of the metabolic markers tumor necrosis factor α and leptin. Am J Obstet Gynecol. 2000;182(2):300–6.

    CAS  PubMed  Google Scholar 

  200. van der Wijden CL, Delemarre-van de Waal HA, van Mechelen W, van Poppel MNM. The relationship between moderate-to-vigorous intensity physical activity and insulin resistance, insulin-like growth factor (IGF-1)-system 1, leptin and weight change in healthy women during pregnancy and after delivery. Clin Endocrinol. 2015;82(1):68–75.

    Google Scholar 

  201. Haas JS, Jackson RA, Fuentes-Afflick E, Stewart AL, Dean ML, Brawarsky P, et al. Changes in the health status of women during and after pregnancy. J Gen Intern Med. 2005;20(1):45–51.

    PubMed  PubMed Central  Google Scholar 

  202. Most J, Altazan AD, St. Amant M, Beyl RA, Ravussin E, Redman LM. Increased energy intake after pregnancy determines postpartum weight retention in women with obesity. J Clin Endocrinol Metab. 2020;105(4):e1601–11.

    PubMed Central  Google Scholar 

  203. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. de Oliveria Melo AS, Silva JLP, Tavares JS, Barros VO, Leite DFB, Amorim MMR. Effect of a physical exercise program during pregnancy on uteroplacental and fetal blood flow and fetal growth: a randomized controlled trial. Obstet Gynecol. 2012;120(2, Part 1):302–10.

    PubMed  Google Scholar 

  205. Price BB, Amini SB, Kappeler K. Exercise in pregnancy: effect on fitness and obstetric outcomes—a randomized trial. Med Sci Sports Exerc. 2012;44(12):2263–9.

    PubMed  Google Scholar 

  206. Barakat R, Pelaez M, Montejo R, Refoyo I, Coteron J. Exercise throughout pregnancy does not cause preterm delivery: a randomized, controlled trial. J Phys Act Health. 2014;11(5):1012–7.

    PubMed  Google Scholar 

  207. US. Department of health and Human Services. Physical activity guidelines for Americans. 2nd ed. Washington, DC: DHHS; 2018. p. 118.

    Google Scholar 

  208. WHO. WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization; 2020. https://www.who.int/publications/i/item/9789240015128.

  209. Cordero Y, Mottola MF, Vargas J, Blanco M, Barakat R. Exercise is associated with a reduction in gestational diabetes mellitus. Med Sci Sports Exerc. 2015;47(7):1328–33.

    PubMed  Google Scholar 

  210. Barakat R, Pelaez M, Cordero Y, Perales M, Lopez C, Coteron J, et al. Exercise during pregnancy protects against hypertension and macrosomia: randomized clinical trial. Am J Obstet Gynecol. 2016;214(5):649.e1–8.

    Google Scholar 

  211. Magro-Malosso ER, Saccone G, Di Tommaso M, Roman A, Berghella V. Exercise during pregnancy and risk of gestational hypertensive disorders: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2017;96(8):921–31.

    PubMed  Google Scholar 

  212. Muktabhant B, Lawrie TA, Lumbiganon P, Laopaiboon M. Diet or exercise, or both, for preventing excessive weight gain in pregnancy. Cochrane Database Syst Rev. 2015;(6):CD007145. https://doi.wiley.com/10.1002/14651858.CD007145.pub3. Accessed 20 Sep 2021.

  213. Kołomańska-Bogucka D, Mazur-Bialy AI. Physical activity and the occurrence of postnatal depression—a systematic review. Medicina. 2019;55(9):560.

    PubMed Central  Google Scholar 

  214. Nakamura A, van der Waerden J, Melchior M, Bolze C, El-Khoury F, Pryor L. Physical activity during pregnancy and postpartum depression: systematic review and meta-analysis. J Affect Disord. 2019;246:29–41.

    PubMed  Google Scholar 

  215. Marín-Jiménez N, Acosta-Manzano P, Borges-Cosic M, Baena-García L, Coll-Risco I, Romero-Gallardo L, et al. Association of self-reported physical fitness with pain during pregnancy: the GESTAFIT project. Scand J Med Sci Sports. 2019;29:1022.

    PubMed  Google Scholar 

  216. Seneviratne SN, McCowan LME, Cutfield WS, Derraik JGB, Hofman PL. Exercise in pregnancies complicated by obesity: achieving benefits and overcoming barriers. Am J Obstet Gynecol. 2015;212(4):442–9.

    PubMed  Google Scholar 

  217. Wang S-M, Dezinno P, Maranets I, Berman MR, Caldwell-Andrews AA, Kain ZN. Low back pain during pregnancy: prevalence, risk factors, and outcomes. Obstet Gynecol. 2004;104(1):65–70.

    PubMed  Google Scholar 

  218. Tennfjord MK, Engh ME, Bø K. The influence of early exercise postpartum on pelvic floor muscle function and prevalence of pelvic floor dysfunction 12 months postpartum. Phys Ther. 2020;100(9):1681–9.

    PubMed  Google Scholar 

  219. Mota P, Pascoal AG, Carita AI, Bø K. The immediate effects on inter-rectus distance of abdominal crunch and drawing-in exercises during pregnancy and the postpartum period. J Orthop Sports Phys Ther. 2015;45(10):781–8.

    PubMed  Google Scholar 

  220. Sancho MF, Pascoal AG, Mota P, Bø K. Abdominal exercises affect inter-rectus distance in postpartum women: a two-dimensional ultrasound study. Physiotherapy. 2015;101(3):286–91.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno M. Pimenta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pimenta, N.M., Hausmann, F., Falco, C., van Poppel, M. (2022). Body Composition Changes During Pregnancy and Effects of Physical Exercise. In: Santos-Rocha, R. (eds) Exercise and Physical Activity During Pregnancy and Postpartum. Springer, Cham. https://doi.org/10.1007/978-3-031-06137-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06137-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06136-3

  • Online ISBN: 978-3-031-06137-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics