Skip to main content

Bioethanol: An Overview of Current Status and Future Direction

  • Chapter
  • First Online:
Bioethanol Production

Abstract

As a biofuel, bioethanol is one of the most intriguing because of its beneficial environmental impact. It is currently made primarily from sugar and starch-containing raw ingredients. Most biofuels may be used either as a stand-alone fuel or in a blend with gasoline. Ethanol is by far the most common type. Raw materials for ethanol manufacturing include sugars, starches, and lignocellulosic materials, as well as algae biomass. This chapter addresses overview of several aspects of bioethanol production, such as worldwide trends, diverse raw materials, the status and recent advancements of applicable technologies, biorefinery aspects, as well as the benefits and drawbacks of fuel ethanol. Currently, global bioethanol output is at an all-time high. Bioethanol looks to have a bright future because there is a strong need for sustainable energy sources to decrease reliance on foreign oil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27.

    Article  CAS  Google Scholar 

  2. Haveren, J. V., Scott, E. L., & Sanders, J. (2008). Bulk chemicals from biomass. Biofuels, Bioproducts and Biorefining: Innovation for a Sustainable Economy, 2(1), 41–57.

    Article  CAS  Google Scholar 

  3. Balat, M. (2009). New biofuel production technologies. Energy Education Science and Technology Part A, 22(2), 147–161.

    CAS  Google Scholar 

  4. Lashinsky, A., & Schwartz, N. D. (2006). How to beat the high cost of gasoline. Fortune153(2), 74

    Google Scholar 

  5. Lin, Y., & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Applied microbiology and Biotechnology, 69(6), 627–642.

    Article  CAS  PubMed  Google Scholar 

  6. Sönnichsen, N. (2021). Fuel ethanol production worldwide in 2020, by country. Retrieved from statista: https://www.statista.com/statistics/281606/ethanol-production-in-selected-countries/

  7. Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., Janu, K. U., Sajna, K. V., Rajasree, K. P., & Pandey, A. (2010). Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresource Technology, 101(13), 4826–4833.

    Article  CAS  PubMed  Google Scholar 

  8. Biofuels make a comeback despite tough economy. World Watch Institute. 〈http://www.worldwatch.org/biofuels-make-comeback-despite-tough-economy〉. Retrieved on August 31, 2011.

  9. Dufey, A. (2006). Biofuels production, trade and sustainable development: emerging issues (No. 2). Iied.

    Google Scholar 

  10. Heaton, E. A., Schulte, L. A., Berti, M., Langeveld, H., Zegada-Lizarazu, W., Parrish, D., & Monti, A. (2013). Managing a second-generation crop portfolio through sustainable intensification: Examples from the USA and the EU. Biofuels, Bioproducts and Biorefining, 7(6), 702–714.

    Article  CAS  Google Scholar 

  11. Diario oficial de la federación. http://www.dof.gob.mx/nota_detalle.php?codigo=5450011&fecha=29/08/2016

  12. Renewable Fuels Association. 2021 Ethanol Industry Outlook. Available online: https://ethanolrfa.org/wp-content/uploads/2021/02/RFA_Outlook_2021_fin_low.pdf/. Accessed on September 22, 2021.

  13. Renewable Fuels Association. 2020 Ethanol Industry Outlook. Available online: https://ethanolrfa.org/file/21/2020-OutlookFinal-for-Website.pdf/. Accessed on October 12, 2021

  14. New Energy Blue to Construct Cellulosic Biorefinery in Iowa. Available online: http://biomassmagazine.com/articles/18180/new-energy-blue-to-construct-cellulosic-biorefinery-in-iowa/. Accessed on 12 October 2021.

  15. Renewable Fuels Association Analysis of Public and Private Data. Available online: https://ethanolrfa.org/markets-andstatistics/annual-ethanol-production. Accessed on December 1, 2021.

  16. USDA Foreign Agricultural Service. Vietnam Ethanol Background Report. 11 August 2020. Available online: https://www.fas.usda.gov/data/vietnam-vietnam-ethanol-background-report. Accessed on May 18, 2021.

  17. India Biofuels Annual Report 2020, Global Agricultural Information Network; GAIN Report Number IN2021-0072; Foreign Agricultural Service, U.S. Department of Agriculture: Washington, DC, USA.

    Google Scholar 

  18. İçöz, E., Tuğrul, K. M., Saral, A., & İçöz, E. (2009). Research on ethanol production and use from sugar beet in Turkey. Biomass and Bioenergy, 33(1), 1–7.

    Article  Google Scholar 

  19. Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol production from fermentable sugar juice. The Scientific World Journal2014.

    Google Scholar 

  20. Ethanol Fuel Basics, US DOE, Alternative Fuels Data Center [Internet]. Available from: https://afdc.energy.gov/fuels/ethanol_fuel_basics.Html

  21. Balat, M., Balat, H., & Öz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34(5), 551–573.

    Article  CAS  Google Scholar 

  22. Linoj, K. N. V., Prabha, D., Anandajit, G., & Sameer, M. (2006). Liquid biofuels in South Asia: Resources and technologies. Asian Biotechnology and Development Review, 8(2), 31–49.

    Google Scholar 

  23. Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497–4559.

    Article  CAS  Google Scholar 

  24. Dashtban, M., Schraft, H., & Qin, W. (2009). Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. International journal of biological sciences, 5(6), 578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haq, F., Ali, H., Shuaib, M., Badshah, M., Hassan, S. W., Munis, M. F. H., & Chaudhary, H. J. (2016). Recent progress in bioethanol production from lignocellulosic materials: A review. International Journal of Green Energy, 13(14), 1413–1441.

    Article  CAS  Google Scholar 

  26. Peralta-Yahya, P. P., & Keasling, J. D. (2010). Advanced biofuel production in microbes. Biotechnology Journal, 5(2), 147–162.

    Article  CAS  PubMed  Google Scholar 

  27. Singh, R., Srivastava, M., & Shukla, A. (2016). Environmental sustainability of bioethanol production from rice straw in India: A review. Renewable and Sustainable Energy Reviews, 54, 202–216.

    Article  CAS  Google Scholar 

  28. Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 5(4), 337–353.

    Google Scholar 

  29. Behera, S., Singh, R., Arora, R., Sharma, N. K., Shukla, M., & Kumar, S. (2015). Scope of algae as third generation biofuels. Frontiers in bioengineering and biotechnology, 2, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sanchez, O. J., & Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99(13), 5270–5295.

    Article  CAS  PubMed  Google Scholar 

  31. Jambo, S. A., Abdulla, R., Azhar, S. H. M., Marbawi, H., Gansau, J. A., & Ravindra, P. (2016). A review on third generation bioethanol feedstock. Renewable and sustainable energy reviews, 65, 756–769.

    Article  CAS  Google Scholar 

  32. Talebnia, F. (2015). Bioethanol from lignocellulosic wastes: current status and future prospects. In Lignocellulose-based bioproducts (pp. 175–206). Springer

    Google Scholar 

  33. Bušić, A., Marđetko, N., Kundas, S., Morzak, G., Belskaya, H., Ivančić Šantek, M., Komes, D., Novak, S., & Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology, 56(3), 289–311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Özçimen, D., İnan, B., & Biernat, K. (2015). An overview of bioethanol production from algae. Biofuels-Status and Perspective, 141–162.

    Google Scholar 

  35. Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T., & Katsoulas, N. (2019). Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants, 8(8), 279.

    Article  CAS  PubMed Central  Google Scholar 

  36. Sankaran, R., Show, P. L., Nagarajan, D., & Chang, J. S. (2018). Exploitation and biorefinery of microalgae. In Waste Biorefinery (pp. 571–601). Elsevier.

    Google Scholar 

  37. Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., Bai, F. W., & Chang, J. S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1–10.

    Article  CAS  Google Scholar 

  38. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresource Technology, 83(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  39. Yusuf, A. A., & Inambao, F. L. (2021). Effect of low bioethanol fraction on emissions, performance, and combustion behavior in a modernized electronic fuel injection engine. Biomass Conversion and Biorefinery, 11(3), 885–893.

    Article  CAS  Google Scholar 

  40. https://www.globenewswire.com/news-release/2020/03/26/2007160/0/en/Global-Hand-Sanitizer-Market-Is-Expected-to-Reach-USD-2-14-Billion-by-2027-Fior-Markets.html

  41. http://www.prnewswire.com/newsreleases/red-river-biorefinery-nowproducingpharmaceutical-grade-usp-ethanol-for-hand-sanitizers-anddisinfectants-301146352.html

  42. Bajpai, P. (2007). Bioethanol. PIRA Technology Report, Smithers PIRA UK.

    Google Scholar 

  43. EPA (Environmental Protection Agency). (1997). Fact sheet: EPA’s revised ozone standard, United States. www.epa.gov/ttn/oarpg/naaqsfin/o3fact.html. Accessed March 2001.

  44. Hu, Z., Pu, G., Fang, F., & Wang, C. (2004). Economics, environment, and energy life cycle assessment of automobiles fueled by bio-ethanol blends in China. Renewable Energy, 29(14), 2183–2192.

    Article  CAS  Google Scholar 

  45. Department of Energy. (2006). Bioethanol feedstocks. https://www1.eere.energy.gov/biomass/abcs_biofuels.html

  46. Department of Energy. (2006). Guidebook for handling, storing, & dispensing fuel ethanol prepared for the U.S. department of energy by the center for transportation research energy systems division. Argonne National Laboratory.

    Google Scholar 

  47. Lapuerta, M., Armas, O., & Garcia-Contreras, R. (2007). Stability of diesel–bioethanol blends for use in diesel engines. Fuel, 86(10–11), 1351–1357.

    Article  CAS  Google Scholar 

  48. Jia, L. W., Shen, M. Q., Wang, J., & Lin, M. Q. (2005). Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. Journal of Hazardous Materials, 123(1–3), 29–34.

    Article  CAS  PubMed  Google Scholar 

  49. Concepts, E.B. (2017). European technology and innovation platform bioenergy. Gülzow

    Google Scholar 

  50. Flores-Gómez, C. A., Escamilla Silva, E. M., Zhong, C., Dale, B. E., da Costa Sousa, L., & Balan, V. (2018). Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX™-based biorefinery. Biotechnology for Biofuels, 11(1), 1–18.

    Article  CAS  Google Scholar 

  51. Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., & Kothandaraman, G. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89, S20–S28.

    Article  CAS  Google Scholar 

  52. Fedorova, E., Caló, A., & Pongrácz, E. (2019). Balancing socio-efficiency and resilience of energy provisioning on a regional level, case Oulun Energia in Finland. Clean Technologies, 1(1), 273–293.

    Article  Google Scholar 

  53. Rass-Hansen, J., Falsig, H., Jørgensen, B., & Christensen, C. H. (2007). Bioethanol: Fuel or feedstock? Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 82(4), 329–333.

    Article  CAS  Google Scholar 

  54. Schnell, P. G., & Akin, C. (1979). Functional properties of yeast grown on ethyl alcohol. Journal of the American Oil Chemists’ Society, 56(1), A82–A85.

    Article  Google Scholar 

  55. Oki, T., Sayama, Y., Nishimura, Y., & Ozaki, A. (1968). L-Glutamic acid formation by microorganisms from ethanol. Agricultural and Biological Chemistry, 32(1), 119–120.

    Article  CAS  Google Scholar 

  56. Nakayama, K., & Araki, K. (1973). U.S. Patent No. 3,708,395. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  57. Hideaki, Y., Kazuoki, O., Terukazu, N. and Yoshihiro, T., 1980. Production of L-amino acids. US Patent 4276380.

    Google Scholar 

  58. Giudici, P., Gullo, M., & Solieri, L. (2009). Traditional balsamic vinegar. In Vinegars of the world (pp. 157–177). Springer, Milano.

    Google Scholar 

  59. Tiwari, J. N., Tiwari, R. N., & Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4), 724–803.

    Article  CAS  Google Scholar 

  60. Kodama, R. H. (1999). Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 200(1–3), 359–372.

    Article  CAS  Google Scholar 

  61. Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108(6), 2064–2110.

    Article  CAS  PubMed  Google Scholar 

  62. Alftrén, J., & Hobley, T. J. (2013). Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis. Applied Biochemistry and Biotechnology, 169(7), 2076–2087.

    Article  PubMed  CAS  Google Scholar 

  63. Kim, Y. K., & Lee, H. (2016). Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresource Technology, 204, 139–144.

    Article  CAS  PubMed  Google Scholar 

  64. Han, H., Cui, M., Wei, L., Yang, H., & Shen, J. (2011). Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresource Technology, 102(17), 7903–7909.

    Article  CAS  PubMed  Google Scholar 

  65. El-Kemary, M., Nagy, N., & El-Mehasseb, I. (2013). Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing, 16(6), 1747–1752.

    Article  CAS  Google Scholar 

  66. Sanusi, I. A., Faloye, F. D., & Gueguim Kana, E. B. (2019). Impact of various metallic oxide nanoparticles on ethanol production by Saccharomyces cerevisiae BY4743: Screening, kinetic study and validation on potato waste. Catalysis Letters, 149(7), 2015–2031.

    Article  CAS  Google Scholar 

  67. Kuhad, R. C., Gupta, R., Khasa, Y. P., & Singh, A. (2010). Bioethanol production from Lantana camara (red sage): Pretreatment, saccharification and fermentation. Bioresource Technology, 101(21), 8348–8354.

    Article  CAS  PubMed  Google Scholar 

  68. Satyanagalakshmi, K., Sindhu, R., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Bioethanol production from acid pretreated water hyacinth by separate hydrolysis and fermentation.

    Google Scholar 

  69. Prasertwasu, S., Khumsupan, D., Komolwanich, T., Chaisuwan, T., Luengnaruemitchai, A., & Wongkasemjit, S. (2014). Efficient process for ethanol production from Thai Mission grass (Pennisetum polystachion). Bioresource Technology, 163, 152–159.

    Article  CAS  PubMed  Google Scholar 

  70. Mishima, D., Kuniki, M., Sei, K., Soda, S., Ike, M., & Fujita, M. (2008). Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technology99(7), 2495–2500.

    Google Scholar 

  71. Meng, F., Dornau, A., Mason, S. J. M., Thomas, G. H., Conradie, A., & McKechnie, J. (2021). Bioethanol from autoclaved municipal solid waste: Assessment of environmental and financial viability under policy contexts. Applied Energy, 298, 117118.

    Article  CAS  Google Scholar 

  72. Vaez, S., Karimi, K., Mirmohamadsadeghi, S., & Jeihanipour, A. (2021). An optimal biorefinery development for pectin and biofuels production from orange wastes without enzyme consumption. Process Safety and Environmental Protection, 152, 513–526.

    Article  CAS  Google Scholar 

  73. Wang, Z., Lv, J., Gu, F., Yang, J., & Guo, J. (2020). Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study. Science of the Total Environment, 709, 136096.

    Article  CAS  PubMed  Google Scholar 

  74. Sivamani, S., Chandrasekaran, A. P., Balajii, M., Shanmugaprakash, M., Hosseini-Bandegharaei, A., & Baskar, R. (2018). Evaluation of the potential of cassava-based residues for biofuels production. Reviews in Environmental Science and Bio/Technology, 17(3), 553–570.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Aggarwal .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aggarwal, N.K., Kumar, N., Mittal, M. (2022). Bioethanol: An Overview of Current Status and Future Direction. In: Bioethanol Production. Green Chemistry and Sustainable Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-05091-6_1

Download citation

Publish with us

Policies and ethics