Skip to main content

Vascular Lesions of the Breast

  • Chapter
  • First Online:
A Comprehensive Guide to Core Needle Biopsies of the Breast

Abstract

Vascular tumors commonly arise in the breast or overlying skin. Although classification as benign or malignant is usually straightforward in resection specimens, rendering a definitive diagnosis on core biopsy samples is often difficult because of limited sampling. Whereas benign vascular lesions are well circumscribed and lack endothelial hyperplasia, severe cytologic atypia, and anastomosing vasculature, malignant vascular tumors are characterized by complex, anastomosing vascular channels that infiltrate the dermis and/or breast parenchyma. Included within this morphological spectrum are atypical vascular lesions associated with prior radiation therapy. As with other differential diagnoses in the setting of breast core biopsies, correlation with clinical and radiologic findings is critical. It is also important to remember that complete diagnostic characterization of some vascular lesions may be possible only after surgical excision. This chapter covers a multitude of benign and malignant vascular lesions of the breast and discusses their diagnostic features and differential diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosen PP. Rosen’s breast pathology. Philadelphia, PA: Lippincott-Raven; 1997.

    Google Scholar 

  2. Chung SY, Oh KK. Mammographic and sonographic findings of a breast subcutaneous hemangioma. J Ultrasound Med. 2002;21(5):585–8.

    PubMed  Google Scholar 

  3. Ciurea A, et al. Diffuse angiomatosis of the breast--sonographic appearance. J Clin Ultrasound. 2014;42(8):498–501.

    PubMed  Google Scholar 

  4. Ameen R, et al. Breast hemangioma: MR appearance with histopathological correlation. J Clin Imaging Sci. 2012;2:53.

    PubMed  PubMed Central  Google Scholar 

  5. Yang WT, et al. Mammary angiosarcomas: imaging findings in 24 patients. Radiology. 2007;242(3):725–34.

    PubMed  Google Scholar 

  6. Morrow M, Berger D, Thelmo W. Diffuse cystic angiomatosis of the breast. Cancer. 1988;62(11):2392–6.

    CAS  PubMed  Google Scholar 

  7. Rosen PP. Vascular tumors of the breast. III Angiomatosis. Am J Surg Pathol. 1985;9(9):652–8.

    CAS  PubMed  Google Scholar 

  8. Ginter PS, McIntire PJ, Shin SJ. Vascular tumours of the breast: a comprehensive review with focus on diagnostic challenges encountered in the core biopsy setting. Pathology. 2017;49(2):197–214.

    PubMed  Google Scholar 

  9. Rosen PP. Vascular tumors of the breast. V. Nonparenchymal hemangiomas of mammary subcutaneous tissues. Am J Surg Pathol. 1985;9(10):723–9.

    CAS  PubMed  Google Scholar 

  10. Hoda SA, Cranor ML, Rosen PP. Hemangiomas of the breast with atypical histological features. Further analysis of histological subtypes confirming their benign character. Am J Surg Pathol. 1992;16(6):553–60.

    CAS  PubMed  Google Scholar 

  11. Murao T, Nakai M, Hamada E. Intravascular papillary endothelial hyperplasia of the breast--report of a case with scanning electron microscopic observations. Gan No Rinsho. 1986;32(11):1471–4.

    CAS  PubMed  Google Scholar 

  12. Romani J, et al. Masson’s intravascular papillary endothelial hyperplasia mimicking Stewart-Treves syndrome: report of a case. Cutis. 1997;59(3):148–50.

    CAS  PubMed  Google Scholar 

  13. Branton PA, Lininger R, Tavassoli FA. Papillary endothelial hyperplasia of the breast: the great impostor for angiosarcoma: a clinicopathologic review of 17 cases. Int J Surg Pathol. 2003;11(2):83–7.

    PubMed  Google Scholar 

  14. Ferreli C, et al. Diffuse dermal angiomatosis of the breast: an emerging entity in the setting of cutaneous reactive angiomatoses. Clin Dermatol. 2021;39(2):271–7.

    PubMed  Google Scholar 

  15. Frikha F, et al. Diffuse dermal angiomatosis of the breast with adjacent fat necrosis: a case report and review of the literature. Dermatol Online J. 2018;24(5)

    Google Scholar 

  16. Galambos J, et al. Diffuse dermal angiomatosis of the breast: a distinct entity in the spectrum of cutaneous reactive angiomatoses - clinicopathologic study of two cases and comprehensive review of the literature. Case Rep Dermatol. 2017;9(3):194–205.

    PubMed  PubMed Central  Google Scholar 

  17. Ho JD, Wolpowitz D, Phillips TJ. Breast nodularity and ulceration: diffuse dermal angiomatosis a corticosteroid responsive disease. Dermatol Online J. 2016;22(11)

    Google Scholar 

  18. Hui Y, et al. Diffuse dermal angiomatosis mimicking inflammatory breast carcinoma. Breast J. 2018;24(2):196–8.

    PubMed  Google Scholar 

  19. Nguyen N, et al. Diffuse dermal angiomatosis of the breast. Proc (Bayl Univ Med Cent). 2020;33(2):273–5.

    PubMed  Google Scholar 

  20. Strausburg MB, et al. Diffuse dermal angiomatosis of the breast with an apparent etiology of underlying calcified thrombosed artery with adjacent fat necrosis. Am J Dermatopathol. 2016;38(11):838–41.

    PubMed  Google Scholar 

  21. Chung SY, Oh KK, Kim DJ. Mammographic and sonographic findings of a breast cystic lymphangioma. J Ultrasound Med. 2003;22(3):307–9.

    PubMed  Google Scholar 

  22. May DS, Stroup NE. The incidence of angiosarcomas of the breast among women in the United States, 1973-1986. Plast Reconstr Surg. 1991;87:193–4.

    CAS  PubMed  Google Scholar 

  23. Myerowitz RL, Pietruszka M, Barnes EL. Primary angiosarcoma of the breast. JAMA. 1978;239(5):403.

    CAS  PubMed  Google Scholar 

  24. Fernandez AP, et al. FISH for MYC amplification and anti-MYC immunohistochemistry: useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations. J Cutan Pathol. 2012;39(2):234–42.

    PubMed  Google Scholar 

  25. Lagrange JL, et al. Sarcoma after radiation therapy: retrospective multiinstitutional study of 80 histologically confirmed cases. Radiation Therapist and Pathologist Groups of the Federation Nationale des Centres de Lutte Contre le Cancer. Radiology. 2000;216(1):197–205.

    CAS  PubMed  Google Scholar 

  26. Manner J, et al. MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol. 2010;176(1):34–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weaver J, Billings SD. Postradiation cutaneous vascular tumors of the breast: a review. Semin Diagn Pathol. 2009;26(3):141–9.

    PubMed  Google Scholar 

  28. Bonito FJP, et al. Radiation-induced angiosarcoma of the breast: A review. Breast J. 2020;26(3):458–63.

    PubMed  Google Scholar 

  29. Fletcher CD, Unni K, Mertens F, editors. Vascular tumours in World Health Organization classification of tumours: pathology and genetics of tumours of soft tissue and bone. Lyon: IARC Press; 2002. p. 155–77.

    Google Scholar 

  30. Nascimento AF, Raut CP, Fletcher CD. Primary angiosarcoma of the breast: clinicopathologic analysis of 49 cases, suggesting that grade is not prognostic. Am J Surg Pathol. 2008;32(12):1896–904.

    PubMed  Google Scholar 

  31. Taffurelli M, et al. Secondary breast angiosarcoma: a multicentre retrospective survey by the national Italian association of Breast Surgeons (ANISC). Breast. 2019;45:56–60.

    CAS  PubMed  Google Scholar 

  32. Rosen PP, Kimmel M, Ernsberger D. Mammary angiosarcoma. The prognostic significance of tumor differentiation. Cancer. 1988;62(10):2145–51.

    CAS  PubMed  Google Scholar 

  33. Vorburger SA, et al. Angiosarcoma of the breast. Cancer. 2005;104(12):2682–8.

    PubMed  Google Scholar 

  34. Billings SD, et al. Cutaneous angiosarcoma following breast-conserving surgery and radiation: an analysis of 27 cases. Am J Surg Pathol. 2004;28(6):781–8.

    PubMed  Google Scholar 

  35. Del Mastro L, et al. Angiosarcoma of the residual breast after conservative surgery and radiotherapy for primary carcinoma. Ann Oncol. 1994;5(2):163–5.

    PubMed  Google Scholar 

  36. Strobbe LJ, et al. Angiosarcoma of the breast after conservation therapy for invasive cancer, the incidence and outcome. An unforeseen sequela. Breast Cancer Res Treat. 1998;47(2):101–9.

    CAS  PubMed  Google Scholar 

  37. Wijnmaalen A, et al. Angiosarcoma of the breast following lumpectomy, axillary lymph node dissection, and radiotherapy for primary breast cancer: three case reports and a review of the literature. Int J Radiat Oncol Biol Phys. 1993;26(1):135–9.

    CAS  PubMed  Google Scholar 

  38. Brenn T, Fletcher CD. Radiation-associated cutaneous atypical vascular lesions and angiosarcoma: clinicopathologic analysis of 42 cases. Am J Surg Pathol. 2005;29(8):983–96.

    PubMed  Google Scholar 

  39. Monroe AT, Feigenberg SJ, Mendenhall NP. Angiosarcoma after breast-conserving therapy. Cancer. 2003;97(8):1832–40.

    PubMed  Google Scholar 

  40. Slotman BJ, et al. Angiosarcoma of the breast following conserving treatment for breast cancer. Eur J Cancer. 1994;30A(3):416–7.

    CAS  PubMed  Google Scholar 

  41. Baker GM, Schnitt SJ. Vascular lesions of the breast. Semin Diagn Pathol. 2017;34(5):410–9.

    PubMed  Google Scholar 

  42. Steingaszner LC, Enzinger FM, Taylor HB. Hemangiosarcoma of the breast. Cancer. 1965;18:352–61.

    CAS  PubMed  Google Scholar 

  43. Karlsson P, et al. Soft tissue sarcoma after treatment for breast cancer—a Swedish population-based study. Eur J Cancer. 1998;34(13):2068–75.

    CAS  PubMed  Google Scholar 

  44. Yap J, et al. Sarcoma as a second malignancy after treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2002;52(5):1231–7.

    PubMed  Google Scholar 

  45. Tavassoli FA, Deville P. Angiosarcoma. In: World Health Organization classification of tumours: tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 94–6.

    Google Scholar 

  46. Liberman L, et al. Angiosarcoma of the breast. Radiology. 1992;183(3):649–54.

    CAS  PubMed  Google Scholar 

  47. Donnell RM, et al. Angiosarcoma and other vascular tumors of the breast. Am J Surg Pathol. 1981;5(7):629–42.

    CAS  PubMed  Google Scholar 

  48. Merino MJ, Carter D, Berman M. Angiosarcoma of the breast. Am J Surg Pathol. 1983;7(1):53–60.

    CAS  PubMed  Google Scholar 

  49. Carter E, Ulusarac O, Dyess DL. Axillary lymph node involvement in primary epithelioid angiosarcoma of the breast. Breast J. 2005;11(3):219–20.

    PubMed  Google Scholar 

  50. Farina MC, et al. Epithelioid angiosarcoma of the breast involving the skin: a highly aggressive neoplasm readily mistaken for mammary carcinoma. J Cutan Pathol. 2003;30(2):152–6.

    CAS  PubMed  Google Scholar 

  51. Macias-Martinez V, et al. Epithelioid angiosarcoma of the breast. Clinicopathological, immunohistochemical, and ultrastructural study of a case. Am J Surg Pathol. 1997;21(5):599–604.

    CAS  PubMed  Google Scholar 

  52. Muzumder S, et al. Primary epithelioid angiosarcoma of the breast masquerading as carcinoma. Curr Oncol. 2010;17(1):64–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang ZS, et al. Primary epithelioid angiosarcoma of the male breast: report of a case. Surg Today. 2007;37(9):782–6.

    PubMed  Google Scholar 

  54. Ohsawa M, et al. Use of immunohistochemical procedures in diagnosing angiosarcoma. Evaluation of 98 cases. Cancer. 1995;75(12):2867–74.

    CAS  PubMed  Google Scholar 

  55. Poblet E, Gonzalez-Palacios F, Jimenez FJ. Different immunoreactivity of endothelial markers in well and poorly differentiated areas of angiosarcomas. Virchows Arch. 1996;428(4–5):217–21.

    CAS  PubMed  Google Scholar 

  56. Yang XJ, et al. Angiosarcomas of the head and neck: a clinico-immunohistochemical study of 8 consecutive patients. Int J Oral Maxillofac Surg. 2010;39(6):568–72.

    CAS  PubMed  Google Scholar 

  57. Traweek ST, et al. The human hematopoietic progenitor cell antigen (CD34) in vascular neoplasia. Am J Clin Pathol. 1991;96(1):25–31.

    CAS  PubMed  Google Scholar 

  58. Folpe AL, et al. Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi’s sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol. 2000;13(2):180–5.

    CAS  PubMed  Google Scholar 

  59. Cuda J, et al. Diagnostic utility of Fli-1 and D2-40 in distinguishing atypical fibroxanthoma from angiosarcoma. Am J Dermatopathol. 2013;35(3):316–8.

    PubMed  Google Scholar 

  60. Folpe AL, et al. Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol. 2001;25(8):1061–6.

    CAS  PubMed  Google Scholar 

  61. Sullivan HC, et al. The utility of ERG, CD31 and CD34 in the cytological diagnosis of angiosarcoma: an analysis of 25 cases. J Clin Pathol. 2015;68(1):44–50.

    PubMed  Google Scholar 

  62. McKay KM, et al. Expression of ERG, an Ets family transcription factor, distinguishes cutaneous angiosarcoma from histological mimics. Histopathology. 2012;61(5):989–91.

    PubMed  Google Scholar 

  63. Miettinen M, et al. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am J Surg Pathol. 2011;35(3):432–41.

    PubMed  PubMed Central  Google Scholar 

  64. Minner S, et al. High level of Ets-related gene expression has high specificity for prostate cancer: a tissue microarray study of 11 483 cancers. Histopathology. 2012;61(3):445–53.

    PubMed  Google Scholar 

  65. Stockman DL, et al. ERG and FLI1 protein expression in epithelioid sarcoma. Mod Pathol. 2014;27(4):496–501.

    CAS  PubMed  Google Scholar 

  66. Liu H, et al. Immunohistochemical evaluation of ERG expression in various benign and malignant tissues. Ann Clin Lab Sci. 2013;43(1):3–9.

    CAS  PubMed  Google Scholar 

  67. Wang WL, et al. Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol. 2012;25(10):1378–83.

    CAS  PubMed  Google Scholar 

  68. Kohashi K, et al. ERG and SALL4 expressions in SMARCB1/INI1-deficient tumors: a useful tool for distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol. 2015;46(2):225–30.

    CAS  PubMed  Google Scholar 

  69. Miettinen M, et al. ERG expression in epithelioid sarcoma: a diagnostic pitfall. Am J Surg Pathol. 2013;37(10):1580–5.

    PubMed  PubMed Central  Google Scholar 

  70. Miettinen M, Franssila KO. Variable expression of keratins and nearly uniform lack of thyroid transcription factor 1 in thyroid anaplastic carcinoma. Hum Pathol. 2000;31(9):1139–45.

    CAS  PubMed  Google Scholar 

  71. Rao P, et al. Angiosarcoma: a tissue microarray study with diagnostic implications. Am J Dermatopathol. 2013;35(4):432–7.

    PubMed  Google Scholar 

  72. Tse GM, et al. p63 is useful in the diagnosis of mammary metaplastic carcinomas. Pathology. 2006;38(1):16–20.

    CAS  PubMed  Google Scholar 

  73. D’Alfonso TM, et al. Expression of p40 and laminin 332 in metaplastic spindle cell carcinoma of the breast compared with other malignant spindle cell tumours. J Clin Pathol. 2015;68(7):516–21.

    PubMed  Google Scholar 

  74. Kim SK, Jung WH, Koo JS. p40 (DeltaNp63) expression in breast disease and its correlation with p63 immunohistochemistry. Int J Clin Exp Pathol. 2014;7(3):1032–41.

    PubMed  PubMed Central  Google Scholar 

  75. Chbani L, et al. Epithelioid sarcoma: a clinicopathologic and immunohistochemical analysis of 106 cases from the French sarcoma group. Am J Clin Pathol. 2009;131(2):222–7.

    PubMed  Google Scholar 

  76. Miettinen M, Wang ZF. Prox1 transcription factor as a marker for vascular tumors-evaluation of 314 vascular endothelial and 1086 nonvascular tumors. Am J Surg Pathol. 2012;36(3):351–9.

    PubMed  PubMed Central  Google Scholar 

  77. Modena P, et al. SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas. Cancer Res. 2005;65(10):4012–9.

    CAS  PubMed  Google Scholar 

  78. Cornejo KM, et al. The utility of MYC and FLT4 in the diagnosis and treatment of postradiation atypical vascular lesion and angiosarcoma of the breast. Hum Pathol. 2015;46(6):868–75.

    CAS  PubMed  Google Scholar 

  79. Ko JS, et al. Fully automated dual-color dual-hapten silver in situ hybridization staining for MYC amplification: a diagnostic tool for discriminating secondary angiosarcoma. J Cutan Pathol. 2014;41(3):286–92.

    PubMed  Google Scholar 

  80. Mentzel T, et al. Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol. 2012;25(1):75–85.

    CAS  PubMed  Google Scholar 

  81. Shon W, et al. MYC amplification and overexpression in primary cutaneous angiosarcoma: a fluorescence in-situ hybridization and immunohistochemical study. Mod Pathol. 2014;27(4):509–15.

    CAS  PubMed  Google Scholar 

  82. Ginter PS, et al. Diagnostic utility of MYC amplification and anti-MYC immunohistochemistry in atypical vascular lesions, primary or radiation-induced mammary angiosarcomas, and primary angiosarcomas of other sites. Hum Pathol. 2014;45(4):709–16.

    CAS  PubMed  Google Scholar 

  83. Guo T, et al. Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosomes Cancer. 2011;50(1):25–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Italiano A, et al. The miR-17-92 cluster and its target THBS1 are differentially expressed in angiosarcomas dependent on MYC amplification. Genes Chromosomes Cancer. 2012;51(6):569–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fraga-Guedes C, et al. Angiosarcoma and atypical vascular lesions of the breast: diagnostic and prognostic role of MYC gene amplification and protein expression. Breast Cancer Res Treat. 2015;151(1):131–40.

    CAS  PubMed  Google Scholar 

  86. Flucke U, Requena L, Mentzel T. Radiation-induced vascular lesions of the skin: an overview. Adv Anat Pathol. 2013;20(6):407–15.

    CAS  PubMed  Google Scholar 

  87. Park MS, Ravi V, Araujo DM. Inhibiting the VEGF-VEGFR pathway in angiosarcoma, epithelioid hemangioendothelioma, and hemangiopericytoma/solitary fibrous tumor. Curr Opin Oncol. 2010;22(4):351–5.

    CAS  PubMed  Google Scholar 

  88. Aprelikova O, et al. FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter. Cancer Res. 1992;52(3):746–8.

    CAS  PubMed  Google Scholar 

  89. Galland F, et al. Chromosomal localization of FLT4, a novel receptor-type tyrosine kinase gene. Genomics. 1992;13(2):475–8.

    CAS  PubMed  Google Scholar 

  90. Galland F, et al. The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor. Oncogene. 1993;8(5):1233–40.

    CAS  PubMed  Google Scholar 

  91. Partanen TA, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer. 1999;86(11):2406–12.

    CAS  PubMed  Google Scholar 

  92. Ranieri G, et al. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: a new treatment for metastatic soft tissue sarcoma. Crit Rev Oncol Hematol. 2014;89(2):322–9.

    PubMed  Google Scholar 

  93. Schoffski P, et al. Soft tissue sarcoma: an update on systemic treatment options for patients with advanced disease. Oncol Res Treat. 2014;37(6):355–62.

    PubMed  Google Scholar 

  94. Antonescu CR, et al. KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res. 2009;69(18):7175–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Behjati S, et al. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 2014;46(4):376–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen KT, Kirkegaard DD, Bocian JJ. Angiosarcoma of the breast. Cancer. 1980;46(2):368–71.

    CAS  PubMed  Google Scholar 

  97. Tavassoli FA. Pathology of the Breast. 2nd ed. Stamford: Appleton-Lange; 1999.

    Google Scholar 

  98. Torres KE, et al. Long-term outcomes in patients with radiation-associated angiosarcomas of the breast following surgery and radiotherapy for breast cancer. Ann Surg Oncol. 2013;20(4):1267–74.

    PubMed  Google Scholar 

  99. Gutkin PM, et al. Angiosarcoma of the breast: management and outcomes. Am J Clin Oncol. 2020;43(11):820–5.

    PubMed  Google Scholar 

  100. McClelland S 3rd, et al. Extent of resection and role of adjuvant treatment in resected localized breast angiosarcoma. Breast Cancer Res Treat. 2019;175(2):409–18.

    PubMed  Google Scholar 

  101. Ju T, et al. Skin angiography assisted mastectomy in secondary breast angiosarcoma: complete clinical response after neoadjuvant immunotherapy. Breast J. 2021;27(9):723–5.

    PubMed  Google Scholar 

  102. Adem C, et al. Primary breast sarcoma: clinicopathologic series from the Mayo Clinic and review of the literature. Br J Cancer. 2004;91(2):237–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Seinen JM, et al. Radiation-associated angiosarcoma after breast cancer: high recurrence rate and poor survival despite surgical treatment with R0 resection. Ann Surg Oncol. 2012;19(8):2700–6.

    PubMed  PubMed Central  Google Scholar 

  104. Uchin JM, Billings SD. Radiotherapy-associated atypical vascular lesions of the breast. J Cutan Pathol. 2009;36(1):87–8.

    PubMed  Google Scholar 

  105. Brodie C, Provenzano E. Vascular proliferations of the breast. Histopathology. 2008;52(1):30–44.

    CAS  PubMed  Google Scholar 

  106. Gengler C, et al. Vascular proliferations of the skin after radiation therapy for breast cancer: clinicopathologic analysis of a series in favor of a benign process: a study from the French Sarcoma Group. Cancer. 2007;109(8):1584–98.

    PubMed  Google Scholar 

  107. Brenn T, Fletcher CD. Postradiation vascular proliferations: an increasing problem. Histopathology. 2006;48(1):106–14.

    CAS  PubMed  Google Scholar 

  108. Patton KT, Deyrup AT, Weiss SW. Atypical vascular lesions after surgery and radiation of the breast: a clinicopathologic study of 32 cases analyzing histologic heterogeneity and association with angiosarcoma. Am J Surg Pathol. 2008;32(6):943–50.

    PubMed  Google Scholar 

  109. Fineberg S, Rosen PP. Cutaneous angiosarcoma and atypical vascular lesions of the skin and breast after radiation therapy for breast carcinoma. Am J Clin Pathol. 1994;102(6):757–63.

    CAS  PubMed  Google Scholar 

  110. Requena L, et al. Benign vascular proliferations in irradiated skin. Am J Surg Pathol. 2002;26(3):328–37.

    PubMed  Google Scholar 

  111. Mattoch IW, et al. Post-radiotherapy vascular proliferations in mammary skin: a clinicopathologic study of 11 cases. J Am Acad Dermatol. 2007;57(1):126–33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melinda E. Sanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanders, M.E., Cates, J.M. (2022). Vascular Lesions of the Breast. In: Shin, S.J., Chen, YY., Ginter, P.S. (eds) A Comprehensive Guide to Core Needle Biopsies of the Breast . Springer, Cham. https://doi.org/10.1007/978-3-031-05532-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05532-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05531-7

  • Online ISBN: 978-3-031-05532-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics