
Chapter 4 
Quality Assurance and Design-Time 
Optimization 

Indika Kumara, Alfio Lazzaro, Nina Mujkanovic, Zoe Vasileiou, 
and Damian A. Tamburri 

Abstract Heterogeneous applications are getting more and more complex, making 
the authoring of their deployment models an error-prone and demanding task. Het-
erogeneous resources also make performance optimization of applications complex. 
In this chapter, we will present the quality assurance and application optimization 
support of the SODALITE framework, which offers the capabilities for verifying 
deployment models, detecting bugs and smells in them, and optimizing applica-
tion components for specific hardware resources. This chapter discusses how the 
above-mentioned capabilities of the SODALITE framework can be used to develop 
optimized, defect-free deployment models. 

4.1 Introduction 

The SODALITE modeling layer produces the deployment model of an application 
in terms of Infrastructure as Code (IaC) scripts. IaC simplifies the provision and 
configuration of the IT infrastructure at scale. As the size and complexity of IaC
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projects increase, it is critical to maintaining the code and design quality of IaC 
Scripts [6, 7] According to a recent report on Cloud Threat,1 nearly 200,000 insecure 
IaC templates were found among IaC scripts used by a set of enterprises, and 65% 
of cloud incidents are due to misconfigurations. Thus, the detection and correction 
of defective and erroneous IaC scripts are of paramount importance. To address this 
problem, the SODALITE platform offers a set of tools to detect defects such as errors 
and code smells.

In addition to the generation of the IaC scripts, the deployment process can also 
create container images for application components. Software application developers 
and users are now targeting diverse computing platforms, such as on-premise super-
computers and clouds with heterogeneous node architectures. Compute intensive 
applications such as Artificial Intelligence (AI) training that use High-Performance 
Computing (HPC) have specific requirements for specialized execution environ-
ments, including computing accelerators, high speed interconnects, and fast memory 
and storage. Even if software-defined environments provide flexibility and porta-
bility, we still need applications to use and benefit from these diverse resources 
optimally. For example, AI training frameworks require target-specific libraries and 
drivers to be configured. In the context of HPC infrastructures, with various hard-
ware and software dependencies and libraries, building or selecting an optimized 
container for deploying AI-based components is crucial. The same concepts apply to 
Message Passing Interface (MPI) applications, where the applications have to effi-
ciently use the network to get performance and parallel scalability. To address these 
issues, SODALITE offers an application optimizer called MODAK that maps the 
optimal application parameters to the infrastructure target by building or selecting 
an optimized container and then encoding optimizations in a job script. 

The rest of this chapter is organized as follows. Section 4.2 presents the support 
for validating the deployment topology of an application and verifying arbitrary con-
straints on the components and their properties. Section 4.3 discusses the detection 
of smells and bugs in IaC using rule-based and data-driven approaches. Section 4.4 
presents the MODAK tool in detail, and Sect. 4.5 concludes the chapter. 

4.2 Verifying IaC 

Validation services are provided to the user during the authoring process of the 
deployment models. Based on the deployment models saved as interconnected 
Knowledge Graphs, described in Chap. 3, powerful semantic queries can run upon 
the Knowledge Base using strong inference for uncovering new information out of 
existing relations. Additional to advanced context-aware searching, matchmaking, 
and reuse, described in the previous chapter, pre-deployment validation is a crucial 
component that ensures a reliable IaC deployment model.

1https://www.paloaltonetworks.com/prisma/unit42-cloud-threat-research-1h21. 
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The validation of the AADM, during the design phase, is aiming at checking the 
consistency of the structures. In TOSCA, the type system supports inheritance as a 
type can extend another, inheriting all its concepts (e.g. properties, capabilities). Each 
template of the AADM is an instance of a specific type, namely an infrastructure 
resource or software component, and gets validated against this type definition. 

4.2.1 Validation Cases 

Using custom reasoning logic, semantic validation errors can be inferred with regards 
to the TOSCA type definition. The assigned values to the component templates are 
validated against the corresponding type schema. 

4.2.1.1 Topology Validation 

There are errors in the deployment model that are onerous to be manually detected 
as it is needed to manually check all inter-node relationships in a TOSCA applica-
tion topology and their interconnection constraints. Based on the validity conditions 
of the Sommelier [3], an open-source validator of TOSCA application topologies, 
our services are validating the interconnections of the deployment model. All the 
TOSCA elements, that are forming a relationship, are checked, namely the source 
(Requirements of a node), the relationship itself, and its target (a node or a capability 
of a node). 

In TOSCA [9], various components, such as an application, a database, are mod-
eled as templates and are instances of types, such as node types, relationship types, 
and capability types. The node types contain the definitions of the requirements of 
a component, the capabilities that are offered for other components. The capabil-
ity types express the capabilities and valid_source_types (valid names of 
Node Types that are supported as valid sources of any relationship). The relationship 
types denote the explicit relationships between the nodes, or alternatively implicit 
relationships are declared through requirements. 

4.2.1.2 Required Properties 

In the type schema, it is optionally to be defined if a property is required to be assigned 
to a template by the required key. Therefore, if there exists a property definition in 
a type and required equals true, and there is no default value, then such a property 
should be assigned to the templates being instances of this type. In Listing 4.1, 
a TOSCA node type definition is depicted with the name mandatory property. In 
Listing 4.2, a SPARQL query detecting the required properties is shown.
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List. 4.1: Excerpt of a TOSCA node type definition with a required property 
1 
2 
3 
4 
5 
6 
7 

8 
9 
10 
11 
12 

List. 4.2: SPARQL Query detecting required properties 

4.2.1.3 Property Values 

Each property definition of the node type includes a type of the assigned property 
value. There are various property types such as string, integer, list, and 
map. A node type that has two properties with the type string and integer defined is 
shown in Listing 4.3. Rule-based reasoning infers if the assigned template property 
values are valid according to the type, using SPARQL queries upon the Knowledge 
Graphs. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

List. 4.3: Part of a TOSCA node type with properties of different types
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4.2.1.4 Constraints 

A constraint clause might be optionally present in the property definition of the 
type defining the allowed values that can be assigned in the corresponding template 
property. The constraints can be as simple as a list with valid values, shown in Listing 
4.4 or a given range (e.g. greater than, less than), or as complex as an object of a 
custom type. In Listing 4.5, a SPARQL query is shown that retrieves the properties 
of a type that have constraints with a list. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

List. 4.4: Part of a TOSCA data type with property value constraints 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

List. 4.5: SPARQL Query returning only the constraints of a type including a list 

4.3 Detecting Smells and Linguistic Anti-patterns in IaC 

SODALITE developed the tools that can detect such smells and linguistic anti-
patterns in IaC. A software smell is any characteristic in the artifacts of the software 
that possibly indicates a deeper problem or quality issue [11]. Linguistic anti-patterns 
are recurring poor practices concerning inconsistencies among the naming, documen-
tation, and implementation of an entity, which have shown to be a good proxy for 
defect prediction [1].
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Fig. 4.1 An Overview of our Approach to TOSCA Smell Detection 

4.3.1 Semantic Approach to Detecting Smells 

SODALITE proposes a semantic rule-based approach to detect the smells and antipat-
terns in IaC, for example, smells in TOSCA blueprints [8]. Our framework facilitates 
the generation of knowledge graphs to capture TOSCA-based deployment models. 
The aim is to map IaC code constructs to self-contained, independent, and reusable 
knowledge components, amenable to analysis and validation using Semantic Web 
standards, such as SPARQL. A semantic approach helps us to deal with structure and 
semantic relations over various types of resources, their relationships, and properties. 
The semantic reasoning process is able to draw new and hidden knowledge from the 
existing information. 

Figure 4.1 shows the high-level architecture and workflow of our approach to 
detect the occurrences of smells in deployment model descriptions. More specifically: 

• Population of Knowledgebase. Resource Experts populate the knowledgebase 
by creating resource models (ontology instances representing resources/nodes 
in the infrastructure) using SODALITE IDE. Platform Discovery Service may 
(semi-)automatically update the knowledge base by creating resources models. 

• Definition of Smells Detection Rules. We use the semantic rules in SPARQL 
to detect different smells in deployment models. SODALITE developed rules to 
detect common security and implementation smells. New, additional rules can be 
defined to detect new types of smells. 

• Detection of Smells. Application Ops Experts create the AADM instances for 
representing the deployment models of the applications. The AADM is automati-
cally translated into the corresponding ontological representation and is saved in 
the knowledgebase. The smell detection rules are applied over the ontologies in 
the knowledgebase to detect deployment model-level smells. If a smell is detected, 
the details of the smell are returned to the Application Ops Experts. The detected
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Table 4.1 Smells, their descriptions, and the abstract detection rules 

Smell Smell Description Abstract Detection Rule 

Admin by default Default users are 
administrative users 

isUser (x.name) ∧ isAdmin 
(x.name) 

Empty password A password as a zero-length 
string 

isPassword(x.name) ∧ 
(isEmpty(x.value) 
isEmpty(x.defaultValue)) 

Hard-coded secret Secrets such as usernames and 
passwords are hardcoded 

(isPassword(x.name) ∨ isUser 
(x.name) ∨ isSecKey 
(x.name)) ∨ 
∼(isEmpty(x.value) ∨ 
isEmpty(x.defaultValue)) 

Suspicious comment A comment includes the 
information indicating secrets 
and buggy implementations, 
etc. 

hasComment(x) ∧ 
isSuspicious(x.comment) 

Unrestricted IP address Using “0.0.0.0” or “::” as 
binding IP addresses of servers 

isIPAddress(x.name) ∧ 
(isInvalidBind (x.value) ∨ 
isInvalidBind (x. 
defaultValue)) 

Insecure Communication Using insecure communicate 
protocols, instead of secure 
their counterparts 

(isURL(x.value) ∧ 
isInsecure(x.value)) ∨ 
(isURL(x.defaultvalue) ∧ 
isInsecure(x.defaultvalue)) 

Weak Crypto. Algo. Use of weak cryptography 
algorithms such as MD5 and 
SHA1 

hasWeakAlgo(x.value) ∨ 
hasWeakAlgo(x.defaultvalue) 

Insufficient Key Size The key used by an encryption 
algorithm is less than the 
recommended key size, e.g., 
2048 bits for RSA algorithm 

isCryptoKeySize(x.name) ∧ 
(hasInsufficientKey-
Size(x.value) ∨ 
hasInsufficientKey-
Size(x.defaultvalue)) 

Inconsistent naming 
convention 

The conventions used for 
naming nodes, properties, 
attributes, etc., are inconsistent 

(case==‘CamelCase’→ 
isCamelCase(x)) ∨ 
(case==‘SnakeCase’→ 
isSnakeCase(x)) 
∨(case==‘DashCase’→ 
isDashCase(x)) 

Invalid Port Ranges TCP port values are not within 
the range from 0 to 65535 

isTCPPort(x) ∨ 
(outOfValidRange (x.value) ∧ 
outOfValidRange 
(x.defaultvalue)) 

smells are shown in the IDE as warnings. The same flow applies to Resource Ops 
Experts, as they also receive warnings for their resource models. 

Table 4.1 shows the (abstract) rules to detect 10 TOSCA smells. The rules are 
implemented as SPARQL queries for specifying detection rules. Listing 4.6 shows



60 I. Kumara et al.

an excerpt from the SPARQL query for detecting Admin by default smell. Line 
4 implements the function is User using a regex matching. Lines 5–9 retrieve the 
default value for a property of a node. Line 14 realizes the function isAdmin using 
the IN operator. The SPARQL queries for the other smells are available online in the 
SODALITE GitHub repository. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

List. 4.6: Part of AdminByDefault SPARQL Query. 

4.3.2 A Learning-Based Approach for Detecting Linguistic 
Anti-patterns 

We develop a novel approach to detect linguistic anti-patterns in IaC using deep 
learning and word embeddings [2]. We focus on name-body inconsistencies in IaC 
code units, for example, tasks in Ansible playbooks or roles. We use the Convolutional 
Neural Networks (CNN) [5] as the deep learning algorithm, and Word2Vec [4] as  
the word embedding method. CNNs are neural networks that consist of neurons with 
learnable weights and biases. Word2vec is a two-layer neural network that processes 
text by creating vector representations from words. 

Figure 4.2 shows the workflow of our approach: 

• Corpus Tokenization. Given a corpus of Ansible tasks, this phase generates token 
streams for both task names and bodies. To tokenize a task’s body while considering 
its semantic properties, we build and use its abstract syntax tree. 

• Data Sets Generation. Finding a sufficient number of real buggy task examples 
containing inconsistencies is challenging. Therefore, as in [10], we apply simple 
code transformations to generate buggy examples from likely correct examples. 
We perform such transformations on the tokenized data set and assume that most 
corpus tasks do not have inconsistencies. 

• From Datasets to Vectors. We employ Word2Vec to convert the token sequences 
into distributed vector representations (code embeddings). We train a deep learning 
model for each Ansible module type as our experiments showed a single model 
does not perform well, potentially due to low token granularity. Thus, the tokenized
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Fig. 4.2 Linguistic anti-patterns detection pipeline 

data set is divided into subsets per module, and the code embeddings for each subset 
are separately generated. 

• Model Training. This phase feeds the code embeddings to a CNN model and trains 
the model to distinguish between the tasks having name-body inconsistencies from 
correct tasks. The trained model is stored in the model repository. 

• Inconsistency Detection. The trained models (classifiers) from the model repos-
itory are employed to predict whether the name and body of a previously unseen 
Ansible task are consistent or not. Each task is transformed into its corresponding 
vector representations, which can be consumed by a classifier. 

We evaluated our approach with an Ansible dataset systematically collected from 
open source repositories. Table 4.2 presents the inconsistency detection results for the 
top 10 Ansible modules in our data set. Overall, our approach yielded an accuracy 
ranging from 0.785 to 0.915, AUC metric from 0.779 to 0.914, and MCC metric 
from 0.570 to 0.830. Our approach achieved the highest performance for detecting 
inconsistency in the file module, where the accuracy was 0.915, the F1 score for the 
inconsistent class was 0.92, and the F1 score for the consistent class was 0.91. 

4.4 Optimizing Containerized Applications 

The MODAK (Model Optimized Deployment of Applications in Containers) pack-
age, a software-defined optimization framework for containerized MPI and AI appli-
cations, is the SODALITE component responsible for enabling the static optimization 
of applications before deployment. Application optimization is enabled using perfor-
mance modeling and container technology. Containers provide an optimized runtime 
for application deployment based on the target hardware and along with any soft-
ware dependencies and libraries. MODAK aims to manage the optimized application 
containers for the deployment to infrastructure in a software-defined way.
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Fig. 4.3 MODAK architecture 

4.4.1 Architecture 

Figure 4.3 gives an overview of the MODAK components. MODAK exposes a high-
level application API for the two types of applications supported: AI training and 
inference and MPI-parallelized applications. We pass this information to MODAK, 
which matches it with the performance model outputs to produce a job script for the 
execution submission of the optimized container. MODAK can also auto-tune and 
auto-scale applications based on user input. MODAK requires the following inputs: 

• Job submission options for batch schedulers such as SLURM and TORQUE 
• Application configuration such as application name, run and build commands 
• Optimization DSL with the specification of the target hardware, software libraries, 
and optimizations to encode, as well as inputs for auto-tuning and auto-scaling. 
Examples of the DSL are provided in Sect. 6.4.4. 

After providing the inputs, MODAK produces a job script (for batch submission) 
and retrieves a pre-built optimized container that can be used for application deploy-
ment. An image registry contains MODAK optimized containers, while performance 
models, optimization rules, and constraints are stored and retrieved from the Model 
repository. The Singularity container technology was chosen to provide a portable 
and reproducible runtime for the application deployment, due to better performance 
and native support for HPC resources than other popular container technologies. 
In the Sect. 4.4.2 we describe in detail each MODAK component with the related 
features.
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4.4.2 Features 

MODAK automates optimization using four main components, as described below: 

• Mapper. The Mapper maps application deployment to an optimized container 
based on the user-specified input (DSL). While most AI applications are deployed 
in containers, this is not the default option for MPI parallel applications. Containers 
should provide an optimized runtime for the application deployment. With diverse 
hardware and software dependencies and libraries, building or selecting an opti-
mized container for application deployment is crucial. For example, MPI libraries 
on the host machine and in the container should match when deploying applications 
on HPC systems in order for the container to use the hardware-optimized version of 
MPI available on the host. AI training frameworks require target-specific libraries 
and drivers to be configured. Even though Docker and Singularity support labeling 
containers, they are seldom used when developing them. To overcome this issue, 
containers are pre-built for different hardware and MODAK labels them with 
supported hardware and software information, including any optimizations. An 
application user uses a similar JSON format to query for an optimized container, 
and the mapper returns the container type, location, and file name. The user can 
pull the container from the hub and execute the application with that runtime. Cur-
rently, MODAK supports TensorFlow, PyTorch, MXNet, MPICH, OpenMPI, and 
MVAPICH2 containers for x86 and NVIDIA GPUs. This can be further extended 
to support specific network interconnects, and storage filesystems like Lustre. 

• Enforcer. The optimization process depends not only on application and infras-
tructure but also on the configuration and data. MODAK allows users to define 
optimization rules that are enforced for deployment. The Enforcer component 
returns the optimization script to be used based on the rules and user-selected 
optimizations in the input DSL. For example, enabling graph compiler-based opti-
mizations in an AI framework requires environment settings to be modified. For 
MPI-based applications, there are many environment settings that change the way 
message passing is optimized based on message size and communication pattern. 
Data-related optimizations may involve the possibility to automatically copy the 
data to fast disks, if available, to improve I/O bound applications. MODAK can 
embed the chosen optimizations in the job script submitted to a batch scheduler. 

• Autotune. Applications and their dependencies have many configurable parameters 
which can drastically change performance when altered. Tuning all the parameters 
is both resource-intensive and time-consuming. Autotuning frameworks help make 
automated choices regarding application build and deployment, the algorithms they 
use, and the way the application is launched or changes code. 

• Autoscale. Scaling applications to more nodes improves the performance of most 
MPI parallel applications. The parallel speedup and scaling efficiency is defined 
as follows 

Parallel Speedup = Tref 
Tparallel 

(4.1)



4 Quality Assurance and Design-Time Optimization 65

Efficiency = 
nref Tref 
n Tparallel 

(4.2) 

where Tref and Tparallel correspond to the runtime on a reference number of nodes 
nref (usually a single node), and the runtime on n nodes, respectively. While we aim 
to achieve higher speedups as we increase nodes, poor efficiency denotes higher 
overheads and higher costs. Applications are usually scaled until the efficiency 
drops below a certain percentage. In MODAK, we can predict the efficiency and 
speedup of an application on n nodes based on the performance prediction model. 
This allows MODAK to automatically scale applications to a certain number of 
nodes based on the model prediction. Using the parallel efficiency metric specified 
by the user, Autoscale aims to predict the scale at which parallel efficiency is 
achieved, and automatically increase the number of nodes of the deployment. 

4.5 Conclusion and Future Work 

In this chapter, we have presented the design-time quality assurance and optimization 
support of the SODALITE framework. To enable the deployment of defect-free IaC 
scripts, we offer the tools to verify IaC scripts against various constraints, and defect 
smells and linguistic anti-patterns in them. We use semantic rule-based techniques 
and deep learning-based techniques, as appropriate. Moreover, to optimize AI or 
MPI workloads with different configurations and data sets for heterogeneous infras-
tructure targets, we introduced MODAK, a novel tool that maps optimal application 
parameters to infrastructure using performance modeling and container technology. 
MODAK optimized containers were tested on the internal SODALITE HPC Testbed. 
The test scenarios were taken from the SODALITE use cases compute-intensive 
tasks. We found that the performance boost of using optimized application contain-
ers can reach up to 10x compared wit the unoptimized versions of the application. 

As future work, we plan to extend our smell and defect detection support to detect 
more linguistic inconsistencies and misconfigurations in different IaC languages. We 
will also extend MODAK to support machine learning applications for the edge. 
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