
Chapter 2
Smittestopp for Android and iOS

Per Magne Florvaag, Henrik Aasen Kjeldsberg, and Sebastian Kenji Mitusch

Abstract Contact tracing is currently a manual and laborious task that requires
individuals to recall their interactions with people many days in the past. As a
remedy, phones can be used to play a significant role in the response to the COVID-19
pandemic, by easing the burden of healthcare staff. Through novel and sophisticated
technology, apps can be used to track infected people, issue quarantine guidelines,
and provide the latest news to the public. Along with general public measures,
apps can contribute significantly to keeping infection levels low. Generally, digital
contract tracing can identify and warn people who may be at risk of being infected
because they were in close physical proximity of someone who later tested positive
for COVID-19.

2.1 Introduction

Our contact tracing app Smittestopp was released on 16 April 2020 on the Google
Play store and Apple’s App Store, and later for the Huawei AppGallery. The app sup-
ported Android 5.0+ and iOS 12.0+ and required users to register with a Norwegian
phone number.

P.M. Florvaag
Department of Computational Physiology, Simula Research Laboratory,
Simula Consulting AS and Pacertool AS
e-mail: permagne@simula.no

H.A. Kjeldsberg
Department of Computational Physiology, Simula Research Laboratory,
e-mail: henriakj@simula.no

S.K. Mitusch
Department of Numerical Analysis and Scientific Computing, Simula Research Laboratory,
e-mail: sebastian@simula.no

11© The Author(s) 2022
A. Elmokashfi et al (eds.), Smittestopp − A Case Study on Digital Contact Tracing, .
Simula SpringerBriefs on Computing 11, https://doi.org/10.1007/978-3-031-05466-2_2

mailto:permagne@simula.no
mailto:henriakj@simula.no
mailto:sebastian@simula.no
https://doi.org/10.1007/978-3-031-05466-2_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-05466-2_2&domain=pdf

12 Florvaag et al.

To facilitate digital contact tracing, the apps had to collect information that could
reveal the proximity between two devices running the app. If the devices are con-
sidered sufficiently close to each other, beyond a given threshold, and one (or both)
of the users are later confirmed to be infected by COVID-19, the counterpart would
be notified that they could be infected as well. The location data provided by Global
Positioning System (GPS) can be used to match the locations of two users, but it
is too coarse to distinguish distances to a precision of 2 metres, especially in cities
and inside buildings. To counter this problem, Bluetooth data were supplied and
combined with location data. Bluetooth signals fade rapidly over short distances,
and one can semi-reliably determine distances with a precision of 2 metres.

GPS data are, however, very useful for the second purpose of the app: to gather
anonymized movement patterns for epidemiological research. Specifically, the loca-
tion data were intended to be used to evaluate the effect of social distancing measures
imposed by the government.

For effective contact tracing, the app would need to run continuously in the
background, even through phone reboots and app terminations. However, most users
of such an app would open it once and then rarely or never open it again. As we will
elaborate in this chapter, this proved to be a challenging aspect, especially for the
iOS version of the app. More surprisingly, background location permissions would
be essential for the life cycle of the app on iOS.

2.2 Related apps for digital contact tracing

Before the development of Smittestopp began, no digital contact tracing app had
ever been released in a Western country. Although China had deployed apps to
combat COVID-19, these apps functioned by showing the user’s health status based
on an algorithm that accounted for the user’s travel history. Checkpoints were placed
around China where a certain health status was required to pass through, such as
when entering a metro station [28].

On 20 March 2020, Singapore released their digital contact tracing app TraceTo-
gether [24]. TraceTogether gathers Bluetooth proximity data and stores them locally
on the phone. The app fetches temporary identifiers from a central server and trans-
mits these over Bluetooth. At the same time, the app builds a log of temporary
identifiers it obtains from other devices in proximity. This contact log is then kept
locally on the phone. When users tests positive for COVID-19, they can voluntarily
share this contact log with the health authorities, who will then notify the other
users. As other Bluetooth-based contact tracing apps on iOS, TraceTogether did not
function properly in the background. Thus, iOS users were asked to use the app as
a screen saver when not using the phone, ensuring that the app remained open and
Bluetooth would work correctly [1].

On 22March, Israel released their app HaMagen [23], which gathers location data
through GPS (later versions also incorporate Bluetooth data). These data are stored
locally on the phone until the user is diagnosed with COVID-19. Infected individuals

2 Smittestopp for Android and iOS 13

can choose to upload these data so that other phones can download and compare
these with their locally stored location history. The user is notified by the app if
there is a match, but, to preserve privacy, the health authorities are not automatically
notified.

The United Kingdom was initially developing a centralized contact tracing app
using Bluetooth, but abandoned it inMay, after reports that the background problems
on iOS led to only a 4% detection rate between two iPhones that were asleep [18].
However, the importance of the 4% detection rate could have been overstated, since
the quantity of contacts where both iPhones are asleep account for only a small per-
centage of overall contacts [19]. Instead, the UK government decided to switch to the
Google/Apple Exposure Notifications (GAEN) application programming interface
(API).

The GAEN API [26] is an API implemented by Google and Apple for both
the Android and iOS operating systems. GAEN is similar to the Decentralized
Privacy-Preserving Proximity Tracing (DP-3T) protocol [27], using only Bluetooth
for proximity detection and storing all contact logs locally. However, a key difference
between the two implementations is that the GAEN key matching occurs at the OS
level, whereas that of the DP-3T protocol occurs at the app level. A GAEN app
generates an identifier roughly every 15 minutes and transmits it over Bluetooth.
When users test positive for COVID-19, they can choose to upload a log of the
temporary keys they generated so that these can be downloaded by other users and
matched against their locally stored contact logs. GAEN is currently the de facto
standard framework for exposure notification.

2.3 App user interface and functionality

Smittestopp’s user interface (UI) is mainly divided into four processes, or views.
When the user starts Smittestopp for the first time, they are directed through the
onboarding process. The onboarding process for both the Android and iOS apps is
shown sequentially through the screenshots in Figure 2.1. The top row shows the
process for Android, while the bottom one shows it for iOS. The onboarding is key
to understanding Smittestopp, explaining the main purposes of the app, as shown in
the first two panels (columns) of Figure 2.1. Furthermore, the onboarding presents
the privacy policy, which the user is required to accept to continue using the app,
shown in the third panel of Figure 2.1. Similarly, the user is required to verify that
they are above the age of 16, a requirement for using Smittestopp, as shown in the
fourth panel of Figure 2.1. In the iOS version, as shown in panel five of Figure 2.1,
the onboarding page allows the user to authorize Smittestopp to collect Bluetooth
and location service data. The user is given an authorization prompt in both versions
of the app after login. Finally, the user is directed to the login services, provided
by the Microsoft Authentication Library [22]. The login service requires users to
input a Norwegian phone number and to authenticate themselves by replying with a
confirmation code sent by SMS.

14 Florvaag et al.

Fig. 2.1: Screenshots from Smittestopp’s onboarding process. The top and bottom
panels represent the onboarding flow in theAndroid and iOS versions of Smittestopp,
respectively. Each flow involves up to six steps. Note that the Android version does
not include the Permissions page.

(a) The monitoring view. (b) The settings view. (c) The info view.

Fig. 2.2: The three view components after a successful login: monitoring, settings,
and info. For all three images, the left and right screenshots represent the Android
and iOS versions of Smittestopp, respectively.

After successfully logging in through Microsoft’s service, the user is presented
with the monitoring page, as shown in Figure 2.2a. The monitoring page serves
as an overview of the app’s status, which is either enabled, partly enabled, or
disabled, although the wording can vary between apps. In Figure 2.2a, the app is

2 Smittestopp for Android and iOS 15

fully enabled, implying the collection of both Bluetooth and location service data
has been authorized and is activated.

In contrast, when partly enabled, that is, when either Bluetooth or location ser-
vices are disabled, a button prompting the user to toggle the respective setting is
shown. However, the collection of either data type will still contribute to the app’s
purposes, although the precision could be affected. Finally, if the monitoring shows
the disabled status, then both Bluetooth and location services have been deactivated,
either through the app’s settings or through the phone’s settings.

The supplementary view components consist of the settings and info views, shown
in Figures 2.2b and 2.2c, respectively. The settings page displays the phone number
with which the app was registered and the ability to log out, which temporarily
halts the data collection. The user can also toggle the information that is collected.
Customer support information is presented in the next settings panel, including a
link to Helsenorge.no and its support phone number. In this panel, the user can
also erase all the data collected by Smittestopp thus far. Finally, the Info view, shown
in Figure 2.2c, displays helpful links related to Smittestopp, data collection, and
general information about COVID-19.

2.4 System architecture and data flow

Fig. 2.3: High-level schematic of Smittestopp showing the main components and
how they interact with the backend, through Microsoft services here, and with
other devices where Smittestopp is installed. The backend consists of Azure Active
Directory Business-to-Consumer (Azure AD B2C) and the Azure Internet of Things
(IoT) Hub, which connects to the cloud.

A software architecture establishes the fundamental structure of a software system
and displays how a collection of components accomplishes a specific task or function.

16 Florvaag et al.

Themain functions of Smittestopp are to aggregate location and Bluetooth data, with
minor functions, such as the logging of events and heartbeat monitoring. The main
components are presented in Figure 2.3, which is a high-level schematic overview
of the process flow in Smittestopp. Although there are minor technical differences
between the Android and iOS apps, the main components and data processing in
Smittestopp are covered by the schematic.

Starting with their onboarding, users proceed through a login service provided
by Azure AD B2C. The users input their Norwegian phone number and receive an
access token from Azure AD B2C that is used to authenticate the user for Azure
IoT Hub. The IoT hub responds with an authentication key and a Universally Unique
Identifier (UUID), which are stored locally on the user’s device. The authentication
key is used to generate temporary authentication tokens for sending messages to the
IoT hub. These messages are sent over HTTPS, with a payload as described below,
in addition to the device’s UUID.

After successfully logging in, the user is presented with the monitoring view
component. Here, three main data types are actively collected and uploaded to the
IoT hub, assuming full authorization to location services (GPS) and Bluetooth Low
Evergy (BLE). All three events include five common fields, along with the event
data, as shown in the following JavaScript Object Notation (JSON) message format
example.

{
"appVersion": "1.1.0",
"model": " iPhone 10,5",
"events": [EventData],
"platform": "ios",
"osVersion": "13.4.1",
"jailbroken": false

}

The jailbroken flag was added to filter out data collection from rooted and jail-
broken devices. We attempt to identify jailbroken or rooted devices by checking if
the app can edit certain system files or if the system contains files associated with
jailbroken/rooted devices. Furthermore, events is a list of either GPS, Bluetooth, or
heartbeat events, but never a combination thereof.

GPS data are collected on a regular basis, although the uploading frequency
and data precision can vary, depending on the user’s activity. For GPS events, the
following example message format shows the structure of the IoT hub telemetry
message sent from the app to the cloud, including the common fields addressed
above.

{
"timeFrom": "2020-04-30T12:38:30Z",
"timeTo": "2020-04-30T12:38:30Z",
"latitude": 61.93372532454498,
"longitude": 10.728583389659596,

2 Smittestopp for Android and iOS 17

"accuracy": 65.0,
"speed": 2.10,
"altitude": 71.1960678100586,
"altitudeAccuracy": 10.0

}

Newly collected GPS data are aggregated with previous GPS events for the pe-
riod lasting from timeFrom to timeTo. The current location is determined by the
latitude and longitude coordinates, along with the altitude above sea level,
measured in metres. The accuracy and the altitudeAccuracy are measures of
the location and altitude accuracy, respectively. In addition, the measured speed of
the device, in metres per second, is registered [14, 8].

Devices that support BLE, particularly Android and iOS devices, can act as a
peripheral device and a central device, as explained further in Section 2.6.3. As
illustrated in Figure 2.3, a device acting as a central device can be detected by pe-
ripheral devices, which triggers an exchange of UUIDs between the devices involved.
In the initial release of Smittestopp, devices used static UUIDs. However, the use of
static UUIDs can expose user devices to tracking by scanners configured to detect
Smittestopp UUIDs. As a remedy, rotating UUIDs can be used, an improvement
that was later implemented and tested but never released to the public, because
Smittestopp was abruptly halted. To link the BLE information to GPS data, the BLE
data are aggregated with the last known GPS positions, saved in the location field,
as shown in the following message format representing a BLE event.

{
"deviceId": "123456789 abcd ",
"rssi": -90,
"txPower": 12,
"time": "2020-04-30T12:38:30Z",
"location": {
"latitude": 61.93372532454498,
"longitude": 10.728583389659596,
"accuracy": 65.0,
"timestamp": "2020-04-30T12:35:30Z"

}
}

The contact timestamp is registered in the time field, along with the UUID,
deviceId, of the discovered device. Here, rssi represents the signal strength that
the central device receives, while txPower represents the transmission power of the
peripheral device.

The third and final event consists of heartbeat messages, a custom message used
to determine a device’s authorization of location services. The heartbeat message
can also determine that the app is still installed and running on a device. A heartbeat
event is sent once every 24 hours to the IoT hub, and it includes information on which

18 Florvaag et al.

kind of data collection is enabled on the device, as shown in the following message
format.

{
"timestamp": "2020-04-30T12:38:30Z",
"state": 0

}

Here, the timestamp is updated when the message is uploaded, and the integer value
of state is set to one of four values.

Smittestopp is also connected to Azure App Center for logging purposes [20].
Note that the App Center is used by the app in parallel to the main app services,
thus running independently of the Smittestopp backend. Mainly errors and warnings
are logged and uploaded to the App Center, including information about failed
authorization, database errors, and failed requests and responses related to event
uploading. In addition, the operating system, mobile operator, version number, and
phone model is added to the App Center payload, used to improve the quality of
the collected data by distinguishing different phone models and operating systems.
Azure App Center does not store any personal information or link the collected data
to a user [21]. It is important to emphasize that the information collected by App
Center was only used to identify problems with certain phone models or operating
systems.

2.5 App life cycle

Whether running on the iOS or Android operating system, every mobile app passes
through multiple states throughout its runtime, known as the app’s life cycle. Of the
different states an app can transition through, we mainly focus on those when the app
is running in the background, since most users of Smittestopp rarely opened the app.
Users bring apps to the foreground to interact with them. Consequently, such apps
will be prioritized when it comes to accessing systems resources. In contrast, apps in
the background are not visible to users. An app goes into the background if has been
stopped or has entered a suspended state. Most apps are usually in a background or
suspended state, to save as much power as possible. Optimally, the app does as little
work as possible, preferably nothing when off-screen. There are also intermediate
states, when the app’s state changes from the foreground to the background and vice
versa, but these are not our focus here.

2.5.1 Android

Smittestopp supports Android 5.0+ and controls its life cycle through different
activities, as shown in Figure 2.4. The different activities describe the actions that

2 Smittestopp for Android and iOS 19

Fig. 2.4: A state diagram that describes the transitions between the states for the
Android life cycle.

users can perform to make the app enter different life cycle states. An Android
app cycles between the four following life cycle states: active, paused, stopped, and
terminated [16]. The states are entered through different activities, whichwe describe
next.

The app becomes active by going through the three activities create, start, and
resume. When the user opens an app, the create activity is triggered. The app
continues by executing the start activity. In this phase, the activity is still not rendered,
but is about to become visible to the user. The final phase of being active involves
the app entering the resume activity, where the app is finally visible to the user and
becomes interactive.

At this point the app can be paused, stopped, or terminated. In the paused state,
the app can still be visible to the user, but the user cannot interact with it. This state
can be entered when the app is no longer in focus or before transitioning to the
stopped or terminated state. The app enters the stopped state when it is not visible
to the user, which can happen if a new activity is started or the current one is being
terminated. Although the app is still active in the background, Android Runtime can

20 Florvaag et al.

terminate the app in case of scarce resources. Finally, if the app is terminated, it will
destroy the current instance of the activity to save memory.

Considering that most apps are usually not active, we used a designated back-
ground service in Android that allows the app to execute events in the background,
as well as showing a constant notification.

2.5.2 iOS

Fig. 2.5: A state diagram describing
the transitions between the states for
the iOS life cycle.

Smittestopp supports iOS 12.0+ and uses
app delegate objects to manage the app’s
shared behaviours [9]. Generally, an iOS
app can enter one of five states that con-
stitute the app life cycle: terminated, inac-
tive, active, background, and suspended, as
shown in Figure 2.5. For the sake of com-
pleteness, we describe here the five states
before focusing, in the next section, on the
main challenges faced by iOS apps when
they run in the background. An app in the
terminated state has either not been started
yet or has been closed by the user or the
system. As soon as the user enters the app,
the enters an intermediate state where it is
inactive. In the inactive state, the app’s UI is
not visible to the user and does not receive
or send any events. The inactive state is also
entered every time the app transitions to a
different state.

When the app is fully loaded, the app
enters the active state. In the active state,
the app is fully functional and visible to the
user and the user can interact with the UI. Additionally, the app can both send and
receive events if this is part of the its functionality. When the user exits the app, it
transitions from the active state to the inactive state before reaching the background
state. Similarly, when reopening, the app will transition from the background state to
the inactive state before eventually becoming active. The background state is usually
only a temporary state in which the app’s code is still executed, meaning that events
can be sent and the app works in the background, although the UI is not visible to
the user. After being in the background state for a short time, the app will enter the
suspended state. The time it takes before the app transitions from the background
state to the suspended state can vary, since this state can be extended, if needed,
by the app. Most apps are automatically suspended by the system after entering the
background state. In this state, the app does not execute code, but it is still saved in

2 Smittestopp for Android and iOS 21

the iPhone’s memory without affecting the battery life. In case the system runs low
on memory, a suspended app can automatically be terminated by the system. An app
can also enter the terminated state if it is manually terminated by the user.

2.6 Design choices

In this section, we discuss the various design choices that we made when developing
the Smittestopp app. Section 2.6.1 gives a short description of how data are stored
locally on the device and the security measures implemented for this storage. Battery
usage is a prominent issue for a continuously running app such as Smittestopp,
especially considering that it provides no immediate and obvious benefit to the user.
Most of the battery drain was caused by location tracking, and details on how this was
handled are provided in Section 2.6.2.Finally, Section 2.6.3 describes how proximity
detection over Bluetooth was implemented.

2.6.1 Storage and security

Local storage consists of two different systems. One system is for preference data,
such as the phone number, consent to the privacy policy, and the login token. The
other system is a local encrypted SQLite database for measurement data, such as
location and Bluetooth encounters. Preference data are stored in UserDefaults and
the Keychain [7] on iOS, and in SharedPreferences and Keystore [13] on Android.
Keychain and Keystore are used to store sensitive information such as the phone
number, the login token, and the encryption key for the local SQLite database.

The local database system choice was SQLite [25] because it is an embedded
database with easily accessible libraries. OnAndroid, SQLite is part of the AndroidX
library [15]. On iOS, an open source library was used [12]. The database consists of
two tables, one for GPS data and one for BLE data. As the data are being uploaded,
they aremarked for deletion and, upon successful upload, themarked data are deleted.
Since the location and proximity data can persist on a phone for hours before they
are successfully uploaded, it is important that they are stored as securely as possible.
This entails the entire database being encrypted using a key that is generated and
stored on the device in Keychain (iOS) or Keystore (Android). Although someone
with full access to the phone could theoretically access the encryption key, this
database encryption provides a basic level of security.

22 Florvaag et al.

2.6.2 Location services

The collection of location data in Smittestopp is performed for two purposes: for dig-
ital contact tracing in combination with BLE event data and for gathering movement
patterns in the population for epidemiological research, to understand the effective-
ness of recommended public measures. By default, both the Android and iOS apps
fetch location data at regular intervals, merging similar location data points to avoid
sending too much data. However, the continuous tracking of location services was
one of the main power usages of Smittestopp, as reflected in the number of reviews
on both Apple’s App Store and the Google Play store complaining about the app’s
impact on battery life.To address the high power consumption, Smittestopp would
change the accuracy of the GPS data adaptively.

While, on Android, only the intervals at which location data were retrieved was
tweaked, the iOS version of Smittestopp combined multiple different features of the
CoreLocation [2] framework. By default, the app uses the standard CoreLocation
location updates with the highest possible precision. If the GPS data show the same
position, or roughly the same within a threshold dependent on the GPS accuracy, for
more than five minutes, high precision location updates are disabled and, instead,
region monitoring [10] is used. Region monitoring, also known as geofencing, con-
structs a circular region around a position with a given radius and tracks if the user
moves outside the region. The region is defined as a circle with a 40-metre radius
around the last known position. iOS then alerts the app once the devicemoves outside
the region and stays outside for at least 20 seconds.

When an iOS user grants Smittestopp permission to fetch location data in the back-
ground, the iOS app can run continuously in the background state, never moving to
suspended state. The standard location updates [4] in the CoreLocation framework
prevent the app from being suspended when moving to the background. However,
turning off standard location updates would mean the app will be suspended. Thus,
when switching to region monitoring, standard location updates are not turned off,
but the accuracy is significantly lowered and the filter for how far apart each update
needs to be is significantly increased. This means the app remains enabled but there
will be no standard location updates, which prevents the app from moving to the
suspended state.

Apart from the suspended state, the terminated state could also be a problem for
Smittestopp on iOS. The app could enter the terminated state if the user manually
terminated the app, which, one can imagine, is a very normal occurrence; however,
when the user moves outside the currently monitored region, the app is launched
automatically by the operating system [5]. In addition, a CoreLocation feature
called significant location updates [4], which provides updates if the device moves
by roughly 500metres or more, is always enabled. Region monitoring and significant
location updates in conjunction meant that, after app termination, the app would
relaunch and continue as normal if the device moved 40 to 500 metres from its last
known position.

Although the app could run continuously in the background, on iOS, this was en-
tirely dependent on the user granting full background location permissions. Without

2 Smittestopp for Android and iOS 23

those permissions, the app would not be able to gather location data in the back-
ground and would almost entirely rely on Bluetooth to wake the app. Because the
Bluetooth background mode does not work after app termination and most users
will not regularly launch the app, the iOS version of Smittestopp was extremely
reliant on full location permissions for long-term consistency. This point was made
tougher by iOS 13, which does not allow for background location permissions to
be asked directly. Instead, one can only ask for permissions when the app is in use,
and the user would later, at the discretion of the operating system, be prompted for
background location permissions. This made it difficult to communicate to users
what permissions they should grant, and the released version of Smittestopp did not
attempt to convey the importance of background location permissions.

2.6.3 Bluetooth Low Energy

Bluetooth Low Energy (BLE) communication consists of two devices: one device
advertising its presence and the other scanning for advertising BLE devices. BLE
advertisement packets usually contain one or more UUIDs that inform the scanning
devices of the types of services supported by the device in question. Such a UUID
is referred to as a service UUID. The Smittestopp app advertises and scans for a
service UUID specific to the app, providing a way for the scanning device to detect
devices in its proximity. While BLE supports attaching some (limited size) data
to the advertisement packet, there is limited support for accessing these data on
iOS devices. Specifically, the data are not accessible when the scanning device has
Smittestopp running in the background, and not in the foreground. Thus, Smittestopp
instead connects to the advertising device when the app-specific service UUID is
present. These connections are short-lived, since the scanning device only requests
a device identifier from the advertising device and disconnects as soon as this has
been received.

Running BLE in the background on an iOS app is supported through background
modes, but the app will be suspended after a few seconds in the background. It will
then transition from the suspended to the background mode every time a relevant
BLE service UUID is found in a received advertisement packet or when a device
connects. The app will then have approximately 30 seconds in the background state
before it is suspended again.

Additionally, when the iOS app is in the background, the advertisement packet
for the app changes to a proprietary format in which service UUIDs are found in
the so-called overflow area [11]. The overflow area is a 128-bit array, and each
service UUID corresponds to exactly one of the bits being set to one. When an iOS
device scans for a specific service UUID, it will match advertisements where the
corresponding bit is set to one. Of course, service UUIDs can be 128-bit numbers,
for a many-to-one mapping from a service UUID. Thus, there is a possibility that
a false positive can be detected if a device advertises a service UUID that has the

24 Florvaag et al.

same corresponding overflow area bit. For more information on the overflow area,
see the notes by Rossum [29] and Young [30].

While the BLE stack in iOS has a built-in system for handling the overflow adver-
tisement format, an Android device does not know how to translate service UUIDs
to their corresponding bit. To do so, the Android implementation of Smittestopp,
in addition to scanning for the normal app-specific service UUID, also scans for
packets with the corresponding bit set to one. Since the code for mapping service
UUIDs to a bit is not public, the bit is found by scanning the BLE advertisement
packets that the iOS app transmits in the background. This is possible because the
corresponding bit is always the same for a specific service UUID.

The difficulties with BLE on iOS while the app is in the background are not only
limited to the advertisement packets. When the scanning app is in the background,
iOSwill not relay any overflowadvertisement packets detected to the app. Thus,while
in the background state, an iOS appwill not be able to detect other backgrounded iOS
apps. While the app will function fine between iOS and Android devices, detection
between two backgrounded iOS apps will not work. Furthermore, more than half of
the phone users in Norway use an iPhone. Because the average user will have the
app almost exclusively in the background state, this was a major problem and one of
the main topics in meetings with collaborating countries.

In early April, two weeks before the app would eventually launch, we discovered
a way to partially circumvent this limitation. Using the iBeacon feature [6], found
in the CoreLocation [2] framework, the operating system will continue to relay
overflow advertisement packets to the app, even in the background. Specifically, by
ranging for iBeacons [3], a method that allows one to determine the proximity of
other devices with iBeacon, the app can continue to receive overflow advertisements
while the device screen is on. The iBeacons for which the app scans do not have to
be present at all. The app can scan for a random iBeacon UUID. However, if the
device screen is off, this method will not help the app detect BLE advertisements.
Notably, whether the device is locked or not does not matter, as long as the screen is
on. This means that if, for example, the phone is locked but receives a notification,
it will light up and the app will receive BLE advertisements until the screen goes
black again. With this workaround, it is possible to detect all encounters where at
least one phone is in use. This method is also briefly mentioned by Young [30].

Although ranging for an iBeacon would help with BLE detection, a major concern
was the impact on battery life. Hence, we aimed to minimize the time the app spends
ranging for an iBeacon. The documented iOS app API from Apple does not include
a way to detect whether the phone screen is on or off. Therefore, the app potentially
ranges for an iBeacon when it has no effect, negatively impacting the battery life for
no benefit. However, using an undocumented API, we can register callbacks that are
invoked when the screen is turned off or on. The use of such undocumented APIs
usuallymeans that the appwill be rejected in theAppStore review process, andApple
made no exception for Smittestopp regarding this matter. Thus, the Smittestopp app
ended up ranging for an iBeacon every five minutes for 10 seconds, regardless of
whether the screen is on or off.

2 Smittestopp for Android and iOS 25

Ranging for iBeacons requires location permissions on iOS, even when only used
to improve BLE background consistency. Additionally, to turn iBeacons on and off
while in the background, the app must not be in a suspended state and must have
background location permissions. From the user’s perspective, requiring location
permissions to improve BLE capabilities is not intuitive. Communicating the need
for location permissions is therefore a significant challenge for an app using this
workaround.

2.7 Testing

Smittestopp’s codebase was tested using unit tests for the functionality, UI, and snap-
shot tests [17] to test the UI. The UI tests simulate interactions with the UI and check
for the expected behaviour. Meanwhile, Snapshot tests compare old screenshots of
the UI to the current UI, to ensure that no unintended changes occur.

2.8 Conclusions and lessons learned

Designing an app that runs almost exclusively in the background is much more
straightforward on Android than on iOS. To conserve battery life, most iOS apps
are not allowed to execute code when they are backgrounded, and, even if an app
asks for time in the background, the iOS system will only rarely or even never grant
background execution time if the app is rarely used.

Furthermore, the iOS system limits the functionality of BLE in the background.
This limitation can be partially alleviated by background location permissions, but
the user must explicitly grant these. This is perhaps a good thing from a privacy
perspective, since it makes it difficult for apps to implement tracking mechanisms
over BLE. However, it was one of the main challenges for countries implementing
BLE contact tracing apps.

References

[1] G. T. Agency. 6 things about OpenTrace, the open-source code published by the
TraceTogether team. https://www.tech.gov.sg/media/technews/six-
things-about-opentrace\#6-last-but-not-least-an-extra-
step-for-ios-users, 2020 (accessed October 26, 2020).

[2] Apple Developer Documentation. Core Location. https://developer.
apple.com/documentation/corelocation/, 2020 (accessed October 26,
2020).

https://www.tech.gov.sg/media/technews/six-things-about-opentrace\#6-last-but-not-least-an-extra-step-for-ios-users
https://www.tech.gov.sg/media/technews/six-things-about-opentrace\#6-last-but-not-least-an-extra-step-for-ios-users
https://www.tech.gov.sg/media/technews/six-things-about-opentrace\#6-last-but-not-least-an-extra-step-for-ios-users
https://developer.apple.com/documentation/corelocation/
https://developer.apple.com/documentation/corelocation/

26 Florvaag et al.

[3] AppleDeveloperDocumentation. Determining the Proximity to an iBeaconDe-
vice. https://developer.apple.com/documentation/corelocation/
determining_the_proximity_to_an_ibeacon_device, 2020 (accessed
October 26, 2020).

[4] Apple Developer Documentation. Getting the User’s Location.
https://developer.apple.com/documentation/corelocation/
getting_the_user_s_location, 2020 (accessed October 26, 2020).

[5] Apple Developer Documentation. Handling Location Events in the
Background. https://developer.apple.com/documentation/
corelocation/getting_the_user_s_location/handling_
location_events_in_the_background, 2020 (accessed October 26,
2020).

[6] Apple Developer Documentation. iBeacon. https://developer.apple.
com/ibeacon/, 2020 (accessed October 26, 2020).

[7] Apple Developer Documentation. Keychain Services. https://developer.
apple.com/documentation/security/keychain_services, 2020 (ac-
cessed October 26, 2020).

[8] Apple Developer Documentation. Location Services. https://developer.
apple.com/documentation/corelocation/cllocationmanager, 2020
(accessed October 26, 2020).

[9] Apple Developer Documentation. Managing Your App’s Life Cy-
cle. https://developer.apple.com/documentation/uikit/app_and_
environment/managing_your_app_s_life_cycle, 2020 (accessed Octo-
ber 26, 2020).

[10] Apple Developer Documentation. Monitoring the User’s Proximity to
Geographic Regions. https://developer.apple.com/documentation/
corelocation/monitoring_the_user_s_proximity_to_geographic_
regions, 2020 (accessed October 26, 2020).

[11] Apple Developer Documentation. startAdvertising(_:). https:
//developer.apple.com/documentation/corebluetooth/
cbperipheralmanager/1393252-startadvertising, 2020 (accessed
October 26, 2020).

[12] S. Celis. A type-safe, Swift-language layer over SQLite3. https://github.
com/stephencelis/SQLite.swift, 2020 (accessed October 26, 2020).

[13] A. Developers. Android keystore system. https://developer.android.
com/training/articles/keystore, 2020 (accessed October 26, 2020).

[14] A. Developers. Android location services. https://developer.android.
com/reference/android/location/Location, 2020 (accessed October
26, 2020).

[15] A. Developers. Sqlite. https://developer.android.com/jetpack/
androidx/releases/sqlite, 2020 (accessed October 26, 2020).

[16] A. Developers. Understand the Activity Lifecycle. https://developer.
android.com/guide/components/activities/activity-lifecycle,
2020 (accessed October 26, 2020).

https://developer.apple.com/documentation/corelocation/determining_the_proximity_to_an_ibeacon_device
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location/handling_location_events_in_the_background
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location/handling_location_events_in_the_background
https://developer.apple.com/documentation/corelocation/getting_the_user_s_location/handling_location_events_in_the_background
https://developer.apple.com/ibeacon/
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/corelocation/cllocationmanager
https://developer.apple.com/ibeacon/
https://developer.apple.com/documentation/security/keychain_services
https://developer.apple.com/documentation/corelocation/cllocationmanager
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
https://developer.apple.com/documentation/corelocation/monitoring_the_user_s_proximity_to_geographic_regions
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/1393252-startadvertising
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/1393252-startadvertising
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/1393252-startadvertising
https://github.com/stephencelis/SQLite.swift
https://github.com/stephencelis/SQLite.swift
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location
https://developer.android.com/jetpack/androidx/releases/sqlite
https://developer.android.com/jetpack/androidx/releases/sqlite
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.apple.com/documentation/corelocation/determining_the_proximity_to_an_ibeacon_device

2 Smittestopp for Android and iOS 27

[17] Github. Delightful Swift snapshot testing. https://github.com/
pointfreeco/swift-snapshot-testing, 2020 (accessed October 23,
2020).

[18] L. Kelion. Coronavirus: England’s contact-tracing app gets green light
for trial. https://www.bbc.com/news/technology-53753678, 2020 (ac-
cessed October 23, 2020).

[19] L. Kelion. Coronavirus: Ireland set to launch contact-trace app. https://
www.bbc.com/news/technology-53137816, 2021 (accessed February 18,
2021).

[20] Microsoft Azure. Visual Studio App Center. https://azure.microsoft.
com/en-us/services/app-center, 2020 (accessed October 26, 2020).

[21] Microsoft Azure. Visual Studio App Center. https://docs.microsoft.
com/en-us/appcenter/gdpr/faq\#data-use, 2021 (accessed February
25, 2021).

[22] Microsoft Azure. Microsoft Authentication Library (MSAL).
https://docs.microsoft.com/en-us/azure/active-directory/
develop/msal-overview, 2021 (accessed February 26, 2021).

[23] I. M. of Health. HaMagen. https://govextra.gov.il/ministry-of-
health/hamagen-app/download-en/, 2020 (accessed October 23, 2020).

[24] G. of Singapore. TraceTogether. https://www.tracetogether.gov.sg/,
2020 (accessed October 26, 2020).

[25] SQLite. SQLite Home Page. https://www.sqlite.org/, 2020 (accessed
October 26, 2020).

[26] P.-P. C. Tracing. Apple and Google. https://covid19.apple.com/
contacttracing, 2020 (accessed October 26, 2020).

[27] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,
W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, et al. Decentralized privacy-
preserving proximity tracing. arXiv preprint arXiv:2005.12273, 2020.

[28] J. Utzerath, R. Bird, and G. Cheng. Contact tracing apps in China, Hong
Kong, Singapore and SouthKorea. https://www.lexology.com/library/
detail.aspx?g=99dca469-455d-4f7a-b025-00bf1d10ff6b, 2020 (ac-
cessed October 23, 2020).

[29] A. van Rossum. Smartphone localization. https://github.com/
crownstone/bluenet-ios-basic-localization/blob/master/
BROADCASTING_AS_BEACON.md, 2020 (accessed October 26, 2020).

[30] D. G.Young. Hacking TheOverflowArea. http://www.davidgyoungtech.
com/2020/05/07/hacking-the-overflow-area, 2020 (accessed October
26, 2020).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not

included in the chapter’s Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://www.davidgyoungtech.com/2020/05/07/hacking-the-overflow-area
http://www.davidgyoungtech.com/2020/05/07/hacking-the-overflow-area
https://github.com/pointfreeco/swift-snapshot-testing
https://github.com/pointfreeco/swift-snapshot-testing
https://www.bbc.com/news/technology-53753678
https://www.bbc.com/news/technology-53137816
https://www.bbc.com/news/technology-53137816
https://azure.microsoft.com/en-us/services/app-center
https://azure.microsoft.com/en-us/services/app-center
https://docs.microsoft.com/en-us/appcenter/gdpr/faq\#data-use
https://docs.microsoft.com/en-us/appcenter/gdpr/faq\#data-use
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://govextra.gov.il/ministry-of-health/hamagen-app/download-en/
https://govextra.gov.il/ministry-of-health/hamagen-app/download-en/
https://www.tracetogether.gov.sg/
https://www.sqlite.org/
https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://www.lexology.com/library/detail.aspx?g=99dca469-455d-4f7a-b025-00bf1d10ff6b
https://www.lexology.com/library/detail.aspx?g=99dca469-455d-4f7a-b025-00bf1d10ff6b
https://github.com/crownstone/bluenet-ios-basic-localization/blob/master/BROADCASTING_AS_BEACON.md
https://github.com/crownstone/bluenet-ios-basic-localization/blob/master/BROADCASTING_AS_BEACON.md
https://github.com/crownstone/bluenet-ios-basic-localization/blob/master/BROADCASTING_AS_BEACON.md

	Chapter 2 Smittestopp for Android and iOS
	2.1 Introduction
	2.2 Related apps for digital contact tracing
	2.3 App user interface and functionality
	2.4 System architecture and data flow
	2.5 App life cycle
	2.5.1 Android
	2.5.2 iOS

	2.6 Design choices
	2.6.1 Storage and security
	2.6.2 Location services
	2.6.3 Bluetooth Low Energy

	2.7 Testing
	2.8 Conclusions and lessons learned
	References

