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Preface

Since 2014, we have organized an annual summer school in computational physiol-
ogy. The school starts in June each year and the graduate students spend two weeks
in Oslo learning the principles underlying mathematical models commonly used in
studying the heart and the brain. At the end of their stay in Oslo, the students are
assigned a research project to work on over the summer. In August the students travel
to the University of California, San Diego to present their findings. Each year, we
have been duly impressed by the students’ progress and we have often seen that the
results contain the rudiments of a scientific paper.

Starting in the 2021 edition of the summer school, we have taken the course one
step further and aim to conclude every project with a scientific report that passes
rigorous peer review as a publication in this new series called Simula SpringerBriefs
on Computing – reports on computational physiology.

One advantage of this course adjustment is that we have the opportunity to intro-
duce students to scientific writing. To ensure the students get the best introduction
in the shortest amount of time, we have commissioned a professional introduction to
science writing by Nature. The students participate in a 2-day Nature Masterclasses
workshop, led by two editors from Nature journals, in order to strengthen skills in
high quality scientific writing and publishing. The workshop is tailored to publica-
tions in the field of computational physiology and allows students to gather real-time
feedback on their reports.

We would like to emphasise that the contributions in this series are brief re-
ports based on the intensive research projects assigned during the summer school.
Each report addresses a specific problem of importance in physiology and presents
a succinct summary of the findings (8-15 pages). We do not require that results
represent new scientific results; rather, they can reproduce or supplement earlier
computational studies or experimental findings. The physiological question under
consideration should be clearly formulated, the mathematical models should be de-
fined in a manner readable by others at the same level of expertise, and the software
used should, if possible, be made publicly available. All reports in this series are
subjected to peer-review by the other students and supervisors in the program.
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Chapter 1
A Pipeline for Automated Coordinate
Assignment in Anatomically Accurate
Biventricular Models

Lisa Pankewitz1, Laryssa Abdala2, Aadarsh Bussooa1, Hermenegild Arevalo1

1 – Simula Research Laboratory, Norway
2 – University of North Carolina, USA

Abstract There is an increased interest, in the field of cardiac modeling, for an
improved coordinate system that can consistently describe local position within a
heart geometry across various distinct geometries. A newly designed coordinate
system, Cobiveco, meets these requirements. However, it assumes the use of biven-
tricular models with a flat base, ignoring important cardiac structures. Therefore,
we extended the scope of this state-of-the-art biventricular coordinate system to
work with various heart geometries which include basal cardiac structures that were
previously unaccounted for in Cobiveco. First, we implemented a semi-automated
input surface assignment for increased accessibility and reproducibility of assigned
coordinates. Then, we extended the coordinate system to handle more anatomically
accurate biventricular models including the valve planes, which are of great interest
when modeling diseases that manifest themselves in the basal area. Furthermore,
we added the functionality of mapping vector data, such as myocardial fiber ori-
entations, which are crucial for replicating the anisotropic electrical propagation in
cardiac tissue.

1.1 Introduction

The representation of cardiac geometry independent of patient origin and the flaw-
less transfer between different measuring modalities are important tools in clinical
research [1, 2]. To accurately describe a local position within the heart, a robust coor-
dinate system is required. Such a coordinate system enables a variety of applications,
including the transfer of data between different heart geometries and comparing data
produced using different measuring modalities, such as validating simulations with
clinical data [2, 3].

1© The Author(s) 2022 
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2 1 Biventricular Coordinate Assignment Pipeline

A recently published biventricular coordinate system, Cobiveco, offers a consis-
tent and reliable approach for describing positions in biventricular heart models [2].
However, the current state-of-the-art coordinate system is limited to biventricular
heart geometries, which are clipped at a specific planar position, such that the re-
sulting base appears completely flat. Clipping the base in this manner also clips the
underlying ventricles. Although this clipping procedure remains part of the common
mesh generation approach, it does not yield anatomically accurate cardiac meshes
for the purpose of computer simulations. We argue that biophysical simulations of
the heart should include the clipped base cardiac structures, that contain the valve
openings, for more realistic results. The ventricles, together with the presence of
valve planes, are important features of ventricular anatomy that can influence car-
diac electrophysiology and mechanics.

Features that are connected to the valves are critical anatomical structures, such
as the papillary muscle and chordae. Any structural defects that change the shape
of the ventricles and alter the activation in the aortic valve annulus can have an
effect on electrical dyssynchrony or ventricular dilation. Therefore, the inclusion of
valve planes in cardiac models is necessary. This is especially true when modeling
certain disease phenotypes, where changes in anatomy, mechanics, and activation
manifest themselves in areas closer to the valve planes. An important example of this
is congenital heart defect (CHD), which is the most common birth defect worldwide
[4, 5]. Heterogeneous morphology and physiology in CHD patients have been shown
to complicate risk assessment of individual patients requiring anatomically accurate
models. This is a use-case where the inclusion of valve planes in the biventricular
models may lead to enormous improvement of the model quality as morphological
changes as well as scar tissues in this patient group can be located close to the base.

1.2 Methods

In this work, we extend the open-source MATLAB implementation of Cobiveco for
tetrahedral meshes to take into account anatomically more accurate biventricular
meshes that include valve planes instead of a flat, clipped base. First, we provide
a surface extraction tool that automatically creates input surfaces files required for
setting up the biventricular coordinate system. Then, we adapt the existing Cobiveco
framework to allow for more anatomically correct geometries. Last, we extend the
software to allow for mapping and transfer of vector data between different heart
geometries.

1.2.1 Semi-Automated Surface Extraction

Existing tools extract surfaces from meshes and imaging data. Image-based surface
extraction operates directly on raw clinical imaging to identify cardiac structures,



1.2 Methods 3

effectively building a mesh with automated tagging of surfaces. Mesh-based surface
extraction operates directly on the meshes and identifies cardiac structures based
on the position and connectivity of vertices. However, these currently existing tools
require much fine-tuning and cannot effortlessly extract surfaces based solely on a
seed point and a threshold.

Therefore, we present a mesh-based surface extraction tool, which identifies
cardiac structures using a minimal set of parameters. As a first step, the cardiac
mesh is converted into a graph, where its nodes encode vertex identifiers and surface
identifiers. We leverage the use of the graph topology and apply a breadth-first search
(BFS) algorithm to find connected nodes.

Fig. 1.1: Angular change between two neighbouring triangular surfaces, given by 𝜃.

The scope of the BFS algorithm is limited by two parameters, namely a seed point
lying on the surface to be extracted and an angular threshold. The BFS algorithm
performs several iterations, starting with the seed point. With each iteration, the
angular change between two neighbouring triangles is computed, such that they
comply with the stated threshold.

cos𝜃 =
𝑛1 · 𝑛2
|𝑛1 | |𝑛2 |

(1.1)

The angular change is given in (1.1), where 𝑛1 and 𝑛2 are the normals to two
triangular surfaces (Figure 1.1). These two triangles do not have to be direct neigh-
bours to each other. The BFS algorithm identifies neighbours in the vicinity, using a
predefined depth variable, such that the overall algorithm achieves a faster execution
time. The pseudo code of the implementation is given in Algorithm 1.
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Algorithm 1 Algorithm to identify connected mesh nodes
1: tagged← seed ⊲ Source seed point is added to tagged list
2: for tag in tagged do
3: results← bfs_tree(source=tag) ⊲ Apply BFS algorithm to tagged surfaces
4: for res in results do
5: angular_change = compute_angle(tag, res) ⊲ Angular change between tag and res
6: if angular_change < angular_threshold then
7: tagged← res ⊲ Add the res point to the tagged list
8: end if
9: end for

10: end for

The algorithm mimics edge detection, as used in image processing, where in our
case the BFS spans throughout the mesh until sharp corners are encountered. Based
on heuristics, we have identified that an angular threshold between 0.1 and 0.2 rad is
optimal in correctly identifying and extracting cardiac structures in the mesh. In the
context of extending the features of Cobiveco, the algorithm can be used to extract
the base of the valves and the valve plane on the epicardial surface. The extracted
base is excluded from the graph and subsequent surface extraction freely applies the
BFS algorithm without any angular threshold restrictions.

1.2.2 Biventricular Coordinate System

Cobiveco, a consistent biventricular coordinate system, provides a reliable frame-
work for the precise and intuitive description of the position in the heart. To consis-
tently describe a location within the heart, the coordinate system is established with
four coordinates. The coordinate system fulfils a set of desired properties, which
have been described in Section 1.1. The system is based on a set of four coordinates,
namely a transventricular coordinate (tr), a transmural coordinate (tm), a rotational
coordinate (rt) and an apicobasal coordinate (ab). The transventricular coordinate
is a binary coordinate which distinguishes between the left and right ventricle. The
transmural coordinate measures the distance traveled within the transmural space, so
in the free walls this refers to the distance from the epicardium to the endocardium.
The rotational coordinate gives information about where you are in the heart with
respect to anterior and posterior direction. In more detail, it refers to the distance
traveled from the interventricular posterior junction over the the interventricular an-
terior junction over the septum back to the interventricular posterior junction. The
rotational coordinate is set up symmetrical in the biventricular model. The apicobasal
coordinate describes the distance traveled from the apex point to the base. Each co-
ordinate tuple, consisting of the four coordinates, corresponds to exactly one point
in the heart. Coordinates are normalized and range between 0 and 1. Within that
range, all coordinates change linearly in space, indicating that the distance traveled
is directly proportional to the change in the coordinate of interest. Furthermore, both
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ventricles follow the same parametrization. This is also reflected in the shared apex
definition. To construct the coordinate system, only landmarks which are consistent
throughout variations in different geometries, are chosen.

1.2.2.1 Creation of the Coordinate System Cobiveco

A detailed description of the steps involved in the creation of the original Cobiveco
framework can be found in [2]. In short, the construction of the coordinate system
includes eight steps and is summarized below.

As with Cobiveco 1.0, Cobiveco 2.0 requires a biventricular volume that includes
a base containing the four heart valve annuli, including the connecting bridges.
Besides the volume mesh, five boundary surfaces as shown in Figure 1.3 are required
as input, which is one additional surface compared to Cobiveco 1.0. The surfaces
required are a basal surface SBase, a basal epicardial surface SEpi,base, an epicardial,
non basal surface SEpi, nonbase, an LV endocardial surface SLV and an RV endocardial
surface SRV. The utilities for the semi-automated input-file generation are described
in Section 1.2.1.

Transventricular Coordinate (tv)

The transventricular coordinate is calculated as described in the original publication
[2].

Extraction of Septal Surface and Curve

The septal surface SSept and the septal curve CSept are extracted as described in [2].

Transmural Coordinate (tm)

The calculation of the transmural coordinate follows the same steps as in Cobiveco
1.0, but takes into account the two epicardial surfaces. As we split the epicardial
surface into a non-base epicardial surface and a basal epicardial surface, the whole
epicardial surface is defined be the union of both, as given in (1.2):

𝑆Epi = 𝑆Epi_non_base ∪ 𝑆Epi_base (1.2)

Heart Axes and Apex Point

The definition of the heart axes and apex point mainly follows the steps described
in the original publication [2]. As the definition of the orthogonal heart axes largely
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depends on the truncated septal surface, the calculation of the truncation needed to
be revised to take into consideration the increased curvature of the septal surface
at the base of the anatomically accurate biventricular heart model. Therefore the
septal surface is additionally truncated by 15% at the basal side, where the distance
is based in the direction of vLongAx. This modification results in the final truncated
septal surface SSeptTrunc being calculated by (1.3), where Pq refers to the qth percentile.

𝑆SeptTrunc =
{
x ∈ 𝑆Sept | x ·vAP > P20 (x ·vAP) and (1.3)

x ·vAP < P90 (x ·vAP)} and

x ·vlong > P15
(
x ·vlong

)}
Since the septal curve needs to be split in two segments, the new geometry with a
closed base requires a different solution than in Cobiveco 1.0 as well. Hence, we
exclude the new, basal epicardial surface from the epicardial definition to allow for
a separation of the anterior and posterior part of the septal curve.

𝐶Sept =
{
x ∈ 𝑆Epi,base | 𝑢𝑣 (x) = 0.5

}
(1.4)

Extraction of Ridge Surfaces

As the more anatomically accurate biventricular models contain a closed surface at
the base, we needed to modify the ridge definition in Cobiveco 2.0. In Cobiveco
2.0 we aim to replicate the original ridge assignment but use the valve planes
as guiding points resulting in a symmetric ridge. The ridge is used to provide a
boundary condition for the rotational coordinate. Currently, the ridge is defined
from the posterior interventricular junctions, where both ventricles symmetrically
impose a boundary condition, via the mitral valve and tricuspid valve in the LV/RV
septum respectively. The anterior ridge definition is defined via the mitral valve and
pulmonary valve, resulting in the ridge definition as shown in Figure 1.2.

Fig. 1.2: Ridge definition in Cobiveco 1.0 and Cobiveco 2.0. The anterior part of the
ridge is colored in red, while the posterior part of the ridge is highlighted in grey.
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Therefore, the ridge is obtained by defining the solution to Laplace’s equation
with boundaries applied to be 0 on the epicardial basal surface and 1 on the septal
surface. The non-base epicardial surface is now excluded as a boundary condition,
as shown in (1.5).

Δ𝑢Ridge (𝑉) = 0 with 𝑢Ridge
(
𝑆Epi \𝑆Sept

)
= 0 and 𝑢Ridge

(
𝑆 |Sept

)
= 1

(1.5)
The solution to Laplace’s equation is calculated as shown here in (1.6).

Δ𝑢Ridge (𝑉) = 0 with 𝑢Ridge
(
𝑆Epi,nonbase\𝑆Sept

)
= 0 and 𝑢Ridge

(
𝑆 |Sept

)
= 1
(1.6)

The second step remains as set up in the original Cobiveco 1.0. However, the resulting
ridge cannot be applied as it is. Currently, a manual filtering step is involved as there
remains a ridge within the RV in-between the tricuspid and the pulmonary valve,
which is not used as a boundary condition when setting up the rotational coordinate.

The Rotational Coordinate (r)

The rotational coordinate is defined as described in [2].

Computation of the Apicobasal Coordinate (ab)

The apicobasal coordinate is calculated as described in the original Cobiveco article.
Currently, however, we used the solution to Laplace’s equation as a place holder, as
the rotational coordinate still includes discontinuities which prohibit the assignment
of the apicobasal coordinate as described in Cobiveco 1.0

1.2.3 Mapping Vector Fields

The original Cobiveco implementation has a scalar field mapping functionality avail-
able. To map a scalar field from the source mesh 𝐵 to a target mesh 𝐴, it constructs
a matrix 𝑀𝐴←−𝐵 from the nodes of the source mesh to the nodes of the target mesh
[2]. The user can choose between linear and nearest-neighbor interpolation.

Mapping vector fields is of interest since data, such as muscle fiber fields, are
crucial to advance the cardiovascular computational simulations field. Here we en-
able the functionality of mapping such fields by treating each coordinate as a scalar
field. More specifically, the vector field is represented as a matrix of the nodes of the
source mesh by three. Each of its columns represents the coordinate of the vector
field in each source node. The end result of the vector mapping process is shown in
Figure 1.5.
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1.3 Results

In this project, we have successfully founded the basis for extending Cobiveco to
include more anatomically accurate biventricular models. The results are presented
in three steps, namely a pre-processing, processing, and post-processing step. Each
step reduces the manual manipulation of meshes, generalizes the biventricular coor-
dinates, and enables vector data transfer, respectively.

First, we successfully implemented a semi-automated surface extraction method
that uses a minimal set of parameters, based on a seed point and angular threshold,
to identify structures of interest in cardiac meshes. The resulting surfaces, after
extraction, are shown in Figure 1.3.

Fig. 1.3: Extracted surfaces after using BFS algorithm and angular threshold.

Second, we adapted the previous Cobiveco framework to work with biventricular
geometries, which includes the four cardiac valve planes. The preliminary results
of Cobiveco 2.0 are shown in Figure 1.4. The rotational coordinate suffers from
inconsistencies at the septum, owing to the manual exclusion of the ridge boundary.
Currently, the apicobasal coordinate is only represented by the solution to Laplace’s
equation. Last, we adapted the framework to include the mapping of vector data. The
result for mapping synthetic data is shown in Figure 1.5.

1.4 Conclusion

In this project, we present an updated version of the consistent biventricular coordi-
nates introduced by [2]. The pipeline can be applied to biventricular geometries for
mapping scalar and vector data between different hearts.

Cobiveco 2.0 builds upon the original Cobiveco [2], by extending the coordinates
for biventricular geometries that include the ventricular base. We aim to keep the
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Fig. 1.4: Visual Comparison of the four coordinates created by Cobiveco 2.0 and
Cobiveco 1.0. The apicobasal coordinate shown for Cobiveco 2.0 is represented by
the solution to Laplace’s equation.

Fig. 1.5: Cobiveco 2.0 has the functionality of mapping vector fields. First, the
coordinates are built in the source 𝐵 and target 𝐴 biventricular geometries (top).
Then the map 𝑀𝐴←−𝐵 is used to map vector fields (bottom).
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resulting coordinates with the same properties from the original ones: bijective, con-
tinuous (apart from the binary transventricular coordinates), normalized, complete,
linear, with consistent parametrization, and consistent landmarks.

The new pipeline reduces manual mesh manipulations for surface extraction. The
required surfaces can be effortlessly extracted using fewer parameters than other
conventional methods. Cobiveco 2.0 enables the mapping of vector data in addition
to scalar data, which is useful for computational modeling and data comparison.
A remarkable application of this feature is myofiber data mapping which is widely
used in electrophysiology simulations. Moreover, by enabling data transfer between
anatomical accurate biventricular geometries, it will be possible to validate com-
putational models for diseases that manifest themselves in areas close to the valve
planes.

The newly developed pipeline, with the inclusion of the valve planes in the
cardiac model, is of special interest for studying the most common form of CHD,
namely Tetralogy of Fallot (ToF). In ToF patients, the scar tissue is located close
to the base, rendering electrophysiological simulations feasible with our pipeline
[6, 7, 8, 9, 10, 11].

To the best of our knowledge, there is no consistent coordinate system available
that can be readily applied to a four-chamber heart model. The current state-of-
the-art coordinates for the atria, Universal Atrial Coordinates (UAC) is not based
on circular coordinates but rather in lateral-septal and posterior-anterior coordinates
[12]. The two-dimensional framework can be extended to three dimensions by adding
a transmural coordinate. Therefore, merging our improved Cobiveco pipeline with
an updated version of the UAC could be used to create a consistent four-chamber
heart coordinate system.

1.4.1 Limitations

The limitations of the current work include incomplete assignment of the rotational
and apicobasal coordinates. Therefore, we aim to improve the ridge assignment to
obtain a more symmetric ridge, which will result in a more symmetric rotational
coordinate, as the ridge defines the boundaries set in the rotational coordinate. To
achieve this goal, we will modify the anterior part of the ridge in the LV to be defined
via the aortic valve and not via the mitral valve as the definition is set now. This
will ensure a symmetric set up of the rotational coordinate in the RV and LV. The
remaining parts of the proposed framework, however, were successfully tested in
one patient-specific geometry.

Besides, a statistical analysis of the errors using a cohort of geometries is nec-
essary to ensure this is a reliable coordinate system. Moreover, the mappings were
performed using artificial data. Future work could include transferring experimental
data between two geometries to ensure the results are physiologically consistent.
Furthermore, the post-processing could also feature tensor data mapping.
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Abstract Congenital heart disease (CHD) is a leading cause of infant death. To
diagnose CHD, recordings from abdominal fetal electrocardiograms (fECG) can be
used as a non-invasive tool. However, it is challenging to extract the fetal signal from
fECG recordings partly due to the lack of data combining fECG recordings with a
ground truth for the fetal signal, which can be obtained by using a scalp electrode
during delivery. In this study, we present a computational model of a pregnant
female torso, in which we simulate fetal and maternal ventricular excitation during
sinus rhythm to derive fECGs, so as to enable isolated measurement of the fetal
and maternal signal contributions. To extract the fetal contribution from a combined
signal, we apply an adaptive filtering algorithm to wavelet transformed signals.
Further development of the model may enable improvements in the recording and
processing capabilities for fECGs, the reliable estimation of fetal heart rates, and
possibly interpretation of fetal signal morphologies that could improve the overall
diagnostic significance of abdominal fECGs.

2.1 Introduction

Congenital heart disease (CHD) is a common birth defect referring to abnormal
function or structure of the heart [1]. It arises in early pregnancy stages during heart
development [2]. With a prevalence of about 7–10 per 1000 live births, CHD is a
leading cause of infant death [1, 3]. For children who survive with CHD, the odds
of developing mental disabilities is 9 times higher than in the general population,
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while the odds of experiencing health problems that limit physical activity is 14
times higher [4].

CHD may be diagnosed during pregnancy, which has been found to decrease
mortality risk and improve patient outcome following post natal surgery [5]. The
most common fetal monitoring technique today is Doppler ultrasound, either through
a single hand-held Doppler ultrasound transducer or cardiotocography (CTG). CTG
and hand-held Doppler ultrasound provide estimates of the fetal heart rate (FHR),
but no information on the fetal heart rate variability (FHRV) or more sophisticated
analysis of the electrical cardiac activity [6]. In addition, CTG has technical limita-
tions such as low sampling frequency, which limits its FHR estimation capability [7].
Since the first commercial fetal heart monitor was launched in 1968 [8], continuous
CTG monitoring during delivery has been linked to an increase in caesarean sections
and instrumental births, which is a risk to mother and fetus [9], but did not have an
impact on perinatal mortality and morbidity [10].

The waveform of the electrocardiogram (ECG) may contain important informa-
tion about the cardiac electric activity beyond the FHR [11], which is routinely
interpreted to assess cardiac function in adults [12]. Several studies have pointed out
the need of ECG waveform analysis when monitoring pregnancies [7, 13]. In par-
ticular, ECG waveform analysis may be used in addition or as an alternative to CTG
[14], to improve the detection of pathologic cardiac events or to provide information
on uterine contraction [13].

Despite the above-mentioned advantages, abdominal ECGs show a low signal to
noise ratio due to the small myocardial volume of the fetus and interference from
e.g. the maternal heart, motion artifacts and muscle contractions. Therefore, post-
processing is required to extract the fetal signal contribution. This is challenging,
because signal and artifacts are overlapping in the frequency domain [15, 16]. State
of the art methods use adaptive filtering of the abdominal signal with a thoracic
reference signal to overcome this problem [17, 18]. A lack of limited gold standard
data, comprising simultaneous fECG recordings from abdominal electrodes, and
an invasive scalp electrode further complicate the extraction [19]. Previous work
has addressed this challenge by creating a fECG simulator in which each heart is
represented by a moving dipole [20]. Herein, we simulated fetal and maternal cardiac
activity using an image-based finite element model to derive a realistic abdominal
fECG.

2.2 Methods

2.2.1 Geometrical mesh construction

For our maternal and fetal heart we used a biventricular mesh of a female adult
heart based on CT images [21]. We used myocardial fiber orientations from the
same study, which have been generated using a rule-based approach to reproduce
experimental findings [22, 23]. Both hearts were then augmented to fit into a female
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pregnant torso from the FEMONUM database [24, 25, 26]. For the maternal heart, the
biventricular triangular surface mesh was translated, scaled and rotated by matching
the surrounding torso to the pregnant torso which it was incorporated into. For the
fetal heart, the same was done for a fetal torso originally included in the model from
the FEMONUM database. Incorporation of biventricular surface meshes into the
pregnant torso was done in Paraview [27], while volume mesh generation was done
using gmsh [28]. The final model is a 3D finite element mesh with ∼ 17 million
nodes as shown in Fig. 2.1a. Elements are tetrahedral with sizes approximately 0.4
and 50 mm for the hearts and torso respectively.

(a) Visualisation of the finite element mesh
used in our simulations. Hearts and torso
are based on models by [21] and the
FEMONUM database [24, 25, 26] respec-
tively.

(b) The extracellular potential was measured
at 11 nodes on the torso to obtain fECG
traces. The figure shows thoracic (purple)
and abdominal (green) electrodes. Numbers
denote the different channels used for signal
processing.

Fig. 2.1

2.2.2 Electrophysiological modelling

Ionic current properties of the maternal heart were modelled using the Ten Tuss-
cher model of human ventricular myocytes [29]. For the fetal heart a modified
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version of the model, adapted to match fetal ventricular electrophysiology, was
used [30]. Tissue propagation was modelled with the pseudo-bidomain approach
[31] as implemented in CARPentry [32]. Following [22], intracellular and extra-
cellular conductivities in the myocardium were set to 𝑔𝑖 = (0.27,0.081,0.045) and
𝑔𝑒 = (0.9828,0.3654,0.3654) S m−1 in the longitudinal, transverse and normal di-
rection respectively, while the torso was assigned an isotropic conductivity of 0.216
S m−1.

Sinus rhythm was simulated over 5 seconds by pacing both hearts with a 10 ms
stimulus of 100 uA/cm2. The stimuli were delivered to all vertices on the endocar-
dial surfaces through a transmembrane current, resulting in the activation pattern
displayed in Fig. 2.2. Basic cycle lengths were set to 500 and 450 ms for the maternal
and fetal heart, respectively. The fetal cycle length was chosen to reflect the heart
rate after 38 weeks of gestation [30].

Fig. 2.2: Activation map of the maternal heart during simulated sinus rhythm. Acti-
vation times are measured from stimuli onset and encoded by colour.

2.2.3 Extracellular potential measurements

In order to compute extracellular potential traces using CARPentry, the average
potential was set to zero. For the fECG analysis, we located 11 virtual electrodes
on the torso, considering both a 9-electrode and 8-electrode fECG setup [33]. The
placement of the virtual electrodes is shown in Fig. 2.1b. Note the distinguished
abdominal and thoracic electrodes which are meant to record the fECG and maternal
ECG, respectively. The extracellular potential for the selected nodes was extracted.
Subsequently, the voltage between all electrodes and a reference electrode on the
lower abdomen was calculated from their potential difference to obtain ECG signals.
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2.2.4 Fetal ECG extraction using signal processing methods

In this part, we study the signal processing methods for extracting the fECG from
maternal abdominal recordings. An fECG is mixed with several disturbance sources
in the maternal abdominal ECG. The primary source of disturbance is the maternal
ECG which coincides with fECG in time, and frequency domains [16]. Hence,
the extraction of fECG is challenging, and novel signal processing methods are
demanded for the efficient diagnosis of fetal cardiac disorders and further treatment.

Different signal processing methods for fECG extraction are given in the liter-
ature. Rasti-Meymandi et al. proposed a deep learning algorithm named AECG-
DecompNet which efficiently extracts both fECG and maternal ECG [34]. AECG-
DecompNet has two main network series; one network estimates the maternal ECG,
and the other network eliminates the noise and interference. The two series of net-
works have shown superior results in QRS (a complex in the ECG signal) detection
compared to utilizing one network only. Nevertheless, proper training of the first
network is important for robust fECG extraction. Independent component analysis
(ICA) [35] and multi-ICA [36] also have been considered for fECG extraction, for
which statistical models in the algorithms are challenging. Furthermore, adaptive
filtering has also been used for extraction of fECG due to fast and simple imple-
mentation [37, 38, 17, 18]. However, fECGs extracted by adaptive filtering still have
remaining maternal signal components.

We use an algorithm based on the combination of wavelet analysis and adaptive
filtering proposed in [39]. We first process abdominal and thoracic signals by wavelet
transformation. Then, we process the detail coefficients of the wavelet transformed
signals as inputs for adaptive filtering using the least mean square (LMS) filtering.
We subsequently denoise the output of the adaptive filter, and finally, take the inverse
wavelet transform of the denoised coefficients.

The abdominal ECG is a non-stationary signal. We use stationary wavelet trans-
form (SWT) to avoid the Gibbs phenomenon by removing down-sampling and
up-sampling coefficients. The output of the SWT has the same length as the input
signal. SWT has two sets of functions: the scaling and wavelet functions, denoted by
𝜙(𝑛) and Φ(𝑛), where 𝑛 stands for the 𝑛th sample point of the signal. The functions
are defined based on a chosen wavelet function. We decompose the signal 𝑓 (𝑛) using
the wavelet decomposition to approximation coefficient 𝑐 𝑗 ,𝑘 and detail coefficient
𝑑 𝑗 ,𝑘 . The coefficients at the 𝑗 th scale are [39]

𝑐 𝑗 ,𝑘 = < 𝑓 (𝑛),Φ 𝑗 ,𝑘 (𝑛) >, (2.1)

𝑑 𝑗 ,𝑘 = < 𝑓 (𝑛),2
−
𝑗

2 𝜙 𝑗 ,𝑘 (2 𝑗𝑛− 𝑘) >, (2.2)

with

< 𝑓 (𝑛),Φ 𝑗 ,𝑘 (𝑛) >=
∫ ∞

−∞
2
−
𝑗

2 𝑓 (𝑛)Φ★ (2 𝑗𝑛− 𝑘)d𝑛, (2.3)
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Least mean square 
(LMS) adaptive filter

x(n), reference input

+

d(n), Original input

y(n)

System output
e(n) = d(n) – y(n)

Fig. 2.3: Adaptive filtering for fECG extraction.

where ★ denotes the complex conjugation.
At the next step, we consider the detail coefficients of the SWT for adaptive

filtering. Fig. 2.3 shows the adaptive filtering used in this section. We utilize the
coefficients of the abdominal ECG as the original input 𝑑 (𝑛) and the coefficients
of thoracic ECG as the reference input 𝑥(𝑛). The adaptive filter is based on LMS,
which its update is given by [39]

𝑤(𝑛+1) = 𝑤(𝑛) +2𝜇𝑒(𝑛)𝑥(𝑛), (2.4)

where 𝑤(𝑛) and 𝜇 are the adaptive filter coefficients and step size. Also, 𝑒(𝑛) is the
feedback in the adaptive filter where the coefficients of 𝑤(𝑛) are constantly adjusted
until the output 𝑦(𝑛) is very close to the maternal ECG components of the abdominal
ECG. The output signal 𝑦(𝑛) is filtered as

𝑦(𝑛) =
𝑚−1∑︁
𝑖=0

𝑤𝑖𝑥(𝑛− 𝑖) = 𝑤𝑇 (𝑛)𝑥(𝑛), (2.5)

where 𝑤𝑇 (𝑛) denotes the transposed vector of 𝑤(𝑛). Finally, we consider the output
𝑒(𝑛) for denoising at the next step. After denoising using wavelet transform, we take
an inverse SWT to obtain the fECG.

2.3 Results

The conducted simulations resulted in distributions of the body surface potential as
depicted in Fig. 2.4. When stimulated, both hearts produced regions on the torso
of increased potential in the basal direction and decreased potential in the apical



2.4 Discussion 19

direction. The potential changes caused by the maternal ventricular excitation are
about 10 times larger than for the fetal ventricles.

Fig. 2.4: Extracellular potential on the torso surface 5 ms after stimulation of the
fetal (left) and maternal heart (right).

Signal processing of one clinical recording led to signals clearly representing
fetal cardiac activity for some lead combinations (see Fig. 2.5). However, for other
lead combinations, the maternal signal contribution is still pronounced and does not
allow a clear detection of the fetal heart beats.

Fig. 2.6 illustrates one lead of the simulated ECG recording. Negative peaks,
positive peaks and blunt positive hills indicate maternal depolarisation, fetal depo-
larisation and maternal repolarisation, respectively. The filtered signal still contains
significant contributions from all of the three observed waveforms. Consequently,
fetal heartbeats could not be reliably detected.

2.4 Discussion

The proposed model framework was able to produce abdominal ECGs containing
maternal and fetal signal contributions. Furthermore, it was possible to simulate fetal
and maternal cardiac activity in an isolated manner. This could in general be used as
ground truth data for design and validation of signal processing methods. However,
at the moment the simulated signals are too far from clinically observed recordings,
rendering them unsuitable to tailor clinical solutions. In this study we modelled the
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Fig. 2.5: Abdominal ECGs recorded in two leads and the resulting filtered fetal signal
contribution. While lead 1 (a) enabled a clean fetal signal, lead 5 (b) still contained
a lot of noise and maternal signal contribution after filtering.

Fig. 2.6: Simulated ECG, recorded on the upper right abdomen (top) and signal
extracted by the adaptive filter.

torso as a uniform medium and do not account for the varying tissue conductivities
which influence the current propagation. Including additional tissue types such as
bone or lungs in the model could lead to more realistic conduction and therefore
more realistic fECG recordings.

Furthermore, ventricular activation was assumed to happen instantly on the whole
endocardium, spreading to the epicardial surface. Several sophisticated models of
ventricular activation sequences have been presented in literature [40, 41] and could
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be incorporated in the proposed model to enable closer resemblance of clinically ob-
served activation patterns [42]. Future studies may also explore how time-dependent
factors such as muscle contractions and respiratory movement can be incorporated.

Once a reasonable morphology of simulated signals is achieved, different artifi-
cial noise sources could be incorporated to make them more realistic and test the
robustness of the proposed filtering algorithm. Besides designing signal processing
algorithms, realistic simulation of fECGs could also be used to assess the influence
of fetal orientation and electrode positioning. The latter could serve to establish
standard electrode positions which do not yet exist.

2.5 Conclusions

We presented an electrophysiological model to simulate maternal and fetal cardiac
activity during sinus rhythm. The resulting change in extracellular potential on the
torso surface was used to derive the resulting voltages for several abdominal and
thoracic ECG leads. Furthermore, a wavelet based adaptive filtering approach was
used to extract the fetal contribution from an abdominal ECG recording for clinical
as well as for simulated signals. The simulated signals contain maternal and fetal
peaks but have lower complexity than clinical recordings, indicating further need to
improve the proposed model.
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Abstract Chondrocytes produce the extracellular cartilage matrix required for
smooth joint mobility. As cartilage is not vascularised, and chondrocytes are not
innervated by the nervous system, chondrocytes are therefore generally considered
non-excitable. However, chondrocytes do express a range of ion channels, ion pumps,
and receptors involved in cell homeostasis and cartilage maintenance. Dysfunction
in these ion channels and pumps has been linked to degenerative disorders such as
arthritis. Because the electrophysiological properties of chondrocytes are difficult
to measure experimentally, mathematical modelling can instead be used to inves-
tigate the regulation of ionic currents. Such models can provide insight into the
finely tuned parameters underlying fluctuations in membrane potential and cell be-
haviour in healthy and pathological conditions. Here, we introduce an open-source,
intuitive, and extendable mathematical model of chondrocyte electrophysiology, im-
plementing key proteins involved in regulating the membrane potential. Because of
the inherent biological variability of cells and their physiological ranges of ionic
concentrations, we describe a population of models that provides a robust compu-
tational representation of the biological data. This permits parameter variability in
a manner mimicking biological variation, and we present a selection of parameter
sets that suitably represent experimental data. Our mathematical model can be used
to efficiently investigate the ionic currents underlying chondrocyte behaviour.
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3.1 Introduction

An important feature of vertebrate joints is the presence of articular cartilage, a type
of connective tissue covering the end of the bones and greatly reducing the friction
of bone against bone and facilitating movement. Cartilage is largely composed of
proteoglycans and collagens, forming a meshwork of extracellular matrix proteins
that can withstand large mechanical load while also remaining flexible compared with
bone tissue [1]. As cartilage has poor regenerative properties, joint disorders like
osteoarthritis are becoming an increasing health burden as the global population ages.
Osteoarthritis is a progressive degradation of the cartilage in joints, and is estimated
to affect 12.1% of adults over the age of 60 in the United States [2]. The progression
of cartilage degradation, and what triggers it, remains poorly understood, and there
are no treatments other than pain relief or joint replacement surgery [3]. Cartilage is
largely made up of extracellular matrix. The cells responsible for the synthesis and
turnover of this matrix are known as chondrocytes, which are embedded in small
clusters in cartilaginous tissue. These cells are not innervated by the nervous system
and are thus generally considered non-excitable. Additionally, as cartilage is not
vascularised, they rely on diffusion in order to exchange nutrients and waste material
[4]. Their extracellular milieu is therefore often slightly hypoxic, and chondrocytes
have low metabolic turnover rates and poor regenerative abilities [5]. This makes
them prone to degenerative disorders including osteoarthritis, in which the cartilage
generally is degraded at a faster rate than it is synthesised by chondrocytes [6].

Although chondrocytes are considered non-excitable, they do express a range of
ion channels and ion pumps involved in the regulation of intracellular ionic concen-
trations, and, in turn, the membrane potential and downstream intracellular processes.
However, the exploration of electrophysiological properties of chondrocytes has been
limited due to their small size (of less than 10𝜇m), representing a technical challenge
for electrophysiological experiments, implying large uncertainties in measurement
results [7].

A mathematical model can provide an alternative, more accessible method of
studying the membrane potential and ion dynamics for chondrocytes, and the con-
struction of the model itself can be beneficial in understanding the system’s be-
haviour. The mathematical model we present here can be seen as a reduced and
abstracted representation of what is currently known about chondrocytes. Addition-
ally, such models can be useful to develop hypotheses, to identify mechanistic details
or knowledge gaps, and to guide experiments [8]. Also, mechanistic models such as
this, built on biophysical knowledge, have an increasing interest in pharmacological
research as they have proven themselves useful for qualitative understanding of the
underlying physiology and pathophysiology [9]. Moreover, mathematical models
can find application in drug development pipelines. Strauss et al. [10], for instance,
demonstrate in a comprehensive review the value of in silico models as an integrated
parts of risk assessment strategies to evaluate the proarrhythmic risk of certain drugs
in humans. Finally, computational models are also essential tools to study inter- and
intra-variability of cell physiology. Studying the sources of variability can provide
better understanding of biological processes and aid in making meaningful predic-
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tions. One intuitive approach to investigate sources of variability is to create and
calibrate a population of models, which is employed in the present study [11].

Maleckar et al. [12] introduce a first generation mathematical model for the mem-
brane potential of the chondrocyte. Their model is based on an intensive literature re-
view and is additionally partly supported by experimental data. Both time-dependent
and time-independent ion channel currents, as well as ion pump and ion exchanger
currents, are represented in the model, with detailed description of the underlying
model development and equation derivation. This first generation of the chondro-
cyte model mainly focused on K+ currents across the chondrocyte cell membrane.
Furthermore, Maleckar et al. [13] presents a model extension by including functions
for the Na+/K+ pump, an active transport pump with an important role in setting the
electrochemical gradient of Na+ and K+ across the cell membrane.

In this study, the model is expanded by including the ATP-sensitive K+ (KATP)
channel, a subgroup of inward-rectifying K+ channels that have been identified
in human chondrocytes [14]. This channel has been found to play an important
protective role against hypoxia in the cardiovascular and nervous system [15, 16, 17],
which is notable given oxygen tension in cartilage is lower than in vascularised tissue.
KATP channel function is sensitive to intracellular Mg2+ concentrations, and channel
activation is blocked by the binding of ATP [18]. Thus, when energy expenditure
exceeds energy storage in the cell, intracellular ATP concentration decreases and
the block of KATP channels is relieved [19], providing a direct link between cellular
respiration and the membrane potential.

The previously published models were created using MATLAB [12, 13]. However,
as a first-generation computational model of chondrocyte electrophysiology, we
believe it beneficial to present our model on an open-source platform, so that more
users can access it without having to purchase access to MATLAB. Python is an
open-source programming language that has been embraced by researchers across
various branches of science, owing to its powerful libraries like Numpy [20] and
Scipy [21] in addition to interactive environments (IPython, Jupyter) that enable
developers to provide interactive manuals of the software. In this work we present
a re-implementation of the mathematical model for the chondrocyte’s membrane
potential fist published in 2018 by Maleckar et al. [12]. Our Python implementation is
freely available at https://github.com/mmaleck/chondrocyte. By replicating
figures from Maleckar et al. [13] we ensure a correct model transfer. The addition of
KATP channel activity to the membrane dynamics of the model indicate that KATP
channels may have a stabilising effect on overall K+ currents in the presence of high
Mg2+ concentrations.

To learn more about the model’s behaviour and parameter sensitivity, a population
of models was created, allowing the investigation of ranges of parameter values and
their effect on the steady state of the system. This investigation identified an important
role of the Na+/K+ pump current in the modulation of the ionic balance of the model,
as well as setting the resting membrane potential. Furthermore, the model can be
expanded upon by the addition of ion channel and ion pump dynamics not described
here. Thus, this readily available re-implementation of a first generation chondrocyte

https://github.com/mmaleck/chondrocyte
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model can provide insight into the dynamics of the chondrocyte membrane potential,
and how this may be affected by variations in ion channel and ion pump function.

3.2 Methods

To investigate the chondrocyte membrane potential, we adopted a chondrocyte model
and simulation protocols from previously published works [12, 13].

Fig. 3.1: Schematic of the model and its implemented ion channels and ion pumps.
𝐼𝑁𝑎−𝑏, 𝐼𝐶𝑙−𝑏, and 𝐼𝐾−𝑏: background ionic activity for Na+, Cl−, and K+, respec-
tively, 𝐼𝑁𝑎𝐶𝑎: Na+/Ca2+ exchanger, 𝐼𝑁𝑎𝐻 : Na+/H+ exchanger, 𝐼𝑁𝑎𝐾 : Na+/K+ pump,
𝐼𝐶𝑎,𝐴𝑇𝑃: ATP-dependent Ca2+ pump, 𝐼𝐾−𝐷𝑅: delayed-rectifier K+ channel, 𝐼𝐾−2𝑝:
two-pore K+ channel, 𝐼𝐾−𝐶𝑎: Ca2+ activated K+ channel, 𝐼𝐾−𝐴𝑇𝑃: ATP-sensitive
K+ channel, 𝐼𝑇𝑅𝑃𝑉4: Transient Receptor Potential V-4 (a mechanosensitive cation
channel). Adapted from [12] with permissions dictated by the Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

The given model is defined by a set of ordinary differential equations. Those
systems are defined as

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑘) (3.1)

and describe the temporal evolution of states x(t). In the used model, the states
are the membrane potential (V𝑚) and the ion concentrations of Na+, K+, and Ca2+.
Furthermore, the function f depends on currents u(f ) for included ion pumps, chan-

https://creativecommons.org/licenses/by/4.0/
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nels and exchangers and model parameters k. Systems described in the form as
given in Equation (3.1) need to be solved numerically. The equation which governs
the chondrocyte transmembrane potential follows the Hodgkin–Huxley formalism
where each cell component is represented as an electrical element, where cell mem-
branes have a capacitance C𝑚 and ion channels are treated as resistors. This gives a
mathematical formalism for the membrane potential V𝑚 which includes all transport
processes that are electrogenic and reads as follows:

𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
= −

∑︁
𝑖𝑜𝑛𝑠

𝐼𝑖𝑜𝑛 (3.2)

This work presents a model extension by including the KATP currents to the
previously published chondrocyte model. Furthermore, the population of models
idea is used to investigate the model behaviour under different parameter settings.
The role of the maximum Na+/K+ pump current is studied in depth.

3.2.1 Mathematical modelling of ATP-sensitive K+ currents

We have added an ATP-sensitive K+ channel to the model from Maleckar et al. [13]
to investigate its role for the functionality and membrane potential of chondrocytes.
The mathematical formulation of the KATP current 𝐼𝐾−𝐴𝑇𝑃 reads:

IK−ATP = 𝜎g0p0fATP (Vm−EK) (3.3)

where 𝜎 is the channel density, g𝑜 is the unitary channel conductance, p0 is the
maximum open channel probability, and fATP is the fraction activated channels. EK
denotes the equilibrium potential for K+ in the given circumstances. In the previous
implementation of 𝐼𝐾−𝐴𝑇𝑃 , a constant value was used for g0. However, the unitary
conductance can be expressed as [22]

g0 = 𝛾0fMfNfT (3.4)

where 𝛾0 is the unitary conductance in the absence of intracellular Na+ and Mg2+

and depends on [K+]𝑜 :

𝛾0 = 35.375
(
[K+]0
5.4

)0.24
(3.5)

The term fM in Equation (3.4) represents the inward rectification generated by
intracellular Mg2+ ions and can be expressed by means of a Hill equation :

fM =
1

1+ [Mg2+] i
Kh,Mg

(3.6)
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where Kh,Mg is the half-maximum saturation constant that depends on membrane
potential and on [K+]o :

Kh,Mg = K0
hMg

( [
K+

]
0

)
exp

(
−

2𝛿MgF
RT

Vm

)
(3.7)

K0
h,Mg

( [
𝐾+

]
o

)
=

0.65√︁
[K+]0 +5

(3.8)

Here the value of the electrical distance 𝛿Mg was set to 0.32, F is the Faraday
constant, R is the gas constant, and T is the absolute temperature. In a similar manner,
the term fN represents the inward rectification caused by intracellular Na+ ions and
is expressed as

f𝑁 =
1

1+
(
[Na+ ]i
𝐾h,Na

)2 (3.9)

𝐾h,Na = K0
h,Na exp

(
−𝛿NaF

RT
Vm

)
(3.10)

where 𝛿Na = 0.35 and K0
h,Na = 25.9 was used.

3.2.2 Population of Models

In the context of our work, we use the term population of models for set model
simulations with randomly varied parameter sets for ionic current conductances
[11]. Generally, a population of modes is useful to investigate parameter sensitivity
[23, 24], sources of variability [25], as well as emergent model behavior dependency
for a wide range of parameters.

In this study, we searched for parameters that had a significant effect on the
simulation results and the physiological relevance of the model. Table 3.1 gives an
overview of the selected set of parameters, the values in the original implementation,
the parameter regime used to create a population of models, and a brief parameter
description.

Parameter ranges originate from parameter sampling from log normal distribu-
tion. The parameter distribution was not fitted to experimental data and therefore
underlies the assumptions that the parameters’ distributions are skewed and the pa-
rameter values are positive. The distribution underlies the reasoning that numerous
works have shown that a log normal distribution is often a useful assumption to
describe the random variation in biological samples [26]. The population of models
presented in the results is created out of 100 simulation runs. Each member of the
population has its characteristic set of parameters, and all parameter set were sam-
ple from log normal distributions with the mean being the parameter value and a
variance 𝜎 = 0.15.
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Table 3.1: Ensemble of parameters selected for creating a population of models.

Parameter Initial value Selected Range Parameter Description
Na𝑖 25 [mM] 17.5 - 32.5 [mM] Na+ initial concentration

K𝑖 180 [mM] 126 - 234 [mM] K+ initial concentration

Ca𝑖 10−5 [mM] 17.5 - 32.5 [mM] Ca2+ initial concentration

𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 1.625 1.375 - 2.1125 scaling factor of the maximum
Na+/K+ pump current

𝑔𝑁𝑎𝑏,𝑏𝑎𝑟 0.1 [pS] 0.07 - 0.13 [pS] background Na+ leakage conductance

3.3 Results

The following results section is divided in three parts. Firstly, we provide the vali-
dation for our new implementation that are used for tow following sections. In the
second part, we present the simulations focused on the KATP currents and the effect of
different Mg2+ concentrations. Lastly, the parameter and model behaviour is studied
based on the population of models approach.

3.3.1 Validation

We performed the validation against a previous publication, Maleckar et al. [13].
Figure 3.2 shows the results of temperature-dependent contribution of the Na+/K+
pump electrogenic current to the chondrocyte resting membrane potential imple-
mented both in MATLAB and Python as a replication of Figure 2 from Maleckar et
al. [13]. Although our model includes other currents than shown in the figure, we
conclude that our new implementation is well validated.

3.3.2 Results for the ATP-sensitive K+ current

In order to investigate the effect of 𝐼𝐾−𝐴𝑇𝑃 on K+ dynamics in the chondrocyte,
numerical simulations were performed as shown in Figure 3.3. Accurate measure-
ments of intracellular Mg2+ concentrations in chondrocytes are, to our knowledge,
unavailable, hence we tested a range of initial Mg2+ values. The Mg2+ concen-
trations used for the simulation were (a) 0.1 mM (b) 1.0 mM (c) 10 mM, while
three different K+ concentrations, 5 mM, 30 mM, 70 mM, were used for each Mg2+

concentration as indicated in the figure. To further clarify the effect of different intra-
cellular Mg2+ concentration to the overall chondrocyte matrix, we introduce Figure
3.4 where Figure 3.4 (a) shows the steady state voltage dependence of 𝐼𝐾−𝐴𝑇𝑃 while
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Fig. 3.2: Temperature-dependent contribution of the Na+/K+ pump electrogenic
current to the chondrocyte resting membrane potential at A 23 ◦C and B 37 ◦C. Un-
broken lines indicate our new implementation in Python, while dotted lines indicate
the published MATLAB implementation.

(b) illustrates the time-dependent changes of chondrocyte membrane potential under
different intracellular Mg2+ concentrations.

Fig. 3.3: Sensitivity of 𝐼𝐾−𝐴𝑇𝑃 against varying extracellular K+ concentration based
on different intracellular Mg2+ concentrations. Intracellular Mg2+ concentrations
used for figures are A 0.1 mM B 1.0 mM C 10 mM respectively, while three
concentrations of extracellular K+ concentrations (5 mM, 30 mM, 70 mM) are used
for all figures.

3.3.3 Populations of Models

A population of 100 models with randomly varied sets of parameters (Table 3.1) is
illustrated in Figure 3.5. The steady state solutions for all species are reached within



3.3 Results 33

Fig. 3.4: Intracellular Mg2+ concentration dependent contribution of the ATP-
sensitive K+ current to the chondrocyte resting membrane potential. In A, we il-
lustrate steady-state voltage dependence and the Mg2+ dependence of the 𝐼𝐾−𝐴𝑇𝑃
current, while B shows the hyperpolarization of chondrocyte membrane potential
with different intracellular Mg2+ concentration. The extracellular K+ concentration
used for A and B is fixed at 7 mM.

the simulation time. Interestingly, the steady states for both Na+ and K+ reach similar
concentration levels regardless the set of parameters, whereas Ca2+ concentrations at
steady state solution are strongly affected by the set of parameters. It is notable that
the behaviour of the membrane potential follows the shape of the Ca2+ time curve,
and is therefore also influenced by the composition of the parameter sets.

For all 100 parameter sets, the Na+ steady state solution is close to zero. However,
the time point at which steady state is reached is parameter-dependent (Figure 3.5 B
and D, Figure 3.6 A and B). To investigate the individual parameter effects, simula-
tions with randomly drawn parameters for each individual parameter represented in
Table 3.1 were performed. Larger parameter ranges were also investigated; Figure
3.5 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 ranges from 1.375 to 2.1125, whereas for Figure 3.6, 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒
values between 0.1 and 7.0 were tested. The simulation results indicate that the scal-
ing factors of the maximum Na+/K+ pump current (𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒) have a major effect
on the membrane potential, the final concentrations for Na+ and K+, as well as the
duration required for the system to reach steady-state.

A wide range of 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 values resulted in a Na+ depletion, which is unlikely to
occur in a physiologically viable chondrocyte preparation. A step-wise scan through
𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 (0.1 < 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 < 7.0) reveals three parameter regimes for the scaling
of this current. For 0.1 < 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 < 0.6, here called the low parameter regime, Na+
concentrations range from 10mM to 90mM (Figure 3.6(a)). If 0.6 < 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 < 5.0,
a non-physiological state of Na+ depletion is eventually reached, as intracellular
sodium moves towards zero over time. The value of 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 also affects the timing
of this depleted state (Figure 3.6 B): the smaller the scaling factor and thus the smaller
the current, the later the systems reaches its steady state. Henceforth, this parameter
range is referred to as the middle parameter regime. For 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 > 5.0, steady-
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Fig. 3.5: A population of 100 models. Each simulation trajectory results from a
randomly drawn parameter set. A simulation time of 2500 seconds ensures that all
species reach their steady state. A shows the profile of membrane potential, B shows
the profile of K+ concentration, C shows the profile of Ca2+, and D shows the profile
of Na+ concentration.

state Na+ concentrations become negative, which is biologically and numerically
infeasible and causes the simulation to fail.

A population of models approach was again used to further probe the model
dependence on parameter variation in for low and middle parameter regimes, this
time varying initial conditions (Fig. 3.7). Figure 3.7 shows strong model dependence
on initial conditions for evolving variables (panels A–D). However, while there are a
variety of stable steady states at different parameter sets, where for example, intracel-
lular sodium is not depleted (panel B), all these occur for the low parameter regime
of 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 (blue traces, Fig. 3.7, all panels). Thus, the low parameter regime
of INaK conductance (0.1 < 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 < 0.6), corresponds to, roughly, an INaK
current of approximately 0.9–5.35 pA/pF and likely represents a physiologically rel-
evant model regime incorporating a variety of stable steady states for evolving ionic
concentrations and the membrane potential. To further investigate the overall depen-
dence of the chondrocyte’s resting membrane potential on K+ currents, we varied
the conductance parameters for these at a variety of 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 values in the low
parameter regime (Fig. 3.8). While there are a variety of stable steady states for the
resting membrane potential of the chondrocyte in this example, even as 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒
increases (moving right from panel A to C), all the values for each unique parameter
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set in the current model set the chondrocytes resting membrane potential somewhere
between approximately -50 and -70 mV.

Fig. 3.6: The scaling of the maximum Na+/K+ pump current affects the timing
and concentration of the Na+ steady state as well as the membrane potential. The
simulation trajectory for membrane potentials and the Na+ concentrations in the low
and the middle parameter regime are displayed here. Simulations for 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 > 5.0
can not be presented because negative Na+ concentrations causes the simulation to
fail. A and B display simulation curves for 0.1 < 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 < 0.6. The steady state
concentration of Na+ ranges from 10mM up to 90mM. C and D shows simulation
trajectories for 0.6 < 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 < 5.0. In all cases Na+ depletion can be observed.
The timing is parameter dependant.
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Fig. 3.7: Initial conditions for evolving concentrations and membrane potential were
varied, with 100 parameters / Simultaneously, 10 different values for𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒
through the low to middle parameter regimes (0.1 - 4.9, 0.5 step) were used, for a
total of 10 x 100 simulations. The colors reveal this 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 gradation, with dark
blue as the lowest value (0.1), and deep red as the highest value (4.9). The same
colors always represent the same 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 value but different overall parameter
sets.

Fig. 3.8: Simulations (100 parameter sets, varying I K,b:g_K_b_bar, I K-DR:
g_K_DR, I K2p: I_K_2pore_scale, I K-Ca (BK): gBK, I K, ATP: gamma_0_scale
over a distribution as described in Methods) were run with differing values for
𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 in the low parameter regime range (0.1-0.6) until intracellular sodium
reached steady state. Each color in panels A-C above refers to a unique parame-
ter set, and panels A, B, and C show the chondrocyte resting membrane potential
reaching steady state over time for increasing values of 𝐼𝑁𝑎𝐾,𝑠𝑐𝑎𝑙𝑒 (0.1, 0.3, and 0.5,
respectively).
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3.4 Discussion and Conclusion

As can be seen in Figure 3.3, higher Mg2+ concentrations help stabilise 𝐼𝐾−𝐴𝑇𝑃
currents with respect to varying extracellular K+ concentrations. Also, it can be seen
from Figure 3.4 that the lower Mg2+ concentration contributes to the hyperpolarisa-
tion of the membrane potential. This stabilising effect is interesting, as experimental
data suggest a protective role of high Mg2+ on joint health. Although the exact
mechanisms behind this protection remain elusive, some hypotheses point to a role
of Mg2+ in reducing chondrocyte apoptosis and facilitating chondrocyte prolifera-
tion [27, 28, 29, 30]. One caveat of this paper, however, is that physiological Mg2+

concentrations in chondrocytes remain unknown, and thus we have tested our model
with a range of concentrations. Reliable measurements of intracellular Mg2+ con-
centrations will be necessary in order to assess the physiological effects of Mg2+ on
K+ currents, and the potentially protective role of Mg2+ and the ATP-dependent K+
channel in cartilage maintenance.

To get a complete understanding of the three parameter regimes for the scal-
ing factor of the maximum Na+/K+ pump, current further investigation is needed. It
might be that the observed behaviour is a result of the chosen initial value for the Na+
concentration. One could investigate this hypothesis by treating initial Na+ concen-
trations as a parameter and scanning through a wide range of initial concentrations
comparable to what has been demonstrated in Figure 3.6. But it could also be possi-
ble that the scaling parameter has this narrow parameter regime for the given model
complexity and parameterisation. Additionally, it would be interesting to investigate
the link between Ca2+ concentration and the membrane potential further.

The lack of available biological data presents a challenge for the validation of
models such as the one presented here. As our study shows, measurement data
are needed to determine parameter values rather than parameter ranges leading to
plausible results. Due to the high parameter uncertainty of the model, care must
be taken in interpreting results in order to make useful predictions and to suggest
hypotheses for further testing. A more thorough investigation into the range of
appropriate ionic concentrations remains to be performed.

Here we present a model of chondrocyte electrophysiology, with particular atten-
tion to the role of K+ currents in setting the steady-state membrane potential. Our
preliminary results support a protective role of Mg2+ in cartilage maintenance as
recorded in clinical studies by potentially stabilising K+ currents through the ATP-
dependent K+ channel, although more research is required. Furthermore, we show
how a population of models can be used to examine fluctuations in a range of param-
eters, and their interactions as the model reaches steady-state membrane potential.
Such random variations in parameter values will also act to make the model more
realistic and more robust to naturally occurring fluctuations as seen in biological
data. Finally, the chondrocyte model has been re-implemented from MATLAB into
Python to increase its accessibility, and is available as an open-source repository on
Github, with demo scripts to aid interested parties in getting started.
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Abstract Ion channels on the membrane of cardiomyocytes regulate the propagation
of action potentials from cell to cell and hence are essential for the proper function of
the heart. Through computer simulations with the classical monodomain model for
cardiac tissue and the more recent extracellular-membrane-intracellular (EMI) model
where individual cells are explicitly represented, we investigated how conduction
velocity (CV) in cardiac tissue depends on the strength of various ion currents as
well as on the spatial distribution of the ion channels. Our simulations show a sharp
decrease in CV when reducing the strength of the sodium (Na+) currents, whereas
independent reductions in the potassium (K1 and Kr) and L-type calcium currents
have negligible effect on the CV. Furthermore, we find that an increase in number
density of Na+ channels towards the cell ends increases the CV, whereas a higher
number density of K1 channels slightly reduces the CV. These findings contribute
to the understanding of ion channels (e.g. Na+ and K+ channels) in the propagation
velocity of action potentials in the heart.

4.1 Introduction

A healthy heart rhythm is essential for the proper functioning of the cardiac pump, and
requires the coordinated propagation of electrical impulses through the myocardium.
The cardiac action potential is a change in the membrane potential governed by the
ionic current flowing through ion channels, which are distributed along the cell
membrane. Current flowing into the cell through activated sodium (Na+) channels
is responsible for the rapid upstroke of the action potential [1]. This is followed by
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a current inflow through L-type calcium (CaL) channels and an outflow through
different types of potassium channels (e.g. Kr and K1) leading to repolarisation,
thus bringing the cell membrane to resting membrane potential [1]. More precisely,
𝐼Kr is the rapid component of the delayed rectifier, and 𝐼K1, the inward rectifying
potassium current, which stabilises the resting membrane potential [1]. L-type cal-
cium channels, on the other hand, are also responsible for the excitation-contraction
coupling of the cardiac muscle [1].

Disorders of electrical conduction, such as slow conduction and conduction block,
can lead to life-threatening arrhythmias, which occur frequently in the diseased
heart. In this study, we investigated how both the strength of several transmembrane
ionic currents and the spatial distribution of ion channels along the cell membrane
influence conduction velocity (CV) in cardiac tissue. Our aim is to compare the
effect on CV with the use of two computational models: the monodomain model and
the extracellular-membrane-intracellular (EMI) model.

The monodomain model is a classical approximation of the electrical propagation
in myocardial tissue based on a homogenised mathematical model of the cell. The
intra- and extracellular domains overlap and are considered continuous. As a conse-
quence, the monodomain model offers a good insight of large scale effects, but it is
limited when sizes are reduced to a single cell. Alternatively, the EMI model rep-
resents the extracellular, the membrane, and the intracellular spaces at the expense
of computational power. Therefore, one of the main advantages is the possibility to
introduce changes in local cell properties (e.g. changes in ion channel density distri-
bution on the cell membrane) that might contribute significantly to action potential
propagation [2], [3].

4.2 Models and methods

4.2.1 The monodomain model

The monodomain model is a simplification of the bidomain model [4]. In the bido-
main model, heart tissue is classified into two groups or domains: extracellular and
intracellular, defined by their respective electric potentials, 𝑢𝑒 and 𝑢𝑖 , and conduc-
tivities 𝑮𝒆 and 𝑮𝒊 .

Each point in the heart is considered to be in both domains. Therefore, both spaces
overlap.

The physical description can be addressed using a generalisation of Ohm’s Law.
The current densities at each domain will be: 𝑱𝒊 = −𝑮𝒊∇𝑢𝑖 , and 𝑱𝒆 = −𝑮𝒆∇𝑢𝑒.
Assuming that there are no other sources than the membrane, the conservation of
charge applies, and thus: ∇(𝑱𝒊 + 𝑱𝒆) = 0.

The current flowing from one domain to the other through the cell membrane
is called transmembrane current, 𝐼𝑚. Because the charge is conserved, then ∇𝑱𝒆 =
−∇𝑱𝒊 = 𝐼𝑚. Transmembrane current (Eq. 4.1) depends on the voltage drop between
both domains, 𝑣 = 𝑢𝑖 −𝑢𝑒, the membrane capacitance𝐶𝑚, the ionic current, 𝐼ion, and
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surface area-to-volume ratio of cardiac cell, 𝛽𝑚.

𝐼𝑚 = 𝛽𝑚

(
𝐶𝑚

𝜕𝑣

𝜕𝑡
+ 𝐼ion (𝑣)

)
(4.1)

It can be shown that the set of equations governing the bidomain model are the
ones expressed in Eq.4.2 and Eq.4.3.

∇𝑮𝒊 (∇𝑣 +∇𝑢𝑒) = 𝛽𝑚
(
𝐶𝑚

𝜕𝑣

𝜕𝑡
+ 𝐼ion (𝑣)

)
(4.2)

∇𝐺𝑖∇𝑣 +∇(𝐺𝑖 +𝐺𝑒)∇𝑢𝑒 = 0 (4.3)

Solving the bidomain equation is a computationally heavy process. Therefore, the
monodomain model is often used instead. In the monodomain model, the anisotropy
between extra- and intracellular spaces is assumed to be the same, i.e., their respective
conductances are proportional 𝑮𝒊 = 𝜆𝑮𝒆.

If we define an effective conductivity, 𝑮eff = 𝜆
1+𝜆𝑮𝒊 , then the bidomain equation

can be simplified and rearranged as shown in Eq.4.4.

𝜕𝑣

𝜕𝑡
=

1
𝐶𝑚𝛽𝑚

∇𝑮eff∇𝑣−
1
𝐶𝑚

𝐼ion (4.4)

4.2.2 The EMI model

In the EMI model [5], the extracellular (E), cell membrane (M) and intracellular (I)
domains, are represented explicitly as depicted in Figure 4.1. The intracellular spaces
of both cells, Ω1

𝑖 and Ω2
𝑖 , are separated from the extracellular domain, Ω𝑒, by the

cell membrane boundaries, Γ1 and Γ2. Additionally, Γ1,2 is the boundary separating
the intracellular domains of two connected cells. Note that the EMI model is always
solved in a three-dimensional space, as the extracellular space should be a single,
connected domain.

The equation system describing the potentials in the EMI model is summarised
in the following set of equations:

∇ ·𝜎𝑒∇𝑢𝑒 = 0 in Ω𝑒,

∇ ·𝜎𝑖∇𝑢𝑘𝑖 = 0 inΩ𝑘𝑖 ,
𝑢𝑒 = 0 at 𝜕Ω𝐷𝑒 ,

𝒏𝒆 ·𝜎𝑒∇𝑢𝑒 = 0 at 𝜕Ω𝑁𝑒 ,
𝑢𝑘𝑖 −𝑢𝑒 = 𝑣𝑘 at Γ𝑘 ,

𝑠𝑘𝑡 = 𝐹
𝑘 at Γ𝑘 ,

𝒏𝒆 ·𝜎𝑒∇𝑢𝑒 = −𝒏𝑘𝒊 ·𝜎𝑖∇𝑢
𝑘
𝑖 ≡ 𝐼𝑘𝑚 at Γ𝑘 ,

𝑣𝑘 =
1
𝐶𝑚
(𝐼𝑘𝑚− 𝐼𝑘ion) at Γ𝑘 ,

𝒏2
𝒊 ·𝜎𝑖∇𝑢

2
𝑖 = −𝒏1

𝒊 ·𝜎𝑖∇𝑢
1
𝑖 ≡ 𝐼1,2 at Γ1,2,

𝑢1
𝑖 −𝑢2

𝑖 = 𝑤 at Γ1,2,

𝑤 =
1
𝐶1,2
(𝐼1,2− 𝐼𝑘g ) at Γ1,2,
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Fig. 4.1: Two-dimensional schematic of the different domains for two connected
cells in the EMI model. Adapted from [5] with permissions dictated by the Creative
Commons CC BY license (https://creativecommons.org/licenses/by/4.0/).

As in the case of the monodomain model, potentials of intracellular, extracellular
and transmembrane domains are denoted by 𝑢𝑖 , 𝑢𝑒 and 𝑣, respectively. In addition to
the ion current, 𝐼ion, and the transmembrane current, 𝐼𝑚, defined at the cell membrane,
Γ𝑘 , a gap junction current, 𝐼g, and a transmembrane current, 𝐼1,2, are defined at the
interface between two cells, Γ1,2, in order to model the gap junction dynamics.

The gap junction between neighbouring cells, Γ1,2, is modeled as a passive
membrane with a constant resistance, 𝑅𝑔. Its electric dynamics are described using
the currents 𝐼𝑔 and 𝐼1,2, and the potential drop at the junction, 𝑤.

Furthermore, 𝐶𝑚 and 𝐶1,2 are the transmembrane and the gap junction capaci-
tances.𝜎𝑖 and𝜎𝑒 are the conductivities of both intracellular and extracellular domain,
whereas 𝒏𝒊 and 𝒏𝒆 are the outward pointing normal vectors of the inner and outer
cell domains, respectively.

The boundary of the extracellular domain, 𝜕Ω𝑒, is further divided into two parts:
one corresponding to the Dirichlet boundary conditions, 𝜕Ω𝐷𝑒 , and other one corre-
sponding to the Neumann boundary conditions, 𝜕Ω𝑁𝑒 . Additionally, the index 𝑘 can
take the values 1 or 2 depending on which cell is described. Two cells were used
to introduce the EMI model, however the model can easily be scaled up to consider
more cells in the system.

Finally, 𝑠 represents a collection of additional state variables introduced in the
membrane model, whereas 𝐹 (𝑣, 𝑠) represents the ordinary differential equations
describing the dynamics of the additional state variables.

Since there is no analytical solution to the EMI model, a numerical solution is
required (see [5, 3] for a discussion of numerical methods for the EMI model).

Ω1
i Ω2

i

ΩeΓ1 Γ2

Γ1,2

https://creativecommons.org/licenses/by/4.0/
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4.3 Results

We use code based on [6] to solve the monodomain and EMI models using finite
difference method discretisation, and study the influence on CV. The simulations
are run over a domain size of 2000µm× 40µm for the monodomain model and
1956µm×40µm×30µm for the EMI model, both with a spatial resolution of Δ𝑥 =
Δ𝑦 = Δ𝑧 = 2µm. For the EMI model the cells are arranged in a line such that all
cells are connected in the x direction, similar to Figure 4.1. Each cell is comprised
of five disjoint subdomains, as depicted in Figure 4.3, and their extents are listed in
Table 4.2. Regarding the time domain, the system evolves during 5 ms in steps of
0.01 ms.

The base model representing the cell membrane is described in [7]. Furthermore,
the values of the most relevant parameters used in both monodomain and EMI model
simulations are compiled in Table 4.1 and Table 4.2, respectively.

Parameter Value

𝐺𝑖 (x direction) 2.9 mScm−1

𝐺𝑖 (y direction) 1.0 mScm−1

𝜆 2/3
𝐶𝑚 1.0 µFcm−2

𝛽𝑚 2000 cm−1

Table 4.1: Relevant parameter values used in the monodomain simulations.

Parameter Value Domain Extent

𝐶𝑚 1.0 µFcm−2 ΩO 100µm×20µm×20µm
𝐶1,2 1.0 µFcm−2 ΩN 16µm×4µm×16µm
𝜎𝑒 20.0 mScm−1 ΩS 16µm×4µm×16µm
𝜎𝑖 4.0 mScm−1 ΩW 4µm×16µm×16µm
𝑅𝑔 0.0045 kΩcm2 ΩE 4µm×16µm×16µm

Table 4.2: Relevant parameter values used in the EMI simulations.

Our study aims to investigate the CV dependence with ion channel properties
from two different perspectives: when ion channel conductances change, and when
ion channel distributions along the cell membrane is modified.

First, for exploring the relation between CV and ion channel conductance, we
focused particularly on the Na+, K1, Kr and CaL channels. The nominal values for
the Na, K1 and Kr channel conductances are 12.6, 0.37 and 0.025 mSµF−1, respec-
tively, while the nominal value for CaL channel conductance is 0.12 nLµF−1 ms−1 as
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specified in [7]. Every conductance was varied from 20% to 150% of their respective
nominal value by sweeping an adjustment factor from 0.2 to 1.5 in steps of 0.1.

Figure 4.2 shows the resultant CV dependence with each channel conductance in
both models, the monodomain model and the EMI model.
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Fig. 4.2: CV dependence with channel conductance of Na, CaL, K1 and Kr channels
simulated using (a) the monodomain and (b) EMI models.

In order to address the second part of our study, we change the uniform distribution
of ion channels into a non-uniform distribution along the cell membranes. Changes in
local properties of cells can only be implemented using the EMI model by allowing
movement of ion channels towards the cell ends, i.e., the region that is closest to
the Γ1,2 domain (see Figure 4.1). To run the simulations, we considered two types
of channels, Na+ and K1, and we explored their four corner distribution states, i.e,
when both Na+ and K1 are uniformly distributed, when both type of channels are
completely shifted towards the cell end (see Figure 4.3), and a combination of these
two. The resulting CV for each case is compiled in Table 4.3.

Uniform K1 Non-uniform K1

Uniform Na 55.1 cm/s 54.0 cm/s
Non-uniform Na 60.0 cm/s 58.7 cm/s

Table 4.3: CV (cm/s) with uniform and non-uniform channel distribution.
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Increased ion

channel density

ΩOΩW ΩE

ΩN

ΩS

Ωe

Fig. 4.3: In our simulations of a non-uniform distribution of ion channels, the ion
channel density was increased in the brown areas near the cell ends (ΩW and ΩE)
and decreased elsewhere (ΩN, ΩS and ΩO).

4.4 Discussion

4.4.1 Influence of ion channel conductance on CV

Figure 4.2 shows that the CV increases monotonously as a function of the sodium
channel conductance, 𝑔Na, and this dependency is observed for both models.

To assess the compatibility between the monodomain and EMI model, the cal-
culated CV points for Na+ in Figure 4.2 are fitted into a function of the form
𝐶𝑉 (𝑔Na) = 𝑎 · 𝑔𝑝Na, where 𝑎 and 𝑝 are constants, using a non-linear least-squares
method. The curve adjustment is shown in Figure 4.4. For the constant 𝑝, we obtain
𝑝 = 0.294 and 𝑝 = 0.3 for the EMI model and the monodomain model, respectively.
Thus, consistent results were obtained with both models.

Furthermore, Figure 4.2 shows that CV remains almost constant when sweeping
K+ and CaL channels conductances. Therefore, varying the strength of these ion
channels did not lead to significant changes in CV.

4.4.2 Influence of ion channel distribution

From Table 4.3, when both K1 and Na+ channels are uniformly distributed, the
CV reaches 55.1 cm/s. However, when all Na+ channels are placed at the cell
ends (the coupling junction area between neighbouring cells) while keeping K1
channels uniformly distributed, then the CV experienced an increment of around
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Fig. 4.4: Fitting the CV to the function 𝐶𝑉 (gNa) = 𝑎 · 𝑔𝑝Na.

9% with respect to the previous situation. Conversely, when K1 channels are moved
towards the cell ends and Na+ channels are kept uniformly distributed along the cell
membrane, CV decreased around 2%.

These results suggest that Na+ channel distribution contributes significantly to
the overall CV, whereas the effect of K1 distribution is relatively small. While
Na+ channels increased the CV as their accumulation to the cell end increased,
the opposite effect was observed with a non-uniform distribution of K1 channels.
Additionally, we deduce that both contributions are asymmetrical. The displacement
of Na+ channels causes a major impact on CV compared to the displacement of K1
channels. When both channels are non-uniformly distributed, the CV increases about
6.5% (see Table 4.3). This CV is the result of the displacement of Na+ channels,
which largely increases CV, mitigated by the displacement of K1 channels, which
slightly decreases CV.

Immunohistochemical studies revealed that about 50% of the Na+ channels are
located in the membranes of the intercalated discs [8]. In the diseased heart with
reduced gap junctional coupling, action potential propagation can be maintained
through a mechanism known as ephaptic coupling. A prerequisite for ephaptic ef-
fects to occur is a high density of Na+ channels at the intercalated disc, where the
intermembrane distance between two adjacent cells is small (< 30 nm, [9]).
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4.5 Conclusions

In this study, we investigated the influence of ion channels, their conductance and
their physical distribution along the cell membrane, on CV. To that end, two different
models were used: the monodomain model and the EMI model. While the former
offers a good insight of large scale effects by reducing the cell model complexity, the
latter allows the implementation of changes in local cell properties, at the expense
of increased computational effort.

Regarding the CV dependence on ion channel conductance, the study focused
particularly on Na+, K+ (K1 and Kr) and CaL channels. Both models showed that
Na+ channel conductance strongly influences CV, whereas the effect of the other
ion channel conductances on CV is negligible. Moreover, the changes in CV as a
result of modifying Na+ and K1 channels distribution on the cell membranes, were
explored with the use of the EMI model. The simulation results suggest that the
influence of these channels to the CV is opposed and asymmetrical. The influence
is considered opposed because the CV increases, when Na+ channels are moved
towards the cell ends, but decreases in the case of K1 channels being located at the
cell ends. Furthermore, the effect on CV is asymmetrical because the movement
of Na+ channels along the cell membrane causes a substantial modification of the
CV, of around 9%, compared to the transfer of K1 channels, which accounts for a
variation of 2%.
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Abstract Animal data describing drug interactions in cardiac tissue are abundant,
however, nuanced inter-species differences hamper the use of these data to predict
drug responses in humans. There are many computational models of cardiomyocyte
electrophysiology that facilitate this translation, yet it is unclear whether fundamen-
tal differences in their mathematical formalisms significantly impact their predictive
power. A common solution to this problem is to perform inter-species translations
within a collection of models with internally consistent formalisms, termed a “lin-
eage”, but there has been little effort to translate outputs across lineages. Here, we
translate model outputs between lineages from Simula and Washington University
for models of ventricular cardiomyocyte electrophysiology of humans, canines, and
guinea pigs. For each lineage-species combination, we generated a population of
1000 models by varying common parameters, namely ion conductances, according
to a Guassian log-normal distribution with a mean at the parameter’s species-specific
default value and standard deviation of 30%. We used partial least squares regression
to translate the influences of one model to another using perturbations to calculated
descriptors of resulting electrophysiological behavior derived from these parame-
ter variations. Finally, we evaluated translation fidelity by performing a sensitivity
analysis between input parameters and output descriptors, as similar sensitivities
between models of a common species indicates similar biological mechanisms un-
derlying model behavior. Successful translation between models, especially those
from different lineages, will increase confidence in their predictive power.
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5.1 Introduction

Preclinical drug development relies on animal-derived data for determining drug
efficacy and toxicity. This is especially the case for interactions within cardiac
physiology, yet there is a crisis in translating these data to human outcomes and
clinical utility or liability [1]. This crisis is consequential: one third of all discontinued
drugs are withdrawn from the market on account of poor safety, with cardiovascular
toxicity being the leading cause of both post-approval and preclinical withdrawal [2].
In other words, cardiotoxic reactions as predicted in animal models are preventing a
significant portion of drugs from advancing to human trials, and drugs that manage to
pass approval are having unanticipated cardiotoxicity in humans. To both understand
the differences between non-human preclinical species as experimental models, and
to better translate those animal-based screening results to human outcomes, many
groups have developed computational models that recapitulate the cardiomyocyte
electrophysiology of each species [3, 4, 5, 6]. These models are an effective and
inexpensive way to predict mechanisms of action for drug activity and toxicities and
have significant utility for human medicine.

However, there are sources of variability that hamper translating discoveries made
in one computational model to another. In the case of inter-species translation, the
most obvious are the significant and characteristic phenotypic differences between
species that reflect the meaningful and real differences in their cardiac electrophys-
iology. Additionally, the mathematical formulations used to describe ion channel
open probabilities, gating mechanisms, or other model components chosen by the
model’s developers, may differ between models of the same species. Laboratories
often develop a computational model for one species that uses their previous for-
mulations to parameterize models for another species. This has created collections
of models sharing common mathematical formulations, but for which parameters
are varied in order to capture key physiologic differences among different species.
These distinct collections are often termed “lineages”, and it is unclear whether their
differing formulations impact cross-lineage predictions. Finally, all existing mod-
els can only represent an idealized phenotype of their respective species, further
complicating accurate model-based species-translations. That is, they capture the
functional properties of the average cardiomyocyte of that species. Inherent biologi-
cal heterogeneity and individual variability reflected in experimental measurements
are not represented within the single set of parameter values used in a computational
model. This valuable biological information is unused and needs to be accounted
for when developing and effectively translating results between these models. This
is particularly true for cardiac safety screening, where rare but lethal events are a
critical outcome. Generating populations of models whose parameters vary in a way
that represents both intra- and inter-individual variability is one potential method for
overcoming this issue.

Prior work has attempted to translate simulated drug effects between computa-
tional models of cardiac electrophysiology, with varied success, but such work has
typically only been conducted within a single model lineage or using an idealized
model representing average behavior. For example, Tveito et al. demonstrated meth-
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ods for translating drug effects from animal experiments to computational models
of ventricular myocytes for a panel of pro-arrhythmic drugs [7]. Population-based
modeling has recently been developed to overcome this drawback by generating sets
of models from which statistical analyses can be harnessed. For example, by sim-
ulating multiple iterations of induced-pluripotent stem cell cardiomyocyte models,
Gong & Sobie [8] built populations of cell models and successfully translated their
interactions with drugs onto human cardiomyocyte models through application of a
Partial Least Squares Regression Analysis [9]. This same approach can be general-
ized to models of the same species but arising from different lineages, or translating
across both species and lineages. The only requirement is that all models have a
set of common (and corresponding) parameters that can be perturbed identically to
simulate the same population-level variation.

Here we have applied these approaches to systematically understand the impact
of mixing models from different lineages on translation performance. In particular,
we sought to understand whether differences across model lineages imposed simi-
lar challenges to translation as the intrinsic electrophysiological differences across
species. We found this to not be the case, and report that, at least for two dis-
tinct model lineages, species-translation works comparatively well across lineages
as within. Importantly, this general finding did not hold for translation of action
potential duration (APD) measures, and this may be due to different sensitivities
of the model lineages to variations in the maximal transport rate of the 𝑁𝑎+-Ca2+

exchanger and 𝑁𝑎+-𝐾+-ATPase.

5.2 Methods

5.2.1 Models of Cardiac Electrophysiology

We modeled the action potential of a single ventricular cardiomyocyte for human,
canine, and guinea pig species using the Washington University [3, 4, 5] (WU) and
Simula [6] lineages. These models describe currents through voltage-gated ion chan-
nels in the form 𝐼 = 𝑔𝑜(𝑣−𝐸), where 𝑔 is the channel conductance, 𝑣 the membrane
potential, 𝐸 the channel’s equilibrium potential, and 𝑜 the channel’s open probability
which can be a function of either membrane potential or time-dependent gating vari-
ables. Figure 5.1 illustrates the currents, fluxes, and compartments available to each
model and Table 5.1 lists which of these each model represents. All Simula models
share the same formalisms and only differ in exact parameter values, while the WU
models, though sequentially influenced by one another, were individually derived
and feature notable differences in the ionic currents and cellular compartments they
represent. Major similarities and differences include:

• All models split the sarcoplasmic reticulum (SR) into junctional and network
compartments and the intracellular space into bulk cytosol and dyadic subspace.
The two exceptions are that Simula models feature a third cytosolic compartment,
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Fig. 5.1: Membrane currents (I), 𝐶𝑎2+ fluxes (J), and intracellular compartments for
the (A) Simula model lineage, from [6], and (B) WU model lineage, from [5]. All WU
models include the 𝐶𝑎2+ buffers calmodulin (CMDN) and troponin (TRPN) while
only the WU human and canine models include calsequestrin (CSQN), anionic SR
and sarcolemmal 𝐶𝑎2+ binding sites (BSR, BSL), and CaMKII which influences the
gating of ion channels marked with a black ring in panel B. Both images in this figure
are reproduced with permissions dictated by the Creative Commons Attribution (CC
BY) license (https://creativecommons.org/licenses/by/4.0/).

the subsarcolemma (SSL), and the WU Guinea Pig model features only one
cytosolic compartment.

• Simula models track free and buffered 𝐶𝑎2+ concentration ([𝐶𝑎2+]) while WU
models only track free [𝐶𝑎2+] but also model concentrations of compartment-
specific 𝐶𝑎2+ buffers such as troponin and calmodulin.

• Simula models feature invariant [Na+], [K+], and [Cl-], while WU models treat
these as dependent variables.

• WU human and canine models feature calcium/calmodulin-dependent protein
kinase II (CaMKII) phosphorylation of target ion channels, as well as dual-
component 𝐼𝑁𝑎𝐶𝑎, where 80% operates in the bulk cytosol while the rest is
dyadic.

• Simula models feature a Markovian representation of 𝐼𝐾𝑠 while WU models do
the same for 𝐼𝐾𝑟 .

Baseline parameter and initial condition values were taken from each model’s
original publication. We generated populations of 1000 different parameter config-
urations for each model by multiplying the baseline value of a selection of common
parameters (𝑔𝐾1, 𝑔𝐾𝑟 , 𝑔𝐾𝑠 , 𝑔𝐶𝑎𝐿 , 𝑔𝑏𝐶𝑎, 𝑔𝑁𝑎, 𝑔𝑁𝑎𝐾 , 𝑔𝑁𝑎𝐶𝑎, 𝑔𝑆𝐸𝑅𝐶𝐴, 𝑔𝑅𝑦𝑅) by a
scaling factor sampled from the Guassian log-normal distribution with mean of 1
and 30% standard deviation; the same scaling factors were used for each model.

https://creativecommons.org/licenses/by/4.0/
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Fig. 5.2: (A) Membrane potential and (B) CaT traces depicting model features
of resting membrane potential (RMP), maximum upstroke velocity (dV/dt𝑚𝑎𝑥),
voltage amplitude (V𝑚𝑎𝑥), action potential duration to 30, 50, and 90% repolarization
(APD30, 50, 90), diastolic [𝐶𝑎2+] (CaTd), maximum CaT velocity (dCaT/dt𝑚𝑎𝑥),
time and value of maximum CaT (CaT𝑚𝑎𝑥 , t𝑚𝑎𝑥), time to 50% CaT decay (CaT50),
and CaT time constant (𝜏 CaT).

5.2.2 Feature Extraction

Descriptors or features of each model’s resulting electrophysiology were measured
during steady state activity by applying a stimulus of -80mV for 20ms to the model
500 times at a frequency of 1Hz. Features were measured as their average over the
final 10 stimulations, and included maximum upstroke velocity, resting membrane
potential (RMP), voltage amplitude, 𝐶𝑎2+ transient (CaT) amplitude, maximum
velocity, time constant, time to peak, and time to 50% decay, diastolic [𝐶𝑎2+],
and APD at 30, 50, and 90% repolarization (Figure 5.2). Model configurations were
omitted from subsequent analysis if a convergent solution to their system of equations
could not be reached or if their steady state behavior featured a voltage amplitude
less than 5mV, resting membrane potential greater than -20mV, APD90 standard
deviation greater than 10%, or change in CaT amplitude of more than 2% for total
SR [𝐶𝑎2+], cytosolic [𝐶𝑎2+], or cytosolic [𝑁𝑎+].
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Table 5.1: Currents represented in each model.

Current Simula WU Human WU Canine WU Guinea Pig
𝐼𝐶𝑎𝐿 X X X X
𝐼𝑏𝐶𝑎 X X X X
𝐼𝑛𝐶𝑎
𝐼𝑁𝑎𝐿 X X X
𝐼ℎ𝑁𝑎 X X
𝐼𝑡𝑜1 X X X
𝐼𝑡𝑜2 X
𝐼𝐾𝑟 X X X X
𝐼𝐾1 X X X X
𝐼𝐾𝑠 X X X
𝐼ℎ𝐾 X
𝐼𝑝𝐾 X X
𝐼ℎ𝐶𝑙 X X X X
𝐼𝑁𝑎𝐶𝑎 X X X X
𝐼𝑁𝑎𝐾 X X X X
𝐼𝐾𝐶𝑙 X
𝐼𝑁𝑎𝐶𝑙 X
𝐼 𝑓 X
𝐼𝑛𝑠𝐶𝑎 X

5.2.3 Sensitivity Analysis and Translation

Sensitivity analysis is a quantification of the correlation between input model param-
eters and resulting electrophysiological features and thus determines the functional
dependence of model features on specific ionic conductances. Translation correlates
features between pairs of models and thus translates the electrophysiological response
of different models to identical parameter perturbations. Projection to latent struc-
tures, also referred to as partial least squares (PLS), is a form of matrix decomposition
used for sensitivity analysis and translations of the models. The nonlinear iterative
partial least squares algorithm [9] was used to calculate PLS regression coefficients,
referred to as the B matrix from the matrix decomposition Y = XB. The decompo-
sition for sensitivity analysis in matrix format is 𝑌𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑋𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠𝐵,
and for translations is 𝑌𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑋𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝐵. For sensitivity analysis, the set of
configurations for a model and the corresponding set of features are used as the 𝑋
and 𝑌 matrices resulting in a 𝐵 matrix for each of the six models in the two lineages.
For translations, there are fifteen 𝐵 matrices, one for each pair of models.

The 𝐵 matrix represents the linear relationships between 𝑋 and 𝑌 , meaning we
cannot determine features from parameters or translate without loss of information
quantified by the R2 values computed on the difference between the actual data values
and the values predicted from multiplying a data set with its applicable 𝐵 matrix. In
practice, the 𝐵 matrix can be utilized on parameter configuration vectors outside of
the population to predict and translate linearly approximated feature vectors without
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solving the lumped conductance ordinary differential cardiac electrophysiological
model, simplifying the analysis of other datasets.

5.3 Results

5.3.1 Model Translation

Translation performance, as measured by the average 𝑅2 of all feature translations
for each model combination, was generally high with all average 𝑅2 values greater
than 0.75 and most close to 1 (Figure 5.3A-B); model lineage, species, or translation
direction did not appear to significantly affect this metric. When averaging 𝑅2s based
on whether the translation was across or with lineages, inter-lineage translations only
modestly underperformed compared to intra-lineage translations with respective 𝑅2

values of 0.859 ± 0.038 and 0.793 ± 0.073 (Figure 5.3C). Focusing on a subset of
the translations for all combinations of WU, Simula, human, and canine models, this
general trend no longer holds (Figure 5.3D-G). Instead, all 𝑅2 values are well above
0.8 except for measures of APD (<0.6) which was translated well for only the Simula
canine-human translation (Figure 5.3G).

5.3.2 Translation Discrepancies

A likely source of this discrepancy may come from irreconcilable differences in
AP morphology between human and canine models (Figure 5.4A). Regardless of
lineage, canine model APs tend to feature the classic notch-dome shape due to
transient repolarization from inactivation of depolarizing inward sodium currents and
activation of the transient outward potassium and sodium-calcium exchanger currents
[10]. The WU canine model had the largest notch, causing some configurations to
reach 30% of repolarization immediately following peak voltage, thus resulting in
biphasic distributions of APD (Figure 5.4B-D). With this behavior entirely absent
from human models, linear translation between the two species was significantly
impeded (Figure 5.4E-G).

Sensitivity analyses of this subset of models revealed that the sign of APD regres-
sion coefficients for 𝑔𝑁𝑎𝐾 and 𝑔𝑁𝑎𝐶𝑎 were the same for all models (Figure 5.5A-F,
J-L) except WU canine (Figure 5.5G-I). This difference indicates that the WU canine
model will have an entirely opposite change to APD given the same perturbation
to these conductances. Such a fundamental difference in model behavior may also
provide an explanation for poor inter-species translation.
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Fig. 5.3: Translation performance as measured by their resulting 𝑅2 values. (A-B)
Mean ± standard deviation 𝑅2 values over all feature translations for each combi-
nation of human (h), canine (c), and guinea pig (gp) models. (C) Mean ± standard
deviation 𝑅2 values for translations within and across lineages for all species. (D-G)
𝑅2 values for each feature of WU and Simula canine-human translation.

5.4 Discussion

Computational tools are increasingly seen as a key bridge for making the inferential
jumps between electrophysiologic data collected among the major cardiac cell types
used in drug screening (i.e. rodent, rabbit, canine, and human stem cell-derived
cardiac myocytes). Because models of these cell types contain the basic properties
of each cell type and differences between them, both linear and non-linear methods
have been developed to translate among them, and importantly, to adult human
cardiac cells. In this way, one holy grail of computational cardiac pharmacology is
to leverage these models to reliably predict clinical outcomes of drugs based on data
collected in other species or human cell lines.

Due to the inherent biological variability, it is important to use a technique
that captures this variability. To this end, we developed a systematic approach of
modifying the values of parameters common to all investigated models to obtain
a population of 1000 configurations for each electrophysiological model. Resulting
features of model behavior extracted from each variation of the model, such as
APD and CaT velocity, were used to translate between models where the behavior
of one model was predicted based on the measured behavior of another. Applying
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Fig. 5.4: (A) Steady state action potential traces generated using baseline parameter
values for human (grey) and canine (black) models from both WU (solid) and
Simula (dashed) lineages. (B-D) Histograms depicting the distributions of APD30
(29.1±48.7ms), 50 (191.0±29.8), and 90 (236.0±30.8) from the WU canine model
measured as the average of the last 10 stimulations following 490s of 1Hz pacing. (E-
G) Predicted APD30, 50, and 90 values for the WU human model using the regression
coefficients from the WU canine – WU human translation analysis. Translation 𝑅2

values for APD30, 50, and 90 are respectively 0.5268, 0.5014, and 0.5523. Black
dashed lines are the identity line.

the NIPALS method for translation provided adequate predictive power as indicated
by high 𝑅2 values on average. Unexpectedly, there was not a large dependence of
translation performance on model lineage, suggesting that their specific formulations
might not be as large a source of inherent model behavior as initially thought.
It appears that interspecies differences play a more significant role in affecting
translation performance than the model’s formulation.

As an illustrative example, we focused on canine to human translation between
and within both lineages. All features were predicted well with the exception of ADP,
except in the case of Simula canine to human translation which performed uniquely
well. Sensitivity analyses revealed that the APD of WU canine models reacted
oppositely to perturbations of conductances 𝑔𝑁𝑎𝐾 and 𝑔𝑁𝑎𝐶𝑎 compared to all other
models, indicating that blockers of the 𝑁𝑎+-𝐶𝑎2+ or 𝑁𝑎+-𝐾+-ATPase exchanger
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Fig. 5.5: Normalized sensitivity coefficients, grouped by APD30, 50 and 90
(columns), for the Simula canine (A-C), Simula human (D-F), WU canine (G-I),
and WU human (J-L) models.

would have an opposite effect on the WU Canine model compared to the other
models we investigated. Ultimately, the poor performance of APD translation implies
that translation of electrophysiological behavior between species would inaccurately
predict pathologies of APD such as QT interval prolongation and cardiotoxicity
affecting the repolarization phase.

5.5 Conclusion

Here, we have proposed a ventricular cardiomyocyte model translation and parame-
ter sensitivity analysis. We demonstrated that lineage dependence is not as strong as
initially hypothesized, thus interspecies translation can be accurately performed be-
tween models of different origin. Most model features were robustly translated within
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and between model lineages, however, there were shortcomings in APD translation
between human and canine models. Sensitivity analysis identified 𝑔𝑁𝑎𝐾 and 𝑔𝑁𝑎𝐶𝑎
as potential candidates for the translation inconsistency where the WU canine model
had an opposite APD reaction given the same perturbation to conductances of those
transporters. This anomaly requires further investigation to ascertain whether it is
due to that model’s specific formulation or simply a general characteristic of the
species.
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Abstract The majority of hemorrhagic strokes are caused by cerebral aneurysms,
harboured in a large portion of the human population. Currently, it is unclear what
constitutes a dangerous aneurysm, and the risk of rupture of such aneurysms is
challenging to quantify. Previous studies have shown that flow dynamics play an
important role in the development of aneurysms. However, there is varying consensus
on blood flow patterns and stability. In this work, we formulate a Reynolds–Orr
method to quantify the stability of blood flow in arteries. Applying this method to
blood flow in four different arterial models, we find that the blood flow therein is
unstable under physiological conditions. We show the most unstable eigenmodes
for each of these models and discuss how they potentially could help explain the
initiation and growth of aneurysms.
Keywords: flow instability, aneurysm, perturbation, Reynolds–Orr Method

6.1 Introduction

Stroke is a leading cause of death, accounting for approximately 11% of all deaths
worldwide in 2015 [1], and is currently the main cause of disabilities [2]. As reported
in a large cohort study in Japan, 85% of hemorrhagic strokes are caused by cerebral
aneurysms [3]. A cerebral aneurysm is an outward bulging of an artery, thought to
form due to a localized weakness in the arterial wall. As an estimate, 5-8% of the
population harbour an aneurysm [4, 5], with an annual risk of rupture at 1-2% [6].
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The rupture of such aneurysms result in non-traumatic subarachnoid hemorrhage
which often leads to death or disability [4].

Unruptured aneurysms are typically detected from neurovascular imaging ob-
tained when diagnosing some unrelated issue. Due to the increasing availability of
such imaging, clinicians are also detecting an increasing number of unruptured cere-
bral aneurysms [4]. This observation prompts difficult clinical decisions on whether
one should monitor the aneurysm without treatment or proceed with surgical inter-
vention [4]. This raises the question of what quantitative measures reliably determine
rupture risk [7].

The dynamics of blood flow are thought to play a significant role in the initiation
and propagation of lesions along an artery [8]. In particular, computational fluid
dynamics (CFD) has been used to calculate the wall shear stresses (WSS) of the
blood flow in an artery. Several CFD studies have successfully used abnormal WSS
as a marker in retroactively classifying aneurysms according to their risk of rupture
[9]. However, there has been observed significant differences between CFD results
among different scientific groups [10]. In particular, the prediction of flow patterns
and flow instability has been found to vary, which further impacts the computation
of e.g. the WSS.

In simulations of blood flow in aneurysms, the flow itself is typically assumed
laminar. However, experimental evidence has shown transitional and turbulent flow
to occur in blood vessels such as the aorta [11] and carotid artery [12], and in saccular
aneurysms in dogs [13] and humans [14, 15]. The presence of turbulent-like flow
could significantly change the magnitude of the WSS.

In this work, we investigate flow instabilities in patient-specific geometries. More
precisely, we use the Reynolds–Orr method to quantify the most unstable perturbation
one can make to patient-specific aneurysm geometries. The Reynolds–Orr method,
as revisited by Scott in [16], provides an exact relation between a baseflow and
the kinetic energy of a perturbation. The analysis itself is nonlinear, with no linear
approximations, and yields a well posed linear symmetric eigenvalue problem that
can be solved via standard methods. Combining the open-source softwares FEniCS
[17] and SLEPc [18], we find that the baseflow and corresponding eigenproblem can
be implemented in less than 150 lines of code. The eigenvector solutions represent
the most unstable perturbations one can make to the baseflow, while the eigenvalue
indicates the growth rate of the resulting instability.

The main contributions of this report are as follows:
• The formulation of a Reynolds–Orr method for studying instability of flow in

pipe-like domains.
• An open-source implementation [19] of this method based on FEniCS and SLEPc

that is readily available for others to use.
• A comparison of the most unstable flow perturbations one can make in different

types of domains with and without aneurysms (as illustrated in Fig. 6.1).

The rest of the paper is organized as follows: Section 6.2.1 introduces the Navier–
Stokes equations with Dirichlet and traction boundary conditions. The variational
formulation for this problem is also presented. The derivation of the kinetic energy
relation is presented in Section 6.2.2 where the eigenvalue problem is recalled,
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followed by its discretization in Section 6.2.3. In Section 6.2.4, we present our
methodology for solving the eigenvalue problem, followed by the results in Section
8.3. Finally, we present a discussion and potential future work in Section 8.4.

6.2 Methods

6.2.1 Baseflow equations

Γin

Γout

Γout

Γin

Γout

Fig. 6.1: Two arterial models, harbouring a terminal aneurysm (left) and a saccular
aneurysm (right). The aneurysm is indicated in red.

Let Ω ⊂ R3 denote an open, bounded flow domain with boundary 𝜕Ω. Fig. 6.1
shows the two flow domains considered. The domain Ω is assumed to have an inflow
boundary Γin ⊂ 𝜕Ω and an outflow boundary Γout ⊂ 𝜕Ω. We denote by Γ the union
of the inflow and outflow boundaries: Γ = Γin∪Γout.

In Ω we then consider the steady incompressible Navier–Stokes equations for the
fluid velocity 𝒖 and pressure field 𝑝:

−𝜈Δ𝒖 +𝒖 · ∇𝒖 +∇𝑝 = 𝒇 in Ω, (6.1a)
∇ ·𝒖 = 0 in Ω, (6.1b)

𝒖 = 0 on 𝜕Ω\Γ. (6.1c)

In the equations above, 𝜈 is the kinematic viscosity, 𝒇 is a given external force, and
(6.1c) is a no-slip boundary condition to be applied on a subset of the boundary. We
augment (6.1a) - (6.1c) by the following traction boundary conditions on Γ, namely

(𝜈∇𝒖− 𝑝𝐼)𝒏 = 𝑝𝑖𝒏, on Γ𝑖 for 𝑖 ∈ {in,out}, (6.2)

where 𝑝in and 𝑝out are given data for the inflow and outflow boundaries, respectively.
Let 𝒖, 𝒗 ∈ 𝐻1 (Ω)3. For the variational formulation, we first define
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𝑎(𝒖, 𝒗) = 𝜈
∫
Ω
∇𝒖 : ∇𝒗, (6.3)

𝑐(𝒖,𝒖, 𝒗) =
∫
Ω
(𝒖 · ∇𝒖) · 𝒗. (6.4)

For 𝒖 ∈ 𝐻1 (Ω)3 and 𝑝 ∈ 𝐿2 (Ω), we define

𝑏(𝒖, 𝑝) =
∫
Ω
∇ ·𝒖𝑝. (6.5)

We also define the following function space:

𝑽Γ = {𝒗 ∈ 𝐻1 (Ω)𝑑 : 𝒗 |𝜕Ω\Γ = 0}.

Then, the variational problem reads: find (𝒖, 𝑝) ∈ 𝑽Γ × 𝐿2 (Ω) such that for all
(𝒗, 𝑞) ∈ 𝑽Γ × 𝐿2 (Ω) the following holds.

𝑎(𝒖, 𝒗) + 𝑐(𝒖,𝒖, 𝒗) − 𝑏(𝒗, 𝑝) =
∫
Ω
𝒇 · 𝒗 +

∑︁
𝑖∈{in,out}

∫
Γi
𝑝i𝒏 · 𝒗, (6.6a)

𝑏(𝒖, 𝑞) = 0. (6.6b)

6.2.2 Flow perturbations and instability

In this section, we will derive an eigenvalue problem that describes different pertur-
bations one can make to this baseflow. This derivation is non-trivial with pressure
boundary conditions. For this reason, we from now on consider Dirichlet boundary
conditions for the flux for the entire boundary. In particular, let (𝒖, 𝑝) be the solution
of the following time-dependent Navier–Stokes equations:

𝜕𝑡𝒖− 𝜈Δ𝒖 +𝒖 · ∇𝒖 +∇𝑝 = 𝒇 in Ω× (0,𝑇], (6.7a)
∇ ·𝒖 = 0 in Ω× (0,𝑇], (6.7b)

𝒖 = 𝒈 on 𝜕Ω× (0,𝑇], (6.7c)
𝒖 = 𝒖0 on Ω× {0}. (6.7d)

In the above, 𝒖0 is the solution of the baseflow equations (6.1a)-(6.1c). We derive
the kinetic energy relation for the velocity 𝒖 solving (6.7a)-(6.7d). The derivation
presented here closely follows the derivation in [20]. Then, we state the eigenvalue
problem which results from the energy relation. Let now (𝒘, 𝑞) solve the same
equations (6.7a)-(6.7d) with the same boundary condition 𝒈, but different initial data
𝒘0, such that 𝒘0 ≠ 𝒖0. Define (𝒗, 𝑜) as the difference of the two solutions:

𝒗 = 𝒖−𝒘, 𝑜 = 𝑝− 𝑞. (6.8)
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Thus, (𝒗, 𝑜) satisfy:

𝜕𝑡𝒗− 𝜈Δ𝒗 + (𝒖 · ∇𝒖−𝒘 · ∇𝒘) +∇𝑜 = 0 in Ω× (0,𝑇], (6.9a)
∇ · 𝒗 = 0 in Ω× (0,𝑇], (6.9b)

𝒗 = 0 on 𝜕Ω× (0,𝑇], (6.9c)
𝒗0 = 𝒖0−𝒘0 on Ω× {0}. (6.9d)

Following [20], we decompose the nonlinear terms as follows

𝒖 · ∇𝒖−𝒘 · ∇𝒘 = 𝒖 · ∇𝒖−𝒖 · ∇𝒘 +𝒖 · ∇𝒘−𝒘 · ∇𝒘
= 𝒖 · ∇𝒗 + 𝒗 · ∇𝒘 = 𝒖 · ∇𝒗 + 𝒗 · ∇𝒖− 𝒗 · ∇𝒗.

(6.10)

Multiplying (6.9a) by 𝒗, using (6.10), and integrating over Ω yields

(𝜕𝑡𝒗, 𝒗) + 𝑎(𝒗, 𝒗) + 𝑐(𝒖, 𝒗, 𝒗) + 𝑐(𝒗,𝒖, 𝒗) − 𝑐(𝒗, 𝒗, 𝒗) + 𝑏(𝒗, 𝑜) = 0. (6.11)

Define the following function space:

𝑽 := {𝒗 ∈ 𝐻1 (Ω)3 : ∇ · 𝒗 = 0 and 𝒗 = 0 on 𝜕Ω}. (6.12)

It can be observed from Lemma 20.1 in [16] that for any 𝒘 ∈ 𝑽 we have

𝑐(𝒘, 𝒗, 𝒗) = 0 ∀𝒗 ∈ 𝑽 .

In addition, since ∇ · 𝒗 = 0, we have

𝑏(𝒗, 𝑜) =
∫
Ω
∇ · 𝒗𝑜 = 0.

Thus, we obtain the following

1
2
𝜕

𝜕𝑡

∫
Ω
|𝒗 |2 = −𝜈

∫
Ω
|∇𝒗 |2−

∫
Ω
(𝒗 · ∇𝒖) · 𝒗

= −𝜈
∫
Ω
|∇𝒗 |2− 1

2

∫
Ω
𝒗𝑡 (∇𝒖 +∇𝒖𝑡 )𝒗.

(6.13)

From (6.13), we can make the following observation. The flow 𝒖 is energy unstable
at time 𝑡 = 0 if there exists a 𝒗0 ∈ 𝑽 such that

− 1
2

∫
Ω
𝒗𝑡0 (∇𝒖0 +∇𝒖𝑡0)𝒗0− 𝜈

∫
Ω
|∇𝒗0 |2 > 0. (6.14)

To simplify, we define

𝜆𝒗 =
𝐵𝒖 (𝒗, 𝒗)
𝑎(𝒗, 𝒗) with 𝐵𝒖 (𝒗,𝒘) =

1
2

∫
Ω
𝒗𝑡 (∇𝒖 +∇𝒖𝑡 )𝒘.

In the above definition, the form 𝑎(𝒗, 𝒗) is given in (6.3) and we recall that for 𝒗 ∈ 𝑽:
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𝑎(𝒗, 𝒗) = 𝜈
∫
Ω
∇𝒗 : ∇𝒗 = 𝜈∥∇𝒗∥2.

Using the above definitions and expressions, we obtain an equivalent instability
condition to (6.14). Namely, the flow is unstable at time 𝑡 = 0, if there is a 𝒗0 ∈ 𝑽
such that

𝜆𝒗0 < −1.

In addition, we denote
𝜆 = inf

0≠𝒗∈𝑽
𝜆𝒗 . (6.15)

It is clear that if 𝜆 ≥ −1 then the flow is stable. On the other hand, if 𝜆 < −1, then
the flow is unstable. In particular, from (6.13), there exists a 𝒗 such that(

1
∥∇𝒗∥2

)
𝜕

𝜕𝑡

∫
Ω
|𝒗 |2 = −2𝜈(1+𝜆𝒗) > 0.

We also recall Poincare’s inequality which states that

∥𝒗∥2 ≤ 𝐶𝑃 ∥∇𝒗∥2 ∀𝒗 ∈ 𝑽 .

Hence, we have the following relation:

𝜕

𝜕𝑡
log

(∫
Ω
|𝒗 |2

)
≥ − 2𝜈

𝐶𝑃
(1+𝜆𝒗).

From the above, one can deduce that the most negative 𝜆𝒗 leads to the most unstable
mode and this value is what we seek our computations.

It is shown in [20] that the solution of (6.15) solves the following eigenvalue
problem. Find (𝜆, 𝒗) ∈ (R,𝑽) such that

𝐵𝒖 (𝒗,𝒘) = 𝜆𝑎(𝒗,𝒘) ∀𝒘 ∈ 𝑽 . (6.16)

For more details on the derivation of this eigenvalue problem, we refer to sections
5.2 and 5.3 in [20].

6.2.3 Discretization

We introduce the following discrete polynomial spaces to approximate solutions to
the baseflow equations (6.1a)-(6.1c) and to the eigenvalue problem (6.16). Let 𝑽𝑘ℎ
denote the space of 𝐶0 piecewise polynomials of degree 𝑘 on a regular mesh of the
domain Ω. Define the vector valued polynomial space

𝑽𝑘Γ,ℎ = {𝒗 ∈ (𝑽
𝑘
ℎ )

3 : 𝒗 |𝜕Ω\Γ = 0}.



6.2 Methods 69

We approximate the solutions to the variational form resulting from the baseflow
equations: Find (𝒖ℎ, 𝑝ℎ) ∈ (𝑽2

Γ,ℎ,𝑽
1
ℎ) such that for all (𝒗ℎ, 𝑞ℎ) ∈ (𝑽2

Γ,ℎ,𝑽
1
ℎ):

𝑎(𝒖ℎ, 𝒗ℎ) + 𝑐(𝒖ℎ,𝒖ℎ, 𝒗ℎ) − 𝑏(𝒗ℎ, 𝑝ℎ) =
∫
Ω
𝒇 · 𝒗ℎ +

∑︁
𝑖∈{in,out}

∫
Γi
𝑝i𝒏 · 𝒗ℎ, (6.17a)

𝑏(𝒖ℎ, 𝑞ℎ) = 0. (6.17b)

To approximate the solutions to the eigenvalue problem (6.16), we define

𝑽𝑘ℎ = {𝒗 ∈ (𝑽𝑘ℎ )
3 : 𝒗 |𝜕Ω = 0}.

We find (𝜆, 𝒗) ∈ (R,𝑽2
ℎ) such that

𝐵𝒖ℎ (𝒗ℎ,𝒘ℎ) = 𝜆𝑎(𝒗ℎ,𝒘ℎ) ∀𝒘ℎ ∈ 𝑽ℎ . (6.18)

6.2.4 Computational Methodology

As discussed in the introduction, the aim of this work is to numerically investigate
flow instabilities in aneurysms. We investigate this by studying the flow through four
different arterial models.

(a) (b)

Fig. 6.2: Streamlines and vector field in the model with (left) and without (right) a
saccular aneurysm, scaled and colored by the velocity magnitude.

To compute the most unstable flow modes for each of these models, we have
followed the following procedure:

• Step 1: Mesh the geometry of a vessel with and without an aneurysm using
Aneurysm Workflow developed by KVSlab [21].

• Step 2: Solve (6.17a) and (6.17b) for the baseflow 𝒖ℎ ∈ 𝑽2
Γ,ℎ in the meshed

geometry using FEniCS [17].
• Step 3: Solve (6.18) for the eigenpairs (𝜆, 𝒗ℎ) ∈ (R,𝑽2

ℎ) with the computed flow
𝒖ℎ to determine the perturbations. This is done using SLEPc [18].
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(a) (b)

Fig. 6.3: Streamlines and vector field in the model with (left) and without (right) a
terminal aneurysm, scaled and colored by the velocity magnitude.

The models have been collected from the Aneurisk database [22], and have been
manually manipulated using Meshmixer [23]. To solve the baseflow equations (6.1a)-
(6.2) and the eigenvalue problem (6.16), we used FlowInstabilities [19], an open-
source CFD solver developed to investigate flow instabilities.

For the baseflow, we considered a laminar, steady state regime where the pressure
drop was scaled so that the blood flow velocity is similar to the flow peak at systole.
During the peak of the ventricular systole, the maximum distension of the artery
wall occurs, and results in a greater diameter with less complacency. This lends
validity to our assumption of rigid artery walls. The blood is considered to behave as
a Newtonian fluid [24], with a kinematic viscosity of 𝜈 = 3.5 ·10−6 m2/s and density
of 𝜌 = 1060 kg/m3.

6.3 Results

Figures 6.2 and 6.3 show the numerically computed baseflows. In addition to the
vector field 𝒖, we also show the streamlines, i.e., the lines parallel to the velocity
vector. Figure 6.2 shows the baseflow computed for the domains with and without
a saccular aneurysm. The pressure drop across the domain was set to 0.001 mmHg,
which resulted in a baseflow with peak magnitude of 50 cm/s. This corresponds
well to values cited in the literature [25]. A small circulation is observed inside
the aneurysm. This may indicate low values of WSS, which heightens the risk of
disruption [26].

Figure 6.3 shows the baseflow computed for the domains with and without a
terminal aneurysm. The pressure drop across the domain was set to 0.0001 mmHg,
which resulted in a baseflow with peak magnitude of 10 cm/s. This is slightly lower
than values cited in the literature. For increased pressure drops, however, the Newton
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solver did not converge. Examining the streamlines and the vector field of Fig. 6.3a
and Fig. 6.3b, one sees a large recirculation in the area where the two different inlets
meet. It is possible that for a higher pressure drop, no steady state solution to the
Navier-Stokes equation exists for this branched geometry. For the model harbouring
an aneurysm (Fig. 6.3a), the streamlines show a small flow circulation inside of it.

The most unstable eigenmodes for these baseflows are presented in Fig. 6.4 and
Fig. 6.5. The figures also give the corresponding eigenvalue; an increase in absolute
eigenvalue implies an increase in the kinetic energy of the instability. On the top row
we present the most unstable mode, and on the bottom row the second most unstable
mode, with its respective eigenvalue.

(a) 𝜆 = −5.88 (b) 𝜆 = −5.56

(c) 𝜆 = −4.16 (d) 𝜆 = −4.21

Fig. 6.4: Most (top) and second (bottom) most unstable eigenmodes with corre-
sponding eigenvalue, 𝜆, for the model with a terminal aneurysm (left) and without
(right).

First considering the terminal aneurysm case in Fig. 6.4, we see that for both
geometries (Fig. 6.4a and Fig. 6.4b) the most unstable eigenmode has an eigenvector
directed to the point of the impingement of the jet located at the bifurcation. The
corresponding eigenvalues are similar in magnitude. This is not unexpected as the
baseflows for (6.4a) and (6.4b) are quite similar. Considering the impact of these
perturbations on the baseflow, the most unstable perturbation points towards the
aneurysm. Recalling that an aneurysm is caused by a weakening of the blood vessel
wall, this may indicate that the flow perturbations and resulting instabilities play a
role in aneurysm rupture. The eigenvectors of the second mode of instability for both
cases (Fig. 6.4c and Fig. 6.4d) are similarly directed to the same location, near the
entrance of the aneurysm.
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(a) 𝜆 = −5.93 (b) 𝜆 = −5.80

(c) 𝜆 = −5.67 (d) 𝜆 = −5.33

Fig. 6.5: Most (top) and second (bottom) most unstable eigenmodes with corre-
sponding eigenvalue, 𝜆, for the model with a saccular aneurysm (left) and without
(right).

For the saccular geometry (Fig. 6.5), we find that the most unstable mode, for
both the models - with (Fig. 6.5a) and without aneurysm (Fig. 6.5b) - are located
downstream, i.e. near the outlet. This was similarly found for the most unstable
flow modes for flow past a cylinder [27]. The most unstable mode is similar for the
domains with and without an aneurysm. The second most unstable mode, conversely,
shows a different behaviour for the domain with aneurysm. Considering Fig. 6.5c we
observe a flow mode that is instead similar to the most unstable flow mode for the
artery with the terminal aneurysm. Again, the eigenvector points toward the inside
of the aneurysm. It is interesting to note that the second most unstable mode for the
healthy geometry occurs in the constriction of the artery, see Fig. 6.5d. This could
indicate that flow instabilities are the reason why the aneurysm occurs in this region.

6.4 Discussion

In this computational study, we used the theory of kinetic-energy instability [16] to
analyze the most unstable flow perturbations one can make to blood flow in four
different arterial models. The results indicate that blood flow in aneurysms can be
unstable under physiological conditions. Moreover, the magnitude of the eigenvalue
is seen to increase in the domains containing an aneurysm. This indicates that the
kinetic energy of the instability increases if the domain contains an aneurysm. It is
known, however, that the magnitude of the eigenvalue increases with the size of the
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domain, as discussed by [27]. Thus it is difficult to say if this effect is due to domain
shape changes or simply occurs as the domain with aneurysm is larger.

For future work, it would be interesting to add the most unstable perturbations
we computed to the baseflow and see the effect of this perturbation over time. In
particular, it would be interesting to examine what effect the resulting perturbations
has on the computation of the WSS.



74 6 Flow Instabilities in Aneurysms

References

1. Haidong Wang, Mohsen Naghavi, Christine Allen, Ryan M Barber, Zulfiqar A Bhutta, Austin
Carter, Daniel C Casey, Fiona J Charlson, Alan Zian Chen, Matthew M Coates, et al. Global,
regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249
causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015.
The lancet, 388(10053):1459–1544, 2016.

2. Mira Katan and Andreas Luft. Global burden of stroke. In Seminars in neurology, volume 38,
pages 208–211. Thieme Medical Publishers, 2018.

3. UCAS Japan Investigators. The natural course of unruptured cerebral aneurysms in a japanese
cohort. New England Journal of Medicine, 366(26):2474–2482, 2012.

4. H Meng, VM Tutino, J Xiang, and A Siddiqui. High WSS or low WSs? complex interactions of
hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying
hypothesis. American Journal of Neuroradiology, 35(7):1254–1262, 2014.

5. Gabriel JE Rinkel, Mamuka Djibuti, Ale Algra, and J Van Gijn. Prevalence and risk of rupture
of intracranial aneurysms: a systematic review. Stroke, 29(1):251–256, 1998.

6. Gabriel JE Rinkel, Mamuka Djibuti, Ale Algra, and J van Gijn. Prevalence and risk of rupture
of intracranial aneurysms. Stroke, 29(1):251–256, 1998.

7. Erdem Güresir, Hartmut Vatter, Patrick Schuss, Johannes Platz, Jürgen Konczalla, Richard
Du Mesnil de Rochement, Joachim Berkefeld, and Volker Seifert. Natural history of small
unruptured anterior circulation aneurysms: a prospective cohort study. Stroke, 44(11):3027–
3031, 2013.

8. Alvaro Valencia, Alvaro Zarate, Marcelo Galvez, and Lautaro Badilla. Non-newtonian blood
flow dynamics in a right internal carotid artery with a saccular aneurysm. International Journal
for Numerical Methods in Fluids, 50(6):751–764, 2006.

9. Jianping Xiang, Sabareesh K Natarajan, Markus Tremmel, Ding Ma, J Mocco, L Nelson
Hopkins, Adnan H Siddiqui, Elad I Levy, and Hui Meng. Hemodynamic–morphologic dis-
criminants for intracranial aneurysm rupture. Stroke, 42(1):144–152, January 2011.

10. David A Steinman, Yiemeng Hoi, Paul Fahy, Liam Morris, Michael T Walsh, Nicolas Aris-
tokleous, Andreas S Anayiotos, Yannis Papaharilaou, Amirhossein Arzani, Shawn C Shadden,
Philipp Berg, Gábor Janiga, Joris Bols, Patrick Segers, Neil W Bressloff, Merih Cibis, Frank H
Gijsen, Salvatore Cito, Jordi Pallarés, Leonard D Browne, and et.al. Variability of computa-
tional fluid dynamics solutions for pressure and flow in a giant aneurysm: The ASME 2012
summer bioengineering conference CFD challenge. Journal of Biomechanical Engineering,
135(2), February 2013.

11. Khalil Khanafer, Joseph Bull, Gilbert Upchurch, and Ramon Berguer. Turbulence significantly
increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise
flow conditions. Annals of Vascular Surgery, 21:67–74, 02 2007.

12. Seung Lee, Sang-Wook Lee, Paul Fischer, Hisham Bassiouny, and Francis Loth. Direct numer-
ical simulation of transitional flow in a stenosed carotid bifurcation. Journal of Biomechanics,
41:2551–61, 08 2008.

13. Laligam Sekhar, Maomin Sun, D Bonaddio, and Robert Sclabassi. Acoustic recordings from
experimental saccular aneurysms in dogs. Stroke, 21:1215–21, 09 1990.

14. Gary Ferguson. Turbulence in human intracranial saccular aneurysms. Journal of Neuro-
surgery, 33:485–97, 11 1970.

15. Yasushi Kurokawa, Seisho Abiko, and Kohsaku Watanabe. Noninvasive detection of intracra-
nial vascular lesions by recording blood flow sounds. Stroke, 25:397–402, 03 1994.

16. L Ridgway Scott. Introduction to Automated Modeling with FEniCS. Computational Modeling
Initiative LLC, 2018.

17. Martin Alnæs, Jan Blechta, Johan Hake, August Johansson, Benjamin Kehlet, Anders Logg,
Chris Richardson, Johannes Ring, Marie E Rognes, and Garth N Wells. The FEniCS project
version 1.5. Archive of Numerical Software, 3(100), 2015.

18. Vicente Hernandez, Jose E Roman, and Vicente Vidal. Slepc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Transactions on Mathematical Software (TOMS),
31(3):351–362, 2005.



References 75

19. Henrik Kjeldsberg, Rami Masri, Nanna Berre, Gabriela Castro, and Ingeborg Gjerde. Flowin-
stabilities. https://doi.org/10.5281/zenodo.5296829, August 2021.

20. L Ridgway Scott. Kinetic energy flow instability with application to Couette flow. Technical
Report TR-2020-07, 2020.

21. Aslsk W Bergersen, Henrik A Kjeldsberg, and Kristian Valen-Sendstad. KVSlab. https:
//github.com/KVSlab, 2021.

22. Laura M Sangalli, Piercesare Secchi, and Simone Vantini. Aneurisk65: A dataset of three-
dimensional cerebral vascular geometries. Electronic Journal of Statistics, 8(2):1879–1890,
2014.

23. Ryan Schmidt and Karan Singh. Meshmixer: an interface for rapid mesh composition. In ACM
SIGGRAPH 2010 Talks, pages 1–1. 2010.

24. MO Khan, DA Steinman, and K Valen-Sendstad. Non-newtonian versus numerical rheology:
Practical impact of shear-thinning on the prediction of stable and unstable flows in intracra-
nial aneurysms. International journal for numerical methods in biomedical engineering,
33(7):e2836, 2017.

25. Benjamin S Aribisala, Zoe Morris, Elizabeth Eadie, Avril Thomas, Alan Gow, Maria C Valdés
Hernández, Natalie A Royle, Mark E Bastin, John Starr, Ian J Deary, and Joanna M Ward-
law. Blood pressure, internal carotid artery flow parameters, and age-related white matter
hyperintensities. Hypertension, 63(5):1011–1018, May 2014.

26. Y Zhang, L Jing, Y Zhang, and et al. Low wall shear stress is associated with the rupture
of intracranial aneurysm with known rupture point: case report and literature review. BMC
Neurol, 16(231), November 2016.

27. Ingeborg Gjerde and L Ridgway Scott. Kinetic-energy instability of flows with slip boundary
conditions. submitted, 2021.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 

Commons license, unless indicated otherwise in a credit line to the material. If material is not 

included in the chapter’s Creative Commons license and your intended use is not permitted by 

statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 

the copyright holder. 

https://doi.org/10.5281/zenodo.5296829
https://github.com/KVSlab
https://github.com/KVSlab
http://creativecommons.org/licenses/by/4.0/


Chapter 7
Investigating the Multiscale Impact of
Deoxyadenosine Triphosphate (dATP) on
Pulmonary Arterial Hypertension (PAH)
Induced Heart Failure

Kristen Garcia1, Marcus Hock1, Vikrant Jaltare1, Can Uysalel2, Kimberly J McCabe3,
Abigail Teitgen1, Daniela Valdez-Jasso1

1 – Dept. of Bioengineering, University of California, San Diego, USA
2 – Dept. of Mechanical and Aerospace Engineering, University of California, San
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Abstract 2-deoxy-ATP (dATP) is a myosin activator known to improve cardiac
contractile force [1]. In vitro studies have shown that dATP alters the calcium
transient profile in addition to the kinetics of the cross-bridge cycle [2]. Furthermore,
in vivo studies of transgenic mice with increased production of dATP show elevated
left ventricular systolic function [3]. Pulmonary arterial hypertension (PAH) is a rare
disease of the pulmonary vasculature in which pressure overload in the right ventricle
results in reduced contractile function and right heart failure [4]. We hypothesize
that dATP may have a therapeutic effect on PAH-induced heart failure, by improving
contractile function and restoring cardiac output and ejection fraction. However,
because the effects of dATP cannot easily be assessed experimentally, we propose
using a computational multiscale modeling approach to predict cardiac function.
By altering parameters in an existing multiscale biventricular cardiac model [5],
we were able to reproduce end-systolic and end-diastolic pressures and volumes
that reflect the PAH condition, as well as healthy hearts. dATP was simulated by
adjusting parameters in the model at the molecular and cellular levels based on
experimental data [1], allowing us to predict the effects of dATP on PAH at the
organ level. Our results show that the molecular effects of dATP can increase cardiac
output and restore ejection fraction in PAH conditions, though at the cost of elevated
mean arterial pressure, and may provide a new approach to treating this disease.
Our multiscale modeling approach paves the way for further studies mapping out
cardiovascular mechanics. As novel therapeutics continue to be discovered, their
application and mechanism can be further explored through these computational
models.
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7.1 Introduction

Pulmonary arterial hypertension (PAH) is a rare, yet aggressive disease with a 3-year
survival rate of 54.9% for humans [6]. This life-threatening disease is characterized
by pulmonary vascular remodeling, is represented by the narrowing of blood vessels
in the lungs, and is indicated by a mean pulmonary arterial pressure (mPAP) above 20
mmHg [7]. PAH results in increased blood pressure which causes pressure overload
in the right ventricle (RV) and leads to chamber remodeling [8]. The function and
morphology of the RV has been found to have a very high correlation with the
outcome of PAH. The RV initially adapts to the pressure overload by increasing
muscle contractility and wall thickness in order to maintain cardiac output (CO),
however, over time will maladapt and right heart failure (RHF) will occur leading
to premature death. RHF is associated with increased filling pressures and dilation,
along with reduced CO, ejection fraction (EF), and contractility [9]. Therapies such
as vasodilator medications can alleviate the symptoms and improve quality of life
for a short period of time [10], but do not work long term and eventually the RV will
fail, leading to death.

2-deoxy-adenosine triphosphate, also known as dATP, is being studied as a po-
tential treatment for heart failure [3]. dATP is a naturally occurring nucleotide that
has been previously found to enhance crossbridge binding and cycling kinetics to
improve contractility in muscle, when used to replace adenosine triphosphate (ATP)
as the energy source [11]. Molecular modeling approaches have demonstrated that
dATP induces allosteric changes in the myosin S1 fragment that lead to more favor-
able electrostatics and accelerated cycling kinetics [12, 13]. Furthermore, previous
in vivo studies have demonstrated using a gene therapy approach to overexpress
ribonucleotide reductase (RNR) [14] to restore function in animal models of heart
failure, but focusing on the function of the left ventricle.

In this paper, we use a multi-scale modeling approach to determine if dATP
can be used as a potential therapeutic for PAH. We combine cellular level models
that include cross-bridge cycling and electrophysiology with an organ level lumped
circulatory model and rat experimental data to predict cardiovascular function of
the RV. We will discuss our in silico investigation of using dATP as a potential
therapeutic for PAH with the use of multiscale models.

7.2 Methods

7.2.1 Cell Level Changes

Tewari et al. [15] have developed a cell level model of cardiomyocyte function
described using a system of ordinary differential equations. While computation-
ally relatively efficient, this model incorporates the essential components such as
mitochondrial energetics, thin filament activation, and detailed description of cross-
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bridge kinetics. Furthermore, we have coupled this model to an electrophysiology
model from Morotti et al. to produce an excitable model [16], while additionally
incorporating a more detailed model of the SERCA pump [17]. As such, this model
provides a means to replicate experiments via detailed simulations. In this work,
we change specific model parameters to account for physical changes caused by the
presence of dATP, as compared to ATP.

7.2.1.1 The SERCA Pump and Calcium transients

The Sarco/Endoplasmic Reticulum ATP-ase (SERCA) is an active pump that trans-
ports calcium-ions from the cytosol to the sarcoplasmic reticulum (SR). SERCA
removes calcium-ions from the cytosol and contributes to maintaining the resting
calcium-ion concentration in the 50 - 100 nM range [18]. In normal conditions, the
SERCA pump consumes energy from the hydrolysis of 1 ATP molecule to trans-
port 2 calcium-ions across the SR membrane [19, 17]. In addition, the SERCA also
transports 2 H+ out of the SR for every 2 Ca2+ flowing inside the SR [17, 20, 21].

Korte et al. [2] have shown that intracellular calcium transients undergo changes
in the presence of dATP. The most notable feature of this dATP-induced effect
is the shortening of the calcium decay time – defined as the time taken for the
calcium-driven fluorescence indicator to reach half its peak value on stimulating the
cardiomyocyte with a specific frequency – without having a significant effect on its
peak amplitude. Korte et al. suggest that altered function of SERCA due to energetic
effects of dATP on the pump rate could potentially explain this phenomenon but the
mechanism still remains debated.

In the present study, we focused on the H+/Ca2+ countertransport in SERCA to
explain the increased Ca2+ pumping preferentially in the decay phase of the calcium-
transient. Previous studies have reported changes in the H+/Ca2+ countertransport
due to conformational changes in the SERCA brought about by pH [22] and the
presence of dATP [23]. To study the changes to H+/Ca2+ countertransport, we varied
the parameter 𝑛𝐻 in the SERCA model from Tran et al. This parameter gives the
stoichiometric coefficient of H+ binding for state transitions 𝑃4→ 𝑃5 and 𝑃8→ 𝑃9
(see Figure 7.1). Based on the results from Tran et al., we varied this parameter by
±10% to fit the experimental calcium transient from Korte et al.

7.2.1.2 Cross-bridge cycling kinetics

Tewari et al. [15] use a cross-bridge model composed of six states (super relaxed,
non-permissive, permissive, weakly bound, strongly bound pre-powerstroke, and
post-powerstroke). By altering the rate-constant parameters that describe transitions
between states, the kinetics and force generation of the cross-bridge cycle can be
modified to replicate the behavior observed in dATP conditions. In this work, we use
experimental measurements from Force-pCa experiments and slack re-stretch (𝑘𝑡𝑟 )
of isolated rat trabeculae in the presence of ATP or dATP [1] to re-parameterize
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Fig. 7.1: SERCA pump reaction schematic. Figure adapted from Tran et al., 2009
[17] with permission from Elsevier and Copyright Clearance Center (License number
5232480317559).

our cross-bridge model, in addition to using Brownian Dynamics (BD) simulation
results from [13].

(a) (b)

Fig. 7.2: (a) Force development measurements from experimental data and model
simulations. ATP conditions shown in black, and dATP conditions in blue. Forces
normalized to ATP experimental measurements at pCa 4. (b) Steady state normalized
force development at different calcium concentrations in the presence of 5 mM ATP
(black) and dATP (blue) from the model and experimental data.

Based on BD simulation results, the 𝑘𝑎 association rate of the myosin head to
actin was increased from 250 𝜇𝑀𝑠−1 to 567 𝜇𝑀𝑠−1. Similarly, the 𝑘𝑑 dissocia-
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tion rate was adjusted proportionately to remain thermodynamically constrained.
In order to reduce overfitting, we manually optimized the fewest number of rate
constants possible that could still characterize the change in behavior as seen by
dATP for the force-pCa and slack re-stretch experiments. While this model does not
reproduce exact measurements from the experimental data, relative changes between
conditions provide an effective means to compare behavior. Figure 7.2 shows that
at different calcium concentrations (pCa 4 and 5.5) dATP increases the rate of force
redevelopment as compared to ATP. The exact rate measurements vary between the
experimental data and model results, but the relative change in the rate constant is
nearly proportional at both calcium concentrations (Table 7.1).

The model was also able to predict changes to the steady state force production
in force-pCa experiments when in the presence of dATP compared to ATP. Most
notably, the model predicted pCa50 and maximal force for dATP was significantly
higher, matching the experimental results (Table 7.2). In total, only five new parame-
ters were manually optimized to match dATP model behavior with experimental, and
an additional three reverse rates adjusted to maintain proper cycle thermodynamics
(Table 7.3).

Table 7.1: Slack Re-stretch 𝑘𝑡𝑟 Measurements.

Experimental 𝑘𝑡𝑟 Model 𝑘𝑡𝑟

Condition ATP dATP Relative Change ATP dATP Relative Change
pCa 4 13.4 16.04 1.2 20.1 24 1.19
pCa 5.5 2.9 5.9 2.03 9.37 15.7 1.68

Table 7.2: Force pCa Measurements.

pCa 50 Max Normalized Force Hill Coefficient

Experiment Model Experiment Model Experiment Model
ATP 5.41* 5.39* 1* 1* 5.4 4.4
dATP 5.54* 5.56* 1.31* 1.4* 4.6 3.3

* p < 0.05 difference between ATP and dATP condition.

7.2.2 Organ Level Model

Previously developed models from Tewari et al. (2016), Bazil et al. (2016), Gao et al.
(2019), and a whole-organ cardiac mechanics model created by Lumens et al. (2009)
are embedded in a lumped circulatory model that is used to simulate whole-body
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Table 7.3: Cross-bridge Model Parameter Changes.

Condition 𝑘𝑎 𝑘𝑑* 𝑘1 𝑘2 𝑘3 𝐾1𝑆𝑅 𝑘𝑐𝑜𝑜𝑝 𝑘−1* 𝑘−2*

ATP 250 304.7 4 157 25 1.3 4 3 4
dATP 567 691.1 6 80 26 1.7 4.2 2 7.8
∗Note:* denotes thermodynamically constrained.

cardiovascular function. TriSeg model created by Lumens et al. (2009) functions as
a biventricular model which simulates left- and right- ventricular mechanics. Data
from each rat is matched to the model which is run for 120 heart beats. Outputs of
this model include values of mean arterial pressure and ejection fraction, along with
plots for predicted right ventricular PV loops for the individual animal.

Experimental research around PAH is being conducted on Sprague Dawley rats
in order to investigate right ventricular function throughout the progression of this
disease. PAH is induced in rats following a Sugen-Hypoxia protocol, in which
Sugen5416 (a vascular endothelial growth factor receptor (VEGFR) inhibitor) is
injected into the rats following a 3-week period of hypoxia (10% oxygen). The rats
are then removed from hypoxia and placed back into normoxia. The rats undergo
open-chest terminal surgeries at different weeks throughout the disease progression.
For the purpose of this project, we were focused on week 21 healthy and PAH induced
male rats. During these open-chest surgeries, a pressure volume (PV) catheter is
inserted into the apex of the RV to create in vivo PV loops. Several PV loops are
recorded in steady-state conditions, with the average of these loops taken for the
purpose of our analysis. The same process can be repeated while the PV catheter is
in the left ventricle, however RV function and morphology is an important indicator
for the severity of PAH making this ventricle the focus of this work.

Using the organ level model to simulate the pressure and flows in the whole-body
[5], the goal was to replicate the experimental PV loops found during open-chest
surgeries. The known values from the surgery day for blood pressure, heart rate,
body weight, LV weight, RV weight, stroke volume, CO, LV diastolic volume, EF,
and volume were inputted into the model and can be found in the supplementary
information Table 0.8. We then found a number of adjustable parameters in the TriSeg
(Heart) model that could be adjusted to replicate the experimental data PV loops. For
both the healthy and PAH case, the stiffness of series element (𝐾𝑆𝐸), LV/RV/Septum
wall volumes (𝑉𝑤𝐿𝑉 , 𝑉𝑤𝑅𝑉 ,𝑉𝑤𝑆𝐸𝑃), and the LV/RV/Septal midwall reference
surface areas (𝐴𝑚𝑟𝑒 𝑓𝐿𝑉 , 𝐴𝑚𝑟𝑒 𝑓𝑅𝑉 , 𝐴𝑚𝑟𝑒 𝑓𝑆𝐸𝑃) were adjusted to define the mass
and geometry of the heart for each individual animal. Table 0.4 shows the relative
changes of each of these parameters for the purpose of this work. The stiffness in the
PAH model is 3-fold greater than that of the healthy case, representing a change that
occurs in the RV during this disease. There are no original values for the 𝐴𝑚𝑟𝑒 𝑓𝐿𝑉 ,
𝐴𝑚𝑟𝑒 𝑓𝑅𝑉 , 𝐴𝑚𝑟𝑒 𝑓𝑆𝐸𝑃 parameters as these vary rat to rat.

We also adjusted inputs for each rat, such as the on rate constant for super relaxed
state (𝐾𝑆𝑅), model parameter for force dependent super relaxed transition (𝐾𝐹𝑜𝑟𝑐𝑒),
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Table 7.4: Adjusted Parameters for TriSeg (Heart) Model.

Original Value Healthy Rat Model PAH Rat Model

𝐾𝑆𝐸 50000 mmHg/𝜇m 80000 mmHg/𝜇m 240000 mmHg/𝜇m
𝑉𝑤𝐿𝑉 (LVW*2/3)/1000/1.05 mL (LVW*2/3)/900/1.2 mL (LVW*2/3)/1600/0.8 mL
𝑉𝑤𝑅𝑉 RVW/1000/1.05 mL RVW/900/1.2 mL RVW/1600/0.8 mL
𝑉𝑤𝑆𝐸𝑃 (LVW/3)/1000/1.05 mL (LVW/3)/900/1.2 mL (LVW*2/3)/1600/0.8 mL
𝐴𝑚𝑟𝑒 𝑓𝐿𝑉 N/A 2.1 𝑐𝑚2 3.09 𝑐𝑚2

𝐴𝑚𝑟𝑒 𝑓𝑅𝑉 N/A 3.25 𝑐𝑚2 1 𝑐𝑚2

𝐴𝑚𝑟𝑒 𝑓𝑆𝐸𝑃 N/A 1.2 𝑐𝑚2 4.1 𝑐𝑚2

∗LVW is the weight of the left ventricle and RVW is the weight of the right ventricle.

ATP hydrolysis rate (𝑥𝐴𝑇𝑃𝑎𝑠𝑒), and the resistances across PAH and healthy rats
(𝑅𝑆𝐴,𝑅𝑇𝐴𝐶 ). These adjusted values, along with the inputs for each rat can be found
in the supplementary information. Although, we were not able to replicate the loops
exactly, we were able to get representative loops from the model that can be used to
show relative changes from healthy to diseased PV loops. We were able to generate
representative PV loops using the model that demonstrate relative changes between
healthy and diseased conditions.

7.3 Results

We studied the impact of altered H+/Ca2+ countertransport on intracellular calcium-
transient by varying the parameter 𝑛𝐻 from the Tran et al. [17] SERCA model. We
found that an 8% increase in this parameter (from 2→ 2.16) was able to reproduce the
shortening of decay-time observed in Korte et al. [2] without affecting the amplitude
of the calcium-transient (Figure 7.3a). This change is consistent with the findings
from Tran et al. which predicts ±10% [17] change to 𝑛𝐻 during conformational
changes to the SERCA pump. A caveat, however, is that we were able to observe a
decrease in the decay-time of the calcium-transient by 33.4% as compared to about
that of ≈ 50% in Korte et al. [2] (see Figure 7.3b). This discrepancy could likely be
due to difference in concentrations of metabolites like MgATP and MgADP between
the experiment and the model and needs further investigation. Taken together, these
results indicate that altered H+/Ca2+ countertransport could potentially explain the
results from Korte et al. [2] of the shortening of intracellular calcium transient
decay-time without affecting the amplitude.

We combined the optimized parameters from the coupled SERCA and electro-
hysiology with the altered sarcomere XB model to predict functional changes in
cardiac muscle twitch. Because the XB cycling parameterization was carried out in
100% dATP conditions, while calcium handling measurements were carried out in
approximately 2% dATP concentration, the optimized parameters are used in two
different simulated conditions as seen in Figure 7.4. When the XB cycle parameters
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are used to simulate the 2% dATP case, they are scaled 2% linearly interpolated to
the new fitted parameters in Table 7.3. The 𝑛𝐻 parameter remains fixed at 2.16 in
both cases. Comparable with experimental twitch observations, our results show that
there is increased force production in the presence of dATP, as a result of altered
XB kinetics. Furthermore, the twitch has an accelerated relaxation in the presence of
dATP compared to ATP, due to adjustments in SERCA calcium handling parameters.

(a) (b)

Fig. 7.3: (a) Calcium transient for 1 Hz stimulation for different values of 𝑛𝐻 . (b)
Comparison of calcium transient from model prediction with Korte et al., 2011 data.

Fig. 7.4: Simulated cardiomyocyte twitch in the presence of ATP (black) and dATP
(blue). The dotted line represents 2% simulated dATP and solid line represents 100%
simulated dATP.

Mean arterial pressure (MAP) otherwise known as mPAP, is the determining
metric for whether PAH has developed (MAP > 20 mmHg) or not (MAP < 20
mmHg). Other important factors when determining the function of the heart include
EF, SV, and CO. Compared to the healthy case, in heart failure the MAP increases,
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(a) (b)

Fig. 7.5: Experimental rat right ventricle pressure volume loops for (a) Healthy and
(b) PAH cases.

(a) (b)

Fig. 7.6: (a) Model healthy rat right ventricle pressure volume loop. (b) Model PAH
rat right ventricle pressure volume loops, without dATP treatment (yellow) and with
dATP treatment (blue).

Table 7.5: Experimental versus Model Outputs for a Healthy Rat.

Mean Arterial Pressure Ejection Fraction Stroke Volume Cardiac Output

Model 11.555 mmHg 78.854 % 0.230 mL 75.757 mL/min
Experimental Data 17.940 mmHg 49.627 % 0.123 mL 38.742 mL/min
Ratio (model/exp) 0.644 1.589 1.870 1.990
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Table 7.6: Experimental versus model outputs for a PAH Rat.

Mean Arterial Pressure Ejection Fraction Stroke Volume Cardiac Output

Model 35.962 mmHg 62.182 % 0.150 mL 35.987 mL/min
Experimental Data 39.730 mmHg 22.595 % 0.150 mL 19.009 mL/min
Ratio (model/exp) 0.905 2.752 1.000 1.890

accompanied by a decrease in EF, SV, and CO. Although we were unable to replicate
the experimental PV loops perfectly using the model, we were able to demonstrate
the increase in MAP and decrease in EF, SV, and CO as shown in Table 0.5 and
Table 0.6. Parameter tuning around calculating the EF requires further investigation,
as the values calculated were 1.5-fold greater for the model in the healthy case and
almost 3-fold greater in the PAH case.

Organ scale simulations in the presence of dATP showed variable therapeutic
potential to treat PAH depending on dosage (Figures 7.5b and 7.6). When PV
loops were simulated in the presence of 2% dATP, there was a reduction of MAP,
likely due to the accelerated diastolic relaxation, however, the cardiac output in
addition to ejection fraction were also reduced (Table 7.7). When the PAH condition
was simulated with 100% dATP, cardiac output was restored and ejection fraction
improved significantly, yet this came at the cost of further elevated MAP. The elevated
MAP indicates dATP may not be an ideal therapy to treat PAH. Future work will
focus on identifying a critical dosage of dATP to take advantage of the improved
diastolic relaxation and increase cardiac output.

Table 7.7: Model Results from dATP Organ Simulation.

Healthy ATP PAH ATP PAH + 2% dATP PAH + 100% dATP

MAP (mmHg) 11.6 36.0 26.4 48.1
EF (%) 78.9 62.2 45.1 93.4
SV (mL) 0.230 0.150 0.113 0.2116
CO (mL/min) 75.8 36.0 27.1 50.8

7.4 Discussion and Conclusion

In this paper, we have demonstrated that the cellular level models provide a framework
to effectively simulate the behavior of dATP. Considering the interplay between our
model and experimental data, there is a quantitative agreement of the theoretical
results with the experimental observations, suggesting that our model captures the
essential physics involved in the mechanics of PAH induced heart failure. However,
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there is a variation between experimental data and mathematical model. From these
results, we can conclude the model replicates the experimental data with better
precision for the PAH rat case compared with the healthy rat, although further
parameter tuning is needed to advance the capabilities of the whole-organ model.
Furthermore, the cell level dATP parameterization may require more detailed scaling
approaches to accurately reflect how contraction changes as a function of dATP
concentration. The next opportunity, in our view, lies in exploring this behaviour
using the addition of noise terms by transforming our ODE model to Stochastic
Differential Equation (SDE) model. A stochastic model will provide a method to
study the beat to beat variability, and better characterize model stability.

From a modeling standpoint, series element resistance and cross-bridge kinet-
ics play important roles in the mechanics of dATP on PAH induced heart failure.
On the other hand, our model is not sensitive to variation in stiffness parameters
and compliance parameters which are proximal aortic compliance, systemic arterial
compliance, systemic venous compliance, and pulmonary arterial compliance. Be-
cause PAH is characterized by stiffening of the right ventricle, this is a significant
limitation, and a more detailed model may be necessary to more accurately represent
PAH. We showed that while this model can individually characterize the effects
of PAH and dATP, it appears that dATP may have variable efficacy depending on
the PAH conditions. As such, dATP may not be an ideal candidate to treat PAH,
specifically given that dATP increases force and pressure in a high pressure disease.
Additionally animal specific simulations are necessary for a robust prediction of
dATP on function. This multiscale modeling approach shows that dATP is a promis-
ing therapeutic to treat PAH, however further detailed modeling and likely in vivo
studies are necessary next steps.
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Table 7.8: Experimental Inputs for Rats on 𝐷𝑎𝑡𝑎1.𝑥𝑙𝑠𝑥.

Healthy Rat Data PAH Rat Data

Body Weight (g) 640.9 646
LV Weight (mg) 484.11 593.73
RV Weight (mg) 340.6 776.6
HW (mg) 824.71 1370.33
LW (mg) 2341.38 3804.81
Heart rate (bpm) 329.38 239.91
SV 159.87 334.03
CO 52.66 80.14
LV diastolic Volume 500 408.02
EF (%) 74.47 81.87
𝑉𝑝𝑟𝑒 792.0006 853.5882
𝑉𝑝𝑜𝑠𝑡 1052.722 24519.39
LV Vol d 416.7285 518.4661
LV Vol s 140.8056 284.4906
TAN 5.290799/7.623629 5.054202/7.282712
Crtot 21.00743/30.27007 18.36395/26.46103
Mito capacity 394.5743 342.2821

Table 7.9: 𝐴𝑑𝑗𝑢𝑠𝑡𝑎𝑏𝑙𝑒_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠_𝑡𝑎𝑏𝑙𝑒_𝑟𝑒𝑠𝑡 Inputs.

Healthy Rat Model PAH Rat Model

𝐴𝑚𝑟𝑒 𝑓𝐿𝑉 𝑐𝑚
2 2.1 3.09

𝐴𝑚𝑟𝑒 𝑓𝑅𝑉 𝑐𝑚
2 3.25 1

𝐴𝑚𝑟𝑒 𝑓𝑆𝐸𝑃 𝑐𝑚
2 1.2 4.1

𝐾𝑆𝑅 15.46914 21.511
𝐾𝐹𝑜𝑟𝑐𝑒 1.551729 2.1578
BV 1.101425 0.780733
𝑅𝑆𝐴 4 50
𝑅𝑇𝐴𝐶 26 12.46694
𝑥𝐴𝑇𝑃𝑎𝑠𝑒 1.243375 1.074844
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Abstract

Immature cardiomyocytes, such as those obtained by stem cell differentiation,
have been shown to be useful alternatives to mature cardiomyocytes, which are
limited in availability and difficult to obtain, for evaluating the behaviour of drugs
for treating arrhythmia. In silico models of induced pluripotent stem cell-derived
cardiomyocytes (iPSC-CMs) can be used to simulate the behaviour of the transmem-
brane potential and cytosolic calcium under drug-treated conditions. Simulating the
change in action potentials due to various ionic current blocks enables the approxi-
mation of drug behaviour. We used eight machine learning classification models to
predict partial block of seven possible ion currents (𝐼𝐶𝑎𝐿 , 𝐼𝐾𝑟 , 𝐼𝑡𝑜, 𝐼𝐾1, 𝐼𝑁𝑎, 𝐼𝑁𝑎𝐿
and 𝐼𝐾𝑠) in a simulated dataset containing nearly 4600 action potentials represented
as a paired measure of transmembrane potential and cytosolic calcium. Each ac-
tion potential was generated under 1 𝐻𝑧 pacing. The Convolutional Neural Network
outperformed the other models with an average accuracy of predicting partial ionic
current block of 93% in noise-free data and 72% accuracy with 3% added random
noise. Our results show that 𝐼𝐶𝑎𝐿 and 𝐼𝐾𝑟 current block were classified with high
accuracy with and without noise. The classification of 𝐼𝑡𝑜, 𝐼𝐾1 and 𝐼𝑁𝑎 current block
showed high accuracy at 0% noise, but showed a significant decrease in accuracy
when noise was added. Finally, the accuracy of 𝐼𝑁𝑎𝐿 and 𝐼𝐾𝑠 classification were
relatively lower than the other current blocks at 0% noise and also showed a signifi-
cant drop in accuracy when noise was added. In conclusion, these machine learning
methods may present a pathway for estimating drug response in adult phenotype
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cardiac systems, but the data must be sufficiently filtered to remove noise before
being used with classifier algorithms.

8.1 Introduction

Drugs that act on the cardiovascular system may cause severe arrythmias, therefore
animal or in vitro models are widely used for testing to validate the drug effect. The
use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
and microphysiological systems represents a new era in assessing drug-induced
cardiotoxicity and screening of drug effects in microtissues [1, 2]. Even though
hiPSC-CMs are one of the most developed and well-characterized model systems
derived from induced pluripotent stem cells (iPSCs), there are still some limitations.
Intraindividual variability, the lack of reproducibility of results across multiple labo-
ratories, and a long maturation process are some of the biggest challenges in this field
[2]. A recent study found the maturation process to take up to 8 months [3]. Another
significant limitation is the small sample size that is being used in current studies
[2], which limits the feasibility of using machine learning models. In this paper we
show how simulated action potentials (AP) from in silico models can be used to
train supervised machine learning models to classify partial ionic current blocks.
Despite using simulated data sampled from a virtual population of hiPSC-CMs, this
study demonstrates the feasibility of using machine learning models to classify ionic
current block from action potential recordings.

8.2 Methods

This section describes the data used in this study and some pre-processing applied
to the data. The different model architectures tested and the processes of model
selection and hyperparameter tuning are described. Finally, the different scoring
metrics used to analyze classifier performance are presented and explainable AI is
discussed.

8.2.1 Data

The data set used in this study contained 4582 simulated action potentials from
hiPSC-CMs under both normal conditions (control case, not drug-treated) and drug-
treated conditions. Partial block of ionic currents was simulated in the cell model
by reducing the maximal conductances of the corresponding channels. Each signal
under drug-treated conditions was subtracted from the paired signal under normal
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conditions such that the resulting signal represented the change in the action potential
due to drug treatment.

The seven current blocks that were simulated in this study were 𝐼𝐶𝑎𝐿 , 𝐼𝐾𝑟 , 𝐼𝑡𝑜,
𝐼𝐾1, 𝐼𝑁𝑎, 𝐼𝑁𝑎𝐿 and 𝐼𝐾𝑠 . Figure 8.1 presents an overview of an action potential with
different degrees of ion current block.

Fig. 8.1: Action potentials measured in terms of transmembrane voltage and cytosolic
calcium with different percentages of ion current block. The f ion current block
(shown in row three and four in the third column) is not present in the dataset used
in this study.

Each simulated action potential was generated under 1𝐻𝑧 pacing and was repre-
sented as two signals: transmembrane voltage (𝑉𝑡 ) and cytosolic calcium (Ca2+). The
two signals were represented as time-series with a length of 200, with 5ms between
each time point.

The ground truth labels in the data set assumed that the ion channel was either
blocked (1) or not blocked (0). Considering all seven ion currents, this gives a
theoretical total of 128 unique combinations. All of the possible combinations were
represented in the data set except for the case in which all currents are completely
open, resulting in an actual total of 127 combinations.

27−1 = 127
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The combinations were not equally represented in the data set; the least repre-
sented combination of ion current blocks had 27 examples, while the most repre-
sented combination had 40 examples. The mean and standard deviation were 36.1
and 2.1 respectively, which makes the data set slightly imbalanced and can translate
to imbalanced classifier training.

8.2.2 Preprocessing

8.2.2.1 Noise

To provide more realistic signals as input to the classification models, random Gaus-
sian noise was added to the simulated 𝑉𝑡 and Ca2+ signals. Noise (within a certain
percentage of the standard deviation of the mean across all signals in the data set)
was incorporated into the raw signal by adding a vector of random noise of equal
length as the signal to the signal itself. Listing 8.1 shows a code snippet of the noise
generation function. 1

Listing 8.1: The Python function that was used to add noise to the ion current signals.
def add_no i s e (X, p e r c e n t = 5 . 0 ) :

s t d = np . nanmean (X, a x i s = 0 ) . s t d ( )
n o i s e = np . random . normal ( 0 , s t d ,X. shape )∗ p e r c e n t / 100
X_noise = X + n o i s e
re turn X_noise

Noise levels of 0, 1, and 3 percent were added to all data and tested with all
classifier models in this study.

8.2.2.2 Normalizing

After the addition of noise, the signals were normalized using min-max normaliza-
tion. Equation 8.1 shows how 𝑥𝑖 , which is the 𝑖-th element in X, can be normalized
between 0 and 1 using the largest value in X, 𝑥𝑚𝑎𝑥 , and the smallest value, 𝑥𝑚𝑖𝑛.

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

(8.1)

1 The rest of the code developed in this study is available here: https://github.com/
SSCP2021-group-9/hiPSC-CMs-ionic-current-block-detecion

https://github.com/SSCP2021-group-9/hiPSC-CMs-ionic-current-block-detecion
https://github.com/SSCP2021-group-9/hiPSC-CMs-ionic-current-block-detecion
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8.2.2.3 Subtract drug signals from control signals

After the addition of noise and the normalization of the signals between 0 and 1, the
𝑉𝑡 signal from each ion’s blocked case was subtracted from the 𝑉𝑡 signal from the
control case. The same was done for the Ca2+ signal.

8.2.2.4 𝑽𝒕 and Ca2+ concatenation

Finally the𝑉𝑡 and the Ca2+ signals were concatenated, meaning both𝑉𝑡 and Ca2+ for
one simulated AP were appended into a single array. Figure 8.2 shows an example
of the concatenation for all 𝐼𝐾𝑟 current blocked signals with and without noise.

(a) Signal derived from transmembrane voltage
with Kr block and 0% noise.

(b) Signal derived from transmembrane voltage
with Kr block and 3% noise.

(c) Signal derived from cytosolic calcium with
Kr block and 0% noise.

(d) Signal derived from cytosolic calcium with
Kr block and 3% noise.

Fig. 8.2: Signals derived from the transmembrane voltage and cytosolic calcium
signals after the preprocessing steps for the 𝐼𝐾𝑟 channel. Figures (a) and (c) show
the signals without noise, while (b) and (d) show the same signals with noise.
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8.2.3 Multi-label classification methods

This section explains the three methods used to transform single-label classification
methods into multi-label methods. These methods were implemented using Scikit-
multilearn [4].

8.2.3.1 Binary relevance

The binary relevance method is considered to be the simplest strategy for problem
transformation. It converts a multi-label problem into several independent binary
classification problems [5].

8.2.3.2 Classifier chains

Similar to the binary relevance method, the classifier chain trains one model per
class [6]. However, a notable difference between the methods is that all previous
predictions are taken in addition to the input features to predict the next model. The
𝑛-th classifier in the chain is trained on the original input features in addition to the
𝑛−1 classification results.

8.2.3.3 Label Powerset

A label powerset problem transformation converts a multi-label classification into
a multi-class problem with one multi-class classifier trained on all unique label
combinations found in the training data [4]

8.2.4 Model architectures

8.2.4.1 Gaussian Naive Bayes

Naive Bayes (NB) is a series of classification methods that relies on Bayes theorem
to make predictions, and Gaussian NB (GNB) is a variant of NB in which the data
is assumed to follow a normal distribution.

If the input signal is x, the likelihood of the signal belonging to a class 𝐶𝑘 is

𝑝 (𝐶𝑘 | x) =
𝑝 (𝐶𝑘) 𝑝 (x | 𝐶𝑘)

𝑝(x) ∝ 𝑝 (𝐶𝑘)
𝑛∏
𝑖=1

𝑝 (𝑥𝑖 | 𝐶𝑘) . (8.2)

Since it would be the same for each class, 𝑝(x) can be ignored. The proportion of
training samples belonging to the class is 𝑝 (𝐶𝑘). Further, the mean value 𝜇𝑘 and
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the standard deviation 𝜎𝑘 for a class 𝐶𝑘 can be used in the formula for Gaussian
probability distribution to calculate 𝑝 (𝑥𝑖 | 𝐶𝑘):

𝑝 (𝑥𝑖 | 𝐶𝑘) =
1

𝜎𝑘
√

2𝜋
𝑒
− 1

2

(
𝑥𝑖−𝜇𝑘
𝜎𝑘

)2

(8.3)

The input is assumed to belong to the class with the highest likelihood [7].
This study used 3 versions of the GNB classifier: one version using the binary rel-

evance method, another using the classifier chain method, and the last version using
the label powerset method. The classifiers were implemented using sci-kit learn and
scikit-multilearn [8, 4]. During training of these 3 GNB models the hyperparameters
shown in Table 8.1 were tuned.

Parameter Values
var smoothing [1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8 ]

Table 8.1: Naive Bayes hyperparameters.

8.2.4.2 Support Vector Classifier

A Support Vector Machine (SVM) is a powerful method in machine learning. It
is capable of doing linear and nonlinear classification, regression, and even outlier
detection. A SVM used for classification purposes is sometimes called a Support
Vector Classifier (SVC). SVCs are particularly well suited for classification of com-
plex but small or medium-sized data sets. The mathematics behind the SVM/SVC
relies on the definition of hyperplanes and the definition of a margin which separates
classes of variables [9].

In this study the SVC was implemented in the label powerset algorithm using
sci-kit learn. Table 8.2 shows the hyperparameters tuned in this study and the values
used in the search space.

Parameter Values
C [100, 1, 0.01]
Kernel [linear, poly, rbf, sigmoid]

Table 8.2: Support Vector Machine hyperparameters.
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8.2.4.3 XGBoost

XGBoost is a scalable machine learning system for tree boosting [10]. This algorithm
has shown promising results in many classification tasks. In this paper the XGBoost
classifier is used inside the previously described label powerset algorithm. The model
was implemented using a Python package developed by Chen, T. & Guestrin, C. 2016
[10].

Table 8.3 contains the tuned hyperparameters and the values used in the search
space.

Parameter Values
n estimators [1, 5]
min child weight [1, 5]
gamma [0.5, 1]
subsample [0.8]
colsample bytree [0.8]
max depth [3, 5]

Table 8.3: XGBoost hyperparameters.

8.2.4.4 Feed Forward Neural Network

Feed forward neural networks (FFNN), also called fully connected NN and multi-
layer perceptrons, are the simplest form of neural networks. They consist of many
nodes ordered into layers. The first layer is the input layer, which would contain the
input features used in making a prediction. The last layer is the output layer, where
each node represents the prediction for each of the labels. There are several layers
between the input and output layers called hidden layers. Each node is connected
to all the nodes in the previous layer, meaning that the value of a node depends on
all the nodes in the previous layer. The strength of the connection depends on the
internal weights and biases of the network, which are static for all predictions. The
FFNN is trained using a process called backpropagation, which updates the internal
variables using the gradient of the loss for a prediction [11].

An example of the structure of a FFNN can be seen in Figure 8.3.
The neural network was implemented in Python using Sci-kit learn [8]. Table 8.4

shows the hyperparameters that were tuned during the model development.

8.2.4.5 Convolutional Neural Network

The convolutional neural network used in this study was inspired by the the encoder
model used in Fawaz HI et al 2019 [11]. The architecture of the encoder model is
shown in Figure 8.4. The CNN model had 7 output neurons, equaling the number of
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Fig. 8.3: An example of the structure of a feed forward neural network. Each node
in one layer is connected to all the nodes in the next layer. Here we have 𝑛 input
features, 2 hidden layers with 6 nodes each, and 4 output nodes.

Parameter Values
activation ReLU
solver [adam]
hidden_layer_sizes (100, )
alpha [0.0001]
batch size [50, 100, 200]
learning rate init [0.001]
learning rate [adaptive]
max iter [50, 100, 200]

Table 8.4: Neural Network hyperparameters.

classes in the dataset. A Sigmoid activation function was used in the final layer and
binary cross-entropy was used as the loss function (Equation 8.4). The model was
implemented in Python using Keras and Tensorflow [12, 13]. The hyperparameters
tuned during training are shown in Table 8.5.

L(𝑦, �̃�) = −(𝑦 log �̃� + (1− 𝑦)𝑙𝑜𝑔(1− �̃�)) (8.4)

Parameter Values
epochs [20, 60, 100]
batch size [20, 60, 100]

Table 8.5: Convolutional Neural Network hyperparameters.
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Fig. 8.4: The architecture of an encoder model. Each block illustrates a layer or a
mathematical operation. The figure is obtained from B.Singstad et al. 2021 [14] with
permission from the author.

8.2.4.6 Recurrent Neural Network

We developed a recurrent neural network (Figure 8.5) using a bidirectional long
short-term memory (LSTM) block, a normal LSTM block, a dense layer with seven
sigmoid outputs (one for each class), and a binary cross-entropy function as the loss
function (Equation 8.4). The model was implemented in Python using Keras and
Tensorflow [12, 13]. The hyperparameters that were tuned during training are shown
in Table 8.6.

Fig. 8.5: The architecture of the recurrent neural network. Each block illustrates a
layer or a mathematical operation.
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Parameter Values
epochs [20, 60, 100]
batch size [20, 60, 100]

Table 8.6: Recurrent Neural Network hyperparameters.

8.2.5 Model selection and hyperparameter tuning

The best models and hyperparameters were selected using nested cross-validation.
A 10-fold stratified cross-validation was used as the outer loop and a regular 3-
fold cross-validation was used as the inner loop. The number of inner loop cross-
validations was equal to the number of possible combinations of hyperparameter
settings in the search space. After being selected in the inner loop, the optimal
hyperparameters were applied to the whole training data set in the outer loop.

8.2.6 Scoring and metrics

Accuracy, recall and precision were used to assess the performance of the eight
models in this study.

8.2.6.1 Accuracy

The accuracy for each single channel (Equation 8.5) and the average accuracy across
all channels (Equation 8.6) are both reported for each model. The accuracy score
compares the predicted label (�̂�) with the true label (𝑦). In Equations 8.5 and 8.6, 𝑛𝑠
is the number of samples in the data set.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, �̂�) = 1
𝑛𝑠

𝑛𝑠−1∑︁
𝑖=0

1 · ( �̂�𝑖 = 𝑦𝑖) (8.5)

In Equation 8.6, 𝑛𝑐 is the number of classes from which the mean is calculated.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, �̂�) = 1
𝑛𝑐

𝑛𝑐−1∑︁
𝑗=0

1
𝑛𝑠

𝑛𝑠−1∑︁
𝑖=0

1 · ( �̂�𝑐𝑖 = 𝑦𝑐𝑖 ) (8.6)

8.2.6.2 Recall and precision

Precision and recall are two scoring metrics that give a number between 0 and 1. The
precision score calculates the number of positive predictions that actually belong to
the positive class, as seen in Equation 8.7. Recall, on the other hand, gives a score
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that quantifies the ratio of positive predictions made to all positive labels in the data
set, as seen in Equation 8.8.

Precision =
TP

TP+FP
(8.7)

Recall =
TP

TP+FN
(8.8)

8.2.7 Explainable AI

Advanced AI models, such as CNN models, have been traditionally considered "black
boxes" because until recently it has been impossible to explain their predictions [15].
However, a new discipline called explainable AI is making the decision basis more
transparent. Explainable AI has the potential to reveal new features that could be
of clinical importance. For example, explainable AI has been used to reveal new
features on the electrocardiogram (ECG) that can potentially be used to detect
particular gene mutations (Figure 8.6) [16]. We hypothesized that similar techniques
would be helpful to highlight patterns in the data set used in this study, so local
model agnostic explanations (LIME) were used to explain the predictions of the
most advanced models.

8.2.7.1 LIME (Local Interpretable Model-Agnostic Explanations)

An example of a popular Python framework that can be used to implement local
model agnostic explanations is LIME. By observing the classification result of
a model, LIME makes small changes to the input data and trains a linear and
explainable surrogate model. This process reveals the relative importance of the
different properties in the input data [18].

In this study the linear surrogate model was trained to explain the CNN model. The
surrogate model was trained on the same data set as the CNN model and validated
on the same model as the CNN model.

8.3 Results

Figure 8.7 shows the results of the outer loop in the nested cross-validation, which
was used to assess the accuracy of the models. The CNN model achieved the highest
accuracy across all channels at three levels of noise with an average accuracy of 93%
at 0% noise, 81% at 1% noise and 72% at 3% noise.
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Fig. 8.6: Explainable AI techniques used on ECGs to explain features such as PR
interval (a), QT-interval (b), QRS segment (c), J-point elevation (d), T-wave am-
plitude (e), R-wave amplitude (f) and heart rate (g). This figure is taken from [17]
with permission from the authors and the publisher as determined by the Creative
Commons CC BY license (https://creativecommons.org/licenses/).

8.4 Discussion

This study shows that signals derived from simulated action potentials can be used
as inputs to train a supervised machine learning model and to classify partial block
of specific ionic currents. The model that performed best in this study was a Con-
volutional Neural Network classifier, which achieved an average accuracy across all
ion currents of 93% at 0% noise, 81% accuracy at 1% noise and 72% accuracy at
3% noise.

The findings shown in Figure 8.7 state that the CNN model had an accuracy close
to 100% in classifying partial block of 𝐼𝐶𝑎𝐿 , 𝐼𝐾1, 𝐼𝐾𝑟 , 𝐼𝑁𝑎 and 𝐼𝑡𝑜 when no noise
was added. The 𝐼𝐾1, 𝐼𝑁𝑎 and 𝐼𝑡𝑜 currents showed a significant drop in accuracy
when noise was added. Conversely 𝐼𝐶𝑎𝐿 and 𝐼𝐾𝑟 showed little or no decrease in
accuracy when noise was added. It seems that the classification of 𝐼𝐶𝑎𝐿 and 𝐼𝐾𝑟 is

https://creativecommons.org/licenses/
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(a) CaL accuracy. (b) K1 accuracy.

(c) Kr accuracy. (d) Ks accuracy.

(e) Na accuracy. (f) NaL accuracy.

(g) to accuracy.

Fig. 8.7: Classification accuracy for each individual ion channel represented as
boxplots. The values shown represent the 10-fold cross-validated accuracy.
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less vulnerable to noise than the 𝐼𝐾1, 𝐼𝑁𝑎 and 𝐼𝑡𝑜 currents. It is possible that, as
shown in Figure 8.1, 𝐼𝐶𝑎𝐿 and 𝐼𝐾𝑟 current block have a relatively large impact on
the morphology of the action potential, while blocking 𝐼𝐾1, 𝐼𝑁𝑎 and 𝐼𝑡𝑜 has less
impact on the action potential. This observation may support the hypothesis that
classification of ion current block is increasingly vulnerable to noise with decreasing
impact of the current on action potential morphology.

The mean cross validated accuracy of 𝐼𝑁𝑎𝐿 and 𝐼𝐾𝑠 current block classification
were 84% and 72% even at 0% noise. This was somewhat surprising because the
changes in the action potential when 𝐼𝑁𝑎𝐿 and 𝐼𝐾𝑠 currents are blocked seem to be
equally large or larger than action potentials with 𝐼𝑁𝑎 and 𝐼𝑡𝑜 block in Figure 8.1.
Experiments in this study show that the class activation for 𝐼𝐾𝑠 is high for 𝐼𝐶𝑎𝐿 , 𝐼𝐾𝑟
and 𝐼𝑡𝑜 blocks. The 𝐼𝑁𝑎𝐿 block also shows high activation in signals labeled with
𝐼𝐶𝑎𝐿 , 𝐼𝐾𝑟 and 𝐼𝐾𝑠 .

(a) 𝐼𝐾𝑠 block interpreted as 𝐼𝐾𝑠 block with a probability of 0.90.

(b) 𝐼𝐾𝑠 block interpreted as 𝐼𝐾𝑠 block with a probability of 0.98.

Fig. 8.8: Activation map of the CNN classifier model for a time series input cor-
responding to sample cases with partial block of the 𝐼𝐾𝑠 current only. The green
line is the input to the classifier, representing the change in voltage and intracellular
calcium due to partial block of 𝐼𝐾𝑠 . Red regions along the time series indicate a
positive activation for 𝐼𝐾𝑠 block (label is 1), while blue regions indicate negative
activation for 𝐼𝐾𝑠 block (label is 0).
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The high accuracy of the best classifier model, despite a large degree of variability
within the virtual hiPSC-CM population, demonstrates the robustness of this machine
learning approach. Figure 8.8 shows two sample cases of 𝐼𝐾𝑠 partial block where the
CNN classifier model correctly predicted the class with a probability of over 96%.
Although the intracellular calcium signals have a different morphology, especially in
the rate of repolarization, the classifier identified the correct channel block for both
cases with a high degree of confidence. This is likely due to the similarities in the
input time series,𝑉𝑡𝑑 −𝑉𝑡𝑐 and 𝐶𝑎2+

𝑑 - 𝐶𝑎2+
𝑐 (green line, Figure 8.8). Furthermore,

the classifier was able to make a correct prediction based on an input with small
values relative to the original voltage and intracellular calcium signals; the control
and drug-treated traces were nearly indistinguishable to the human eye. This suggests
the classifier may be robust for cases with both small and large degrees of channel
block.

Figure 8.8 also shows the activation map of the CNN classifier model for both
cases of 𝐼𝐾𝑠 partial block, with red regions of the time series corresponding to posi-
tive activation for 𝐼𝐾𝑠 block and blue regions corresponding to negative activation for
𝐼𝐾𝑠 block. The darkest, highest frequency of red regions are found in the late phase
of repolarization for both cases, suggesting that this region is the most important for
determining class.

Figure 8.8a shows that the no-block classification is most pronounced for the
voltage signal, while the block classification is most pronounced for the calcium
signal. In Figure 8.8b the opposite is shown; the no-block classification is most
pronounced for the calcium signal, while the block classification is most pronounced
for the voltage signal. These conflicting results could suggest that both signals are
relatively equal in importance when making a prediction.

The activation map provides meaningful insight into the input of the classifier
and can help guide strategies for improving data collection and post-processing,
ultimately improving prediction of the specific drug effect in question.
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8.5 Conclusion

The purpose of this study was to investigate whether machine learning models are
capable of detecting partial block of specific ionic currents from the change in
morphology of an action potential. The results of this investigation show that a CNN
model achieved the highest average accuracy in classifying ionic current block. The
study also shows how the classifier performance is affected due to various levels
of noise in the data. Although this study is based on simulated action potentials,
the findings show the importance of filtering noise from measured signals, which
may have implications in future studies that use action potential recordings of in
vitro hiPSC-CMs. The study also showed that explainable AI methods can provide
meaningful insight into the input of the classifier and can help guide strategies for
improving both data collection and post-processing.
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