Skip to main content

Stability and Degradation of MXene

  • Chapter
  • First Online:
Fundamental Aspects and Perspectives of MXenes

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Novel materials with intriguing qualities, which emerge from time to time as a result of the research community’s tireless efforts, are cornerstones for the advancement of science and technology. MXenes, a class of two-dimensional (2D) materials reported for the first time in 2011, tremendously upgraded the devices used for electromagnetic shielding, optoelectronics, light-emitting diodes, transparent electrodes, electrochemical storage, etc. While MXenes continue to make progress in a wide range of application fields, their tendency to oxidize easily to corresponding metal oxides when exposed to air, water, and light remain a focal point to skepticism on the long-term stability of devices prepared with MXenes. MXene’s 2D morphology, metallic electrical conductivity, and several other intrinsic properties deteriorate vehemently with respect to their oxidation degree. Hence, a comprehensive understanding of MXene’s stability and procedures to effectively mitigate their oxidation in environmental conditions are critical to exploiting the full potential of MXenes in practical applications. It has been established that each stage in the MXene synthesis, from the parent MAX phase through the storage of the as-synthesized MXenes, has a major impact on their oxidation stability. Further, by determining the potential sources of MXenes oxidation, several strategies that are effective in mitigating the spontaneous oxidation of MXenes in the colloidal dispersion and thin-film state have been developed over the years. Here, we provide a brief review of the root causes of MXenes oxidation and factors that accelerate the oxidation phenomena, the advantages and disadvantages of MXenes oxidation, and effective synthesis/storage procedures to improve oxidation stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasan, M.M., Hossain, M.M., Chowdhury, H.K.: Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J. Mater. Chem. A 9, 3231–3269 (2021)

    Article  CAS  Google Scholar 

  2. Anasori, B., Lukatskaya, M.R., Gogotsi, Y.: 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017)

    Article  CAS  Google Scholar 

  3. Tang, X., Murali, G., Lee, H., Park, S., Lee, S., Oh, S.M., Lee, J., Ko, T.Y., Koo, C.M., Jeong, Y.J., An, T.K., In, I., Kim, S.H.: Engineering aggregation-resistant mxene nanosheets as highly conductive and stable inks for all-printed electronics. Adv. Funct. Mater. 31, 2010897 (2021)

    Article  CAS  Google Scholar 

  4. Park, Y.H., Murali, G., Modigunta, J.K.R., In, I., In, S.-I.: Recent advances in quantum dots for photocatalytic CO2 reduction: a mini-review. Front. Chem. 9, 734108 (2021). https://doi.org/10.3389/fchem.2021.734108

    Article  CAS  Google Scholar 

  5. Vu, M.C., Mani, D., Kim, J.-B., Jeong, T.-H., Park, S., Murali, G., In, I., Won, J.-C., Losic, D., Lim, C.-S., Kim, S.-R.: Hybrid shell of MXene and reduced graphene oxide assembled on PMMA bead core towards tunable thermoconductive and EMI shielding nanocomposites. Compos. A: Appl. Sci. Manuf. 149, 106574 (2021)

    Article  CAS  Google Scholar 

  6. Murali, G., Rawal, J., Modigunta, J.K.R., Park, Y.H., Lee, J.-H., Lee, S.-Y., Park, S.-J., In, I.: A review on MXenes: newgeneration 2D materials for supercapacitors. Sustain. Energ. Fuels. 5(22), 5672–5693 (2021)

    Google Scholar 

  7. Iqbal, A., Hong, J., Ko, T.Y., Koo, C.M.: Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8(1), 9 (2021)

    Google Scholar 

  8. Habib, T., Zhao, X., Shah, S.A., Chen, Y., Sun, W., An, H., Lutkenhaus, J.L., Radovic, M., Green, M.J.: Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. NPJ 2D Mater. Appl. 3(1), 8 (2019)

    Google Scholar 

  9. Seyedin, S., Zhang, J., Usman, K.A.S., Qin, S., Glushenkov, A.M., Yanza, E.R.S., Jones, R.T., Razal, J.M.: Facile solution processing of stable MXene dispersions towards conductive composite fibers. Glob. Chall. 3(10), 1900037 (2019)

    Google Scholar 

  10. Zhang, C.J., Pinilla, S., McEvoy, N., Cullen, C.P., Anasori, B., Long, E., Park, S.-H., Seral-Ascaso, A., Shmeliov, A., Krishnan, D., Morant, C., Liu, X., Duesberg, G.S., Gogotsi, Y., Nicolosi, V.: Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29(11), 4848–4856 (2017)

    Article  CAS  Google Scholar 

  11. Limbu, T.B., Chitara, B., Orlando, J.D., Garcia Cervantes, M.Y., Kumari, S., Li, Q., Tang, Y., Yan F.: Green synthesis of reduced Ti3C2Tx MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity. J. Mater. Chem. C 8(14), 4722–4731 (2020)

    Google Scholar 

  12. Naguib, M., Mashtalir, O., Lukatskaya, M.R., Dyatkin, B., Zhang, C., Presser, V., Gogotsi, Y., Barsoum, M.W.: One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 50(56), 7420–7423 (2014)

    Article  CAS  Google Scholar 

  13. Xia, F., Lao, J., Yu, R., Sang, X., Luo, J., Li, Y., Wu, J.: Ambient oxidation of Ti3C2 MXene initialized by atomic defects. Nanoscale 11(48), 23330–23337 (2019)

    Article  CAS  Google Scholar 

  14. Karlsson, L.H., Birch, J., Halim, J., Barsoum, M.W., Persson, P.O.Å.: Atomically resolved structural and chemical investigation of single MXene sheets. Nano Lett. 15(8), 4955–4960 (2015)

    Article  CAS  Google Scholar 

  15. Cui, W., Hu, Z.-Y., Unocic, R.R., Van Tendeloo, G., Sang, X.: Atomic defects, functional groups and properties in MXenes. Chin. Chem. Lett. 32(1), 339–344 (2021)

    Article  CAS  Google Scholar 

  16. Wu, H., Guo, Z., Zhou, J., Sun, Z.: Vacancy-mediated lithium adsorption and diffusion on MXene. Appl. Surf. Sci. 488, 578–585 (2019)

    Article  CAS  Google Scholar 

  17. Bandyopadhyay, A., Ghosh, D., Pati, S.K.: Effects of point defects on the magnetoelectronic structures of MXenes from first principles. Phys. Chem. Chem. Phys. 20(6), 4012–4019 (2018)

    Article  CAS  Google Scholar 

  18. Huang, S., Mochalin, V.N.: Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 58(3), 1958–1966 (2019)

    Article  CAS  Google Scholar 

  19. Huang, S., Mochalin, V.N.: Understanding chemistry of two-dimensional transition metal carbides and carbonitrides (MXenes) with gas analysis. ACS Nano 14(8), 10251–10257 (2020)

    Article  CAS  Google Scholar 

  20. Deysher, G., Sin, S., Gogotsi, Y., Anasori, B.: Oxidized 2D titanium carbide MXene: flash oxidized powders. Mater. Today 21(10), 1064–1065 (2018)

    Article  Google Scholar 

  21. Zhao, X., Vashisth, A., Prehn, E., Sun, W., Shah, S.A., Habib, T., Chen, Y., Tan, Z., Lutkenhaus, J.L., Radovic, M., Green, M.J.: Antioxidants Unlock Shelf-Stable Ti3C2Tx (MXene) Nanosheet Dispersions. Matter. 1(2), 513–526 (2019)

    Google Scholar 

  22. Maleski, K., Mochalin, V.N., Gogotsi, Y.: Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29(4), 1632–1640 (2017)

    Article  CAS  Google Scholar 

  23. Zhao, X., Vashisth, A., Blivin, J.W., Tan, Z., Holta, D.E., Kotasthane, V., Shah, S.A., Habib, T., Liu, S., Lutkenhaus, J.L., Radovic, M., Green, M.J.: pH, Nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv. Mater. Interf. 7(20), 2000845 (2020)

    Article  CAS  Google Scholar 

  24. Carey, M., Hinton, Z., Natu, V., Pai, R., Sokol, M., Alvarez, N.J., Kalra, V., Barsoum, M.W.: Dispersion and stabilization of alkylated 2D MXene in nonpolar solvents and their pseudocapacitive behavior. Cell Rep. Phys. Sci. 1(4), 100042 (2020)

    Article  Google Scholar 

  25. Zhang, Q., Lai, H., Fan, R., Ji, P., Fu, X., Li, H.: High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15(3), 5249–5262 (2021)

    Article  CAS  Google Scholar 

  26. Krecker, M.C., Bukharina, D., Hatter, C.B., Gogotsi, Y., Tsukruk, V.V.: Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv. Funct. Mater. 30(43), 2004554 (2020)

    Article  CAS  Google Scholar 

  27. Wu, X., Wang, Z., Yu, M., Xiu, L., Qiu, J.: Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv. Mater. 29(24), 1607017 (2017)

    Article  CAS  Google Scholar 

  28. Kim, D., Ko, T.Y., Kim, H., Lee, G.H., Cho, S., Koo, C.M.: Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano 13(12), 13818–13828 (2019)

    Article  CAS  Google Scholar 

  29. Lee, G.S., Yun, T., Kim, H., Kim, I.H., Choi, J., Lee, S.H., Lee, H.J., Hwang, H.S., Kim, J.G., Kim, D.-W., Lee, H.M., Koo, C.M., Kim, S.O.: Mussel inspired highly aligned Ti3C2Tx MXene film with synergistic enhancement of mechanical strength and ambient stability. ACS Nano 14(9), 11722–11732 (2020)

    Article  CAS  Google Scholar 

  30. Bian, R., Xiang, S., Cai, D.: Fast treatment of MXene films with isocyanate to give enhanced stability. ChemNanoMat 6(1), 64–67 (2020)

    Article  CAS  Google Scholar 

  31. Chen, W.Y., Jiang, X., Lai, S.-N., Peroulis, D., Stanciu, L.: Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11(1), 1302 (2020)

    Article  CAS  Google Scholar 

  32. Natu, V., Hart, J.L., Sokol, M., Chiang, H., Taheri, M.L., Barsoum, M.W.: Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem. 58(36), 12655–12660 (2019)

    Article  CAS  Google Scholar 

  33. Chen, W.Y., Lai, S.-N., Yen, C.-C., Jiang, X., Peroulis, D., Stanciu, L.A.: Surface functionalization of Ti3C2Tx MXene with highly reliable superhydrophobic protection for volatile organic compounds sensing. ACS Nano 14(9), 11490–11501 (2020)

    Article  CAS  Google Scholar 

  34. Zhang, P., Wang, L., Du, K., Wang, S., Huang, Z., Yuan, L., Li, Z., Wang, H., Zheng, L., Chai, Z., Shi, W.: Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. J. Hazard. Mater. 396, 122731 (2020)

    Article  CAS  Google Scholar 

  35. Jing, H., Yeo, H., Lyu, B., Ryou, J., Choi, S., Park, J.-H., Lee, B.H., Kim, Y.-H., Lee, S.: Modulation of the electronic properties of MXene (Ti3C2Tx) via surface-covalent functionalization with diazonium. ACS Nano 15(1), 1388–1396 (2021)

    Article  CAS  Google Scholar 

  36. He, S., Zhu, Q., Soomro, R.A., Xu, B.: MXene derivatives for energy storage applications. Sustain. Energy Fuels 4(10), 4988–5004 (2020)

    Article  CAS  Google Scholar 

  37. Sun, Y., Meng, X., Dall’Agnese, Y., Dall’Agnese, C., Duan, S., Gao, Y., Chen, G., Wang, X.-F.: 2D MXenes as co-catalysts in photocatalysis: synthetic methods. Nano-Micro Lett. 11(1), 79 (2019)

    Google Scholar 

  38. Dall’Agnese, C., Dall’Agnese, Y., Anasori, B., Sugimoto, W., Mori, S.: Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New J. Chem. 42(20), 16446–16450 (2018)

    Article  Google Scholar 

  39. Low, J., Zhang, L., Tong, T., Shen, B., Yu, J.: TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 361, 255–266 (2018)

    Article  CAS  Google Scholar 

  40. Chertopalov, S., Mochalin, V.N.: Environment-sensitive photoresponse of spontaneously partially oxidized Ti3C2 MXene thin films. ACS Nano 12(6), 6109–6116 (2018)

    Article  CAS  Google Scholar 

  41. Zhong, Q., Li, Y., Zhang, G.: Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem. Eng. J. 409, 128099 (2021)

    Article  CAS  Google Scholar 

  42. Mashtalir, O., Cook, K.M., Mochalin, V.N., Crowe, M., Barsoum, M.W., Gogotsi, Y.: Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2(35), 14334–14338 (2014)

    Article  CAS  Google Scholar 

  43. Thakur, R., VahidMohammadi, A., Moncada, J., Adams, W.R., Chi, M., Tatarchuk, B., Beidaghi, M., Carrero, C.A.: Insights into the thermal and chemical stability of multilayered V2CTx MXene. Nanoscale 11(22), 10716–10726 (2019)

    Article  CAS  Google Scholar 

  44. Li, J., Qin, R., Yan, L., Chi, Z., Yu, Z., Li, N., Hu, M., Chen, H., Shan, G.: Plasmonic light illumination creates a channel to achieve fast degradation of Ti3C2Tx nanosheets. Inorg. Chem. 58(11), 7285–7294 (2019)

    Article  CAS  Google Scholar 

  45. Liaw, B.Y., Roth, E.P., Jungst, R.G., Nagasubramanian, G., Case, H.L., Doughty, D.H.: Correlation of Arrhenius behaviors in power and capacity fades with cell impedance and heat generation in cylindrical lithium-ion cells. J. Power Sources 119–121, 874–886 (2003)

    Article  CAS  Google Scholar 

  46. Chae, Y., Kim, S.J., Cho, S.-Y., Choi, J., Maleski, K., Lee, B.-J., Jung, H.-T., Gogotsi, Y., Lee, Y., Ahn, C.W.: An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale. 11(17), 8387–8393 (2019)

    Google Scholar 

  47. Cui, C., Guo, R., Ren, E., Xiao, H., Lai, X., Qin, Q., Jiang, S., Shen, H., Zhou, M., Qin, W.: Facile hydrothermal synthesis of rod-like Nb2O5/Nb2CTx composites for visible-light driven photocatalytic degradation of organic pollutants. Environ Res.193, 110587 (2021)

    Google Scholar 

  48. Liu, B., Yu, L., Yu, F., Ma, J.: In-situ formation of uniform V O nanocuboid from V2C5 MXene as electrodes for capacitive deionization with higher structural stability and ion diffusion ability. Desalination. 500, 114897 (2021)

    Google Scholar 

  49. Seredych, M., Shuck, C.E., Pinto, D., Alhabeb, M., Precetti, E., Deysher, G., Anasori, B., Kurra, N., Gogotsi, Y.: High-temperature behavior and surface chemistry of carbide mxenes studied by thermal analysis. Chem. Mater. 31(9), 3324–3332 (2019)

    Google Scholar 

  50. Rakhi, R.B., Ahmed, B., Hedhili, M.N., Anjum, D.H., Alshareef, H.N.: Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015)

    Article  CAS  Google Scholar 

  51. Lee, Y., Kim, S.J., Kim, Y.-J., Lim, Y., Chae, Y., Lee, B.-J., Kim, Y.-T., Han, H., Gogotsi, Y., Ahn, C.W.: Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 8(2), 573–581 (2020)

    Article  CAS  Google Scholar 

  52. Wang, K., Zhou, Y., Xu, W., Huang, D., Wang, Z., Hong, M.: Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 42(7), 8419–8424 (2016)

    Article  CAS  Google Scholar 

  53. Fu, Z.H., Zhang, Q.F., Legut, D., Si, C., Germann, T.C., Lookman, T., Du, S.Y., Francisco, J.S., Zhang, R.F.: Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys. Rev. B 94(10), 104103 (2016)

    Article  CAS  Google Scholar 

  54. Feng, A., Yu, Y., Jiang, F., Wang, Y., Mi, L., Yu, Y., Song, L.: Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram. Int. 43(8), 6322–6328 (2017)

    Article  CAS  Google Scholar 

  55. Meng, Z., Wang, C., Liu, J., Wang, Y., Zhu, X., Yang, L., Huang, L.: New insight into the interaction between divacancy and H/He impurity in Ti3AlC2 using first-principles studies. Phys. Chem. Chem. Phys. 22(32), 18040–18049 (2020)

    Article  CAS  Google Scholar 

  56. Mathis, T.S., Maleski, K., Goad, A., Sarycheva, A., Anayee, M., Foucher, A.C., Hantanasirisakul, K., Shuck, C.E., Stach, E.A., Gogotsi, Y.: Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15(4), 6420–6429 (2021)

    Article  CAS  Google Scholar 

  57. Shuck, C.E., Han, M., Maleski, K., Hantanasirisakul, K., Kim, S.J., Choi, J., Reil, W.E.B., Gogotsi, Y.: Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2(6), 3368–3376 (2019)

    Article  CAS  Google Scholar 

  58. Li, C., Kota, S., Hu, C., Barsoum, M.W.: On the synthesis of low-cost, titanium-based MXenes. J. Ceram. Sci. Tech. 7(3), 301–306 (2016)

    Google Scholar 

  59. Scheibe, B., Kupka, V., Peplińska, B., Jarek, M., Tadyszak, K.: The influence of oxygen concentration during MAX phases (Ti3AlC2) preparation on the α-Al2O3 microparticles content and specific surface area of multilayered MXenes (Ti3C2Tx). Materials 12(3), 353 (2019)

    Article  CAS  Google Scholar 

  60. Sang, X., Xie, Y., Lin, M.-W., Alhabeb, M., Van Aken, K.L., Gogotsi, Y., Kent, P.R.C., Xiao, K., Unocic, R.R.: Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016)

    Article  CAS  Google Scholar 

  61. Palisaitis, J., Persson, I., Halim, J., Rosen, J., Persson, P.O.Å.: On the structural stability of MXene and the role of transition metal adatoms. Nanoscale 10(23), 10850–10855 (2018)

    Article  CAS  Google Scholar 

  62. Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., Barsoum, M.W.: Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012)

    Article  CAS  Google Scholar 

  63. Lipatov, A., Alhabeb, M., Lukatskaya, M.R., Boson, A., Gogotsi, Y., Sinitskii, A.: Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016)

    Article  CAS  Google Scholar 

  64. Halim, J., Kota, S., Lukatskaya, M.R., Naguib, M., Zhao, M.-Q., Moon, E.J., Pitock, J., Nanda, J., May, S.J., Gogotsi, Y., Barsoum, M.W.: Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26(18), 3118–3127 (2016)

    Article  CAS  Google Scholar 

  65. Ghidiu, M., Lukatskaya, M.R., Zhao, M.-Q., Gogotsi, Y., Barsoum, M.W.: Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529), 78–81 (2014)

    Article  CAS  Google Scholar 

  66. Wang, X., Garnero, C., Rochard, G., Magne, D., Morisset, S., Hurand, S., Chartier, P., Rousseau, J., Cabioc’h, T., Coutanceau, C., Mauchamp, V., Célérier, S.: A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J. Mater. Chem. A 5(41), 22012–22023 (2017)

    Google Scholar 

  67. Hope, M.A., Forse, A.C., Griffith, K.J., Lukatskaya, M.R., Ghidiu, M., Gogotsi, Y., Grey, C.P.: NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18(7), 5099–5102 (2016)

    Article  CAS  Google Scholar 

  68. He, P., Wang, X.-X., Cai, Y.-Z., Shu, J.-C., Zhao, Q.-L., Yuan, J., Cao, M.-S.: Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding. Nanoscale 11(13), 6080–6088 (2019)

    Article  CAS  Google Scholar 

  69. Kumar, S., Kang, D., Hong, H., Rehman, M.A., Lee, Y.-J., Lee, N., Seo, Y.: Effect of Ti3C2Tx MXenes etched at elevated temperatures using concentrated acid on binder-free supercapacitors. RSC Adv. 10(68), 41837–41845 (2020)

    Article  CAS  Google Scholar 

  70. Natu, V., Pai, R., Sokol, M., Carey, M., Kalra, V., Barsoum, M.W.: 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3), 616–630 (2020)

    Article  CAS  Google Scholar 

  71. Jawaid, A., Hassan, A., Neher, G., Nepal, D., Pachter, R., Kennedy, W.J., Ramakrishnan, S., Vaia, R.A.: Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15(2), 2771–2777 (2021)

    Article  CAS  Google Scholar 

  72. Rajavel, K., Ke, T., Yang, K., Lin, D.: Condition optimization for exfoliation of two dimensional titanium carbide (Ti3C2Tx). Nanotechnology 29(9), 095605 (2018)

    Article  CAS  Google Scholar 

  73. Maleski, K., Ren, C.E., Zhao, M.-Q., Anasori, B., Gogotsi, Y.: Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS Appl. Mater. Interf. 10(29), 24491–24498 (2018)

    Article  CAS  Google Scholar 

  74. Li, T., Yao, L., Liu, Q., Gu, J., Luo, R., Li, J., Yan, X., Wang, W., Liu, P., Chen, B., Zhang, W., Abbas, W., Naz, R., Zhang, D.: Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via Alkali treatment. Angew. Chem. Int. Ed. 57(21), 6115–6119 (2018)

    Article  CAS  Google Scholar 

  75. Zou, G., Zhang, Q., Fernandez, C., Huang, G., Huang, J., Peng, Q.: Heterogeneous Ti3SiC2@C-containing Na2Ti7O15 architecture for high-performance sodium storage at elevated temperatures. ACS Nano 11(12), 12219–12229 (2017)

    Article  CAS  Google Scholar 

  76. Gogotsi, Y.: Transition metal carbides go 2D. Nat. Mater. 14(11), 1079–1080 (2015)

    Article  CAS  Google Scholar 

  77. Xu, C., Wang, L., Liu, Z., Chen, L., Guo, J., Kang, N., Ma, X.-L., Cheng, H.-M., Ren, W.: Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03023788, 2019R1A2C1010692, 2021R1I1A1A01055790), and the Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P00008500, The Competency Development Program for Industry Specialist).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Insik In .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murali, G., Modigunta, J.K.R., Park, Y.H., Park, S.Y., In, I. (2022). Stability and Degradation of MXene. In: Khalid, M., Grace, A.N., Arulraj, A., Numan, A. (eds) Fundamental Aspects and Perspectives of MXenes. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-05006-0_5

Download citation

Publish with us

Policies and ethics