Skip to main content

Sexual System and Its Evolution

  • Chapter
  • First Online:
The Persimmon Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Sexual systems in tree crop species is often an important determinant of stable and efficient fruit production, and harnessing them is a key for both cultivation and breeding aspects. In contrast to animals, plants have various sexual systems to maintain their genetic diversities to fit new environments and to expand their habitats. Most of the Diospyros species are classified as dioecy (separated male and female individuals) controlled by the Y-encoded putatively single sex-determining gene, OGI, which encodes small-RNA repressing its autosomal target gene, MeGI. This mechanism would be specific to the Diospyros lineage, as these two sex-determining factors were derived from lineage-specific paleo-duplications, and thereafter, neofunctionalizations. Furthermore, some polyploid Diospyros species exhibit plastic sexuality mixed with male and female flowers or with occasional conversion from male to hermaphrodite flowers, which are determined by internal environmental conditions and epigenetic layers on the sex determinants. Although recent findings made some achievements for understanding the evolutionary paths into dioecy and the escape from that into plastic sexuality, many unclarified mechanisms have still remained. In this chapter, we introduce the sexual systems and their evolution in Diospyros species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar BI, Sebbenn AM, Tarazi R, Vogado NO, Morellato LPC, Tambarussi EV, Moreno MA, Pereira LCSM, Montibeller C, Ferraz EM, Gandara FB, Kageyama PY (2020) Phenology, seed germination, and genetics explains the reproductive strategies of Diospyros lasiocalyx (Mart.) B. wall. Trop Plant Biol 13(1):23–35

    Google Scholar 

  • Ainsworth C (2000) Boys and girls come out to play: the molecular biology of dioecious plants. Ann Bot 86(2):211–221

    Article  Google Scholar 

  • Akagi T, Charlesworth D (2019) Pleiotropic effects of sex-determining genes in the evolution of dioecy in two plant species. Proc Roy Soc B 286:20191805

    Article  CAS  Google Scholar 

  • Akagi T, Kajita K, Kibe T, Morimura H, Tsujimoto T, Nishiyama S, Kawai T, Yamane H, Tao R (2014a) Development of molecular markers associated with sexuality in Diospyros lotus L. and their application in D. kaki Thunb. J Japan Soc Hort Sci CH-109

    Google Scholar 

  • Akagi T, Henry IM, Tao R, Comai L (2014b) A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science 346(6209):646–650

    Article  CAS  PubMed  Google Scholar 

  • Akagi T, Henry IM, Kawai T, Comai L, Tao R (2016a) Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. Plant Cell 28(12):2905–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akagi T, Kawai T, Tao R (2016b) A male determinant gene in diploid dioecious Diospyros, OGI, is required for male flower production in monoecious individuals of oriental persimmon (D. kaki). Sci Hortic 213:243–251

    Article  CAS  Google Scholar 

  • Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K, Kataoka I, Tao R (2018) A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. Plant Cell 30(4):780–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akagi T, Pilkington SM, Varkonyi-Gasic E, Henry IM, Sugano SS, Sonoda M, Firl A, McNeilage MA, Douglas MJ, Wang T, Rebstock VC, Datson P, Allan AC, Beppu K, Kataoka I, Tao R (2019) Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat Plants 5(8):801–809

    Article  CAS  PubMed  Google Scholar 

  • Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, Comai L, Henry IM (2020) The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genet 16(2):e1008566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen CE (1917) A chromosome difference correlated with sex differences in Sphaerocarpos. Science 46(1193):466–467

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC, Tree of Sex Consortium (2014) Sex determination: why so many ways of doing it? PLoS Biol 12(7):e1001899

    Google Scholar 

  • Barrett SC, Hough J (2013) Sexual dimorphism in flowering plants. J Exp Bot 64(1):67–82

    Article  CAS  PubMed  Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Annu Rev Ecol Syst 11(1):15–39

    Article  Google Scholar 

  • Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, Fraenkel-Zagouri R, Kovalski I, Dogimont C, Perl-Treves R, Bendahmane A (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350(6261):688–691

    Article  CAS  PubMed  Google Scholar 

  • Bräutigam K, Soolanayakanahally R, Champigny M, Mansfield S, Douglas C, Campbell MM, Cronk Q (2017) Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  • Charlesworth D (2013) Plant sex chromosome evolution. J Exp Bot 64(2):405–420

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D (2018) Does sexual dimorphism in plants promote sex chromosome evolution? Environ Exp Bot 146:5–12

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112(988):975–997

    Article  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6(11):836–846

    Article  CAS  PubMed  Google Scholar 

  • Correns C (1903) Über die dominierenden merkmale der bastarde. Ber Dtsch Bot Ges 21:133–147

    Google Scholar 

  • Duangjai S, Wallnöfer B, Samuel R, Munzinger J, Chase MW (2006) Generic delimitation and relationships in Ebenaceae sensu lato: evidence from six plastid DNA regions. Am J Bot 93(12):1808–1827

    Article  CAS  PubMed  Google Scholar 

  • Esumi T, Watanabe A, Kosugi Y, Ohata K, Itamura H (2015) Staminate flowers on “Saijo” persimmon (Diospyros kaki Thunb.). Bull Fac Life Env Sci Shimane Univ 20:3–8 (In Japanese with English summary)

    Google Scholar 

  • George AP, Mowat AD, Collins RJ, Morley-Bunker M (1997) The pattern and control of reproductive development in non-astringent persimmon (Diospyros kaki L.): A review. Sci Hortic 70(2–3):93–122

    Google Scholar 

  • Goldberg EE, Otto SP, Vamosi JC, Mayrose I, Sabath N, Ming R, Ashman TL (2017) Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71(4):898–912

    Article  PubMed  Google Scholar 

  • González-Grandío E, Pajoro A, Franco-Zorrilla JM, Tarancón C, Immink RG, Cubas P (2017) Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds. Proc Natl Acad Sci USA 114(2):E245–E254

    Article  PubMed  CAS  Google Scholar 

  • Grant S, Houben A, Vyskot B, Siroky J, Pan WH, Macas J, Saedler H (1994) Genetics of sex determination in flowering plants. Dev Genet 15(3):214–230

    Article  Google Scholar 

  • Guan C, Zhang P, Wu M, Zeng M, Chachar S, Ruan X, Wang R, Yang Y (2020) Discovery of a millennial androecious germplasm and its potential in persimmon (Diospyros kaki Thunb.) breeding. Sci Hortic 269:109392

    Google Scholar 

  • Hague SM (1911) A morphological study of Diospyros virginiana. Bot Gaz 52(1):34–44

    Article  Google Scholar 

  • Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, Ayyampalayam S, Mercati F, Riccardi P, McKain MR, Kakrana A, Tang H, Ray J, Groenendijk J, Arikit S, Mathioni SM, Nakano M, Shan H, Telgmann-Rauber A, Kanno A, Yue Z, Chen H, Li W, Chen Y, Xu X, Zhang Y, Luo S, Chen H, Gao J, Mao Z, Pires JC, Luo M, Kudrna D, Wing RA, Meyers BC, Yi K, Kong H, Lavrijsen P, Sunseri F, Falavigna A, Ye Y, Leebens-Mack JH, Chen G (2017) The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun 8(1):1–10

    Article  CAS  Google Scholar 

  • Hartwig T, Chuck GS, Fujioka S, Klempien A, Weizbauer R, Potluri DPV, Choe S, Johal GS, Schulz B (2011) Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA 108(49):19814–19819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa K, Fukuta T, Nishio K, Kitajima A (2003) Male and female flower buds differentiation and development in Japanese persimmon “Nishimurawase”, “Zenjimaru” and “Taisyu.” Res Rep Kochi Univ Agric (japan) 52:1–12 (In Japanese with English summary)

    Google Scholar 

  • He Y, Xu H, Liu H, Luo M, Chu C, Fang S (2021) Sexual competition and kin recognition co-shape the traits of neighboring dioecious Diospyros morrisiana seedlings. Hort Res 8(1):1–10

    CAS  Google Scholar 

  • Heilbuth JC (2000) Lower species richness in dioecious clades. Am Nat 156(3):221–241

    Article  PubMed  Google Scholar 

  • House SM (1992) Population density and fruit set in three dioecious tree species in Australian tropical rain forest. J Ecol 57–69

    Google Scholar 

  • Janoušek B, Široký J, Vyskot B (1996) Epigenetic control of sexual phenotype in a dioecious plant, Melandrium Album. Mol General Genet 250(4):483–490

    Article  Google Scholar 

  • Käfer J, Marais GA, Pannell JR (2017) On the rarity of dioecy in flowering plants. Mol Ecol 26(5):1225–1241

    Article  PubMed  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104(4):1424–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lardon A, Georgiev S, Aghmir A, Le Merrer G, Negrutiu I (1999) Sexual dimorphism in white campion: complex control of carpel number is revealed by Y chromosome deletions. Genetics 151(3):1173–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Sun P, Du G, Wang L, Li H, Fu J, Suo Y, Han W, Diao S, Mai Y, Li F (2019a) Transcriptome sequencing and comparative analysis between male and female floral buds of the persimmon (Diospyros kaki Thunb.). Sci Hortic 246:987–997

    Article  CAS  Google Scholar 

  • Li H, Wang L, Sun P, Suo Y, Han W, Mai Y, Diao S, Yuan D, Fu J (2019b) Cytomorphological observation on development of pistil and stamen of male and hermaphrodite floral buds of diospyros kaki “Longyan Yeshi 1.” Acta Hortic Sinica 46(10):1897–1906

    Google Scholar 

  • Li H, Wang L, Mai Y, Han W, Suo Y, Diao S, Sun P, Fu J (2021) Phytohormone and integrated mRNA and miRNA transcriptome analyses and differentiation of male between hermaphroditic floral buds of andromonoecious Diospyros kaki Thunb. BMC Genom 22(1):1–19

    Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461(7267):1135-1138

    Google Scholar 

  • Masuda K, Akagi T, Esumi T, Tao R (2020a) Epigenetic flexibility underlies somaclonal sex conversions in hexaploid persimmon. Plant Cell Physiol 61(2):393–402

    Article  CAS  PubMed  Google Scholar 

  • Masuda K, Fujita N, Yang HW, Ushijima K, Kubo Y, Tao R, Akagi T (2020b) Molecular mechanism underlying derepressed male production in hexaploid persimmon. Front Plant Sci 11

    Google Scholar 

  • Masuda K, Yamamoto E, Shirasawa K, Onoue N, Kono A, Ushijima K, Kubo Y, Tao R, Henry IM, Akagi T (2020c) Genome-wide study on the polysomic genetic factors conferring plasticity of flower sexuality in hexaploid persimmon. DNA Res 27(3):dsaa012

    Google Scholar 

  • Masuda K, Ikeda Y, Matsuura T, Kawakatsu T, Tao R, Kubo Y, Ushijima K, Henry IM, Akagi T (2022) Reinvention of hermaphroditism via activation of a RADIALIS-like gene in hexaploid persimmon. Nat Plants 8 (3):217–224

    Google Scholar 

  • McDaniel JC (1973a) Persimmon cultivars for northern areas. Fruit Var Hortic Dig

    Google Scholar 

  • McDaniel JC (1973b) American persimmon, on emerging horticultural crop. Fruit Var Hort Dig

    Google Scholar 

  • Ming R, Wang J, Moore PH, Paterson AH (2007) Sex chromosomes in flowering plants. Am J Bot 94(2):141–150

    Article  PubMed  Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514

    Article  CAS  PubMed  Google Scholar 

  • Müller NA, Kersten B, Montalvão APL, Mähler N, Bernhardsson C, Bräutigam K, Lorenzo ZC, Hoenicka H, Kumar V, Mader M, Pakull B, Robinson KM, Sabatti M, Vettori C, Ingvarsson PK, Cronk Q, Street NR, Fladung M (2020) A single gene underlies the dynamic evolution of poplar sex determination. Nat Plants 6(6):630–637

    Article  PubMed  CAS  Google Scholar 

  • Negi SS, Olmo HP (1966) Sex conversion in a male Vitis vinifera L. by a kinin. Science 152(3729):1624–1624

    Google Scholar 

  • Ono T (1935) Chromosomen und sexualital von Rumex acetosa. Sci Rep Tohoku Imp Univ Ser 4(10):4–210

    Google Scholar 

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree Database: a tree reference and selection guide. Version 4

    Google Scholar 

  • Ricker M, Siebe C, Sánchez S, Shimada K, Larson BC, Martı́nez-Ramos M, Montagnini F (2000) Optimising seedling management: Pouteria sapota, Diospyros digyna, and Cedrela odorata in a Mexican rainforest. For Ecol Manag 139(1–3):63–77

    Google Scholar 

  • Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 24:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun P, Li J, Du G, Han W, Fu J, Diao S, Suo Y, Zhang Y, Li F (2017) Endogenous phytohormone profiles in male and female floral buds of the persimmons (Diospyros kaki Thunb.) during development. Sci Hortic 218:213–221

    Article  CAS  Google Scholar 

  • Suo Y, Sun P, Cheng H, Han W, Diao S, Li H, Mai Y, Zhao X, Li F, Fu J (2020) A high-quality chromosomal genome assembly of Diospyros oleifera Cheng. GigaScience 9(1):giz164

    Google Scholar 

  • Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Perez R, Feltus FA, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang M, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci USA 109(34):13710–13715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Li H, Sun P, Fu J, Suo Y, Zhang J, Han W, Diao S, Li F, Mai Y (2018) Genetic diversity among wild androecious germplasms of Diospyros kaki in China based on SSR markers. Sci Hortic 242:1–9

    Article  CAS  Google Scholar 

  • Wang L, Li H, Suo Y, Han W, Diao S, Mai Y, Sun P, Li F, Fu J (2020) Programmed cell death facilitates the formation of unisexual male and female flowers in persimmon (Diospyros kaki Thunb.). Agronomy 10(2):234

    Google Scholar 

  • Westergaard M (1958) The mechanism of sex determination in dioecious flowering plants. Adv Genet 9:217–281

    Article  CAS  PubMed  Google Scholar 

  • Yakushiji H, Yamada M, Yonemori K, Sato A, Kimura N (1995) Staminate flower production on shoots of ‘Fuyu’ and ‘Jiro’ persimmon (Diospyros kaki Thunb.). J Jpn Soc Hort Sci 64(1):41–46

    Google Scholar 

  • Yang HW, Akagi T, Kawakatsu T, Tao R (2019) Gene networks orchestrated by MeGI: a single-factor mechanism underlying sex determination in persimmon. Plant J 98(1):97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasui K (1915) Studies of Diospyros kaki. I. Bot Gaz 60(5):362–373

    Article  Google Scholar 

  • Yonemori K, Yomo Y, Sugiura A (1990) Sexuality in Japanese persimmons. 2. Induction of sex conversion in male flower by cytokinin treatment. J Jpn Soc Hort Sci 59:230–231

    Google Scholar 

  • Yonemori K, Kameda K, Sugiura A (1992) Characteristics of sex expression in monoecious persimmons. J Jpn Soc Hort Sci 61(2):303–310

    Article  Google Scholar 

  • Yonemori K, Sugiura A, Tanaka K, Kameda K (1993) Floral ontogeny and sex determination in monoecious-type persimmons. J Am Soc Hortic Sci 118(2):293–297

    Article  Google Scholar 

  • Zhang PX, Yang SC, Liu YF, Zhang QL, Xu LQ, Luo ZR (2016) Validation of a male‐linked gene locus (OGI) for sex identification in persimmon (Diospyros kaki Thunb.) and its application in F1 progeny. Plant Breed 135(6):721–727

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanae Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masuda, K., Akagi, T. (2022). Sexual System and Its Evolution. In: Tao, R., Luo, Z. (eds) The Persimmon Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-05584-3_8

Download citation

Publish with us

Policies and ethics