
Chapter 9
Turbulence

As we already pinpointed several times in this monograph, turbulent flows occur in
many situations in nature and technological applications. It is a subject that started
during the nineteenth century and gained much momentum in the last century with
the advent of powerful computers enabling solutions of statistical model equations or
more recently tackling the full Navier–Stokes equations (without further modeling)
through direct numerical simulation (DNS). Turbulence, its understanding and its
modeling have been the main concern of many authors, researchers in the physical
realm, or in engineering. Without being exhaustive, a few books may be referred to:
Batchelor [11], Chassaing [19] (This book is only available in French. It ismasterfully
written with beautiful figures), Frisch [30], Lesieur [50], McComb [54], Manneville
[55], Piquet [73], Pope [74], Tennekes and Lumley [105]. Turbulencemodeling is the
heart of Chap. 6 of the book by Deville and Gatski [24] where recent methodologies
are presented and described in details.

In this chapter we will concentrate our attention to basic topics in turbulent phe-
nomena and set up the standard models used in computational fluid dynamics.

9.1 General Considerations

Turbulence intervenes inmost fluidflowphenomena innature:meteorology, oceanog-
raphy, hydrography,... or in industrial processes: pipe flows, mixing, melting. The
study of turbulent physical phenomena is the main core of intense research, their
understanding being not yet complete today.

It is difficult to propose an accurate definition of what is meant by turbulence.
However, we can list the general characteristics of turbulent flows:
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1. Unsteadiness. Turbulent flows are irregular and present a random aspect. A full
deterministic approach being impossible, we must resort to statistical methods.

2. Diffusivity. The diffusivity of turbulence is the cause of very quick mixings
implying momentum and heat transfers.

3. Dissipative character. The viscous shear stresses perform a strain work that
increases the internal fluid energy at the expense of its turbulent kinetic energy.
Turbulence decreases rapidly, if we do not constantly provide energy to the fluid
in order to oppose the friction losses, that are more important than in laminar
state.

4. Three-dimensional physics. Turbulence is rotational and three-dimensional. It
is characterized by high levels of vorticity fluctuations. This is the reason why
vorticity dynamics plays such an important role.

Turbulence (more specifically developed turbulence) appears for relatively high
values of the Reynolds number. It originates in the flow instability generated by
the interaction, in the momentum equations, of the viscous and pressure terms and
the non-linear terms in the acceleration. This interaction is present only when the
inertial effects prevail, i.e. for high values of the Reynolds number. It is understood
that turbulence is not an intrinsic characteristics of the fluid, but that it is related to
the fluid flow properties.

9.2 General Equations of Incompressible Turbulence

We restrain ourselves in this chapter to the specific case of turbulent incompressible
fluid flow. We will write the Navier–Stokes equations in conservative form while
neglecting the body forces. Taking the continuity equation into account

div v = ∇ · v = 0 , (9.1)

the non-linear term reads as a divergence. We have

Dv

Dt
= ∂v

∂t
+ (∇v)v = ∂v

∂t
+ ∇ · (v ⊗ v) = − 1

ρ
∇ p + ν �v , (9.2)

where the symbol ⊗ denotes the tensor product of two vectors.
When we examine a velocity signal recorded as a function of time (cf. Fig. 9.1),

we are struck by the random character of turbulence. As at each point in space,
the velocity and pressure fields offer such temporal variations, we try to drastically
reduce the amount of information necessary to interpret the physical phenomena and
deduce prediction tools from them for design and engineering purposes. It is illusory
to stick to the classical deterministic type modeling which would require following
at each point the temporal evolution of velocity and pressure. This would produce
a huge database that should be analyzed to extract useful information. Therefore
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Fig. 9.1 Time variation of instantaneous velocity field at a fixed point within a turbulent boundary
layer: u = v1, U mean free-stream velocity and δ boundary layer thickness

the use of a statistical approach is unavoidable. To this end, the velocity vector v is
decomposed in an averaged velocity v and a fluctuation v′ such that

v = v + v′ . (9.3)

An analogous relation is written for the pressure

p = p + p′ . (9.4)

This is the Reynolds decomposition of velocity and pressure. The mean velocity v

is a time average defined by the equation

v = lim
T →∞

1

T

∫ T

0
v dt . (9.5)

This time average cannot be used for flows statistically evolving with time. Further-
more, from the experimental point of view, the measurement time T is such that we
continue the averaging process until the moment when the fluctuations of v are small
enough. If the field is not statistically independent of time, we must take an ensemble
average, i.e. the average obtained over a large set of similar experiences

< v >= lim
N→∞

1

N

N∑
n=1

vn(x, t) . (9.6)



214 9 Turbulence

We suppose in the sequel that the averaging process is such that the derivatives
with respect to space and time commute. The ensemble average satisfies always this
property. If the ensemble average defined by (9.6) is an independent quantity of
time, then the mean (9.5) is equal to the ensemble average. This is a result of the
ergodic theorem, Tennekes and Lumley [105]. (From the statistical point of view, it
is equivalent to toss one coin n times and toss n coins once). Note that the average
process obtained by (9.6) is linear. However the mean of a product

< v1v2 > (9.7)

is generally not equal to the product of the means

< v1 >< v2 > .

By the definition of the mean, we have the relation

v′ = 0 . (9.8)

It also follows that given two random functions f and g, one obtains

f g = f g (9.9)

and
f g′ = 0 . (9.10)

With the decomposition (9.3), the average of Eq. (9.1) yields

∇ · v = 0 (9.11)

and therefore,
∇ · v′ = 0 . (9.12)

The fluctuating velocity field is incompressible as is the mean flow.
After inserting (9.3) and (9.4) in (9.2), we compute the mean. The average of the

tensor product of the velocities yields

v ⊗ v = (v + v′) ⊗ (v + v′)
= v ⊗ v + v′ ⊗ v + v ⊗ v′ + v′ ⊗ v′

= v ⊗ v + v′ ⊗ v′ . (9.13)

This procedure generates the Reynolds averaged Navier–Stokes equation (in short
RANS)

∂v

∂t
+ ∇ · (v ⊗ v) = − 1

ρ
∇ p + ν�v − ∇ · (v′ ⊗ v′) . (9.14)
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Using the average stress tensor defined by the expression

σ = −p I + 2μ d , (9.15)

with tensor d, the averaged strain rate

d = 1

2
(∇v + (∇v)T ) , (9.16)

Equation (9.14) reads

∂v

∂t
+ ∇ · (v ⊗ v) = 1

ρ
∇ · (σ − ρv′ ⊗ v′) . (9.17)

By similarity with the average Cauchy tensor σ , the second term under the operator
∇· is assimilated to a stress, known as the symmetric Reynolds stress tensor R

R = −ρ τ = −ρv′ ⊗ v′ , (9.18)

while τ has dimensions of squared velocities. This tensor will be named Reynolds
tensor with no reference to stress. Note that τ is similar to an energy tensor.

Equations (9.11) and (9.14) form a system of four equations with 10 unknowns,
namely the three velocity components vi , the pressure p and the six components τi j .
The Eqs. (9.17) and (9.18) exhibit the coupling between the average field and the
fluctuation. We observe also that with more unknowns than equations, the closure
problem is posed.

Subtracting the mean momentum equation (9.14) from the Navier–Stokes equa-
tion (9.2) gives the momentum equation of the fluctuating field that highlights the
coupling with the mean field

∂v′

∂t
+ ∇ · (v′ ⊗ v) = −∇ · (v ⊗ v′) − ∇ · (v′ ⊗ v′ − v′ ⊗ v′) − 1

ρ
∇ p′ + ν�v′ .

(9.19)

9.3 Kinetic Energy

Let us define the turbulent kinetic energy of the fluctuations, K , by the relation

K = 1

2
v′ · v′ . (9.20)
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This turbulent energy may be obtained as the half-trace of tensor τ

K = 1

2
τi i . (9.21)

The momentum equation of the turbulent kinetic energy is gotten by multiplying Eq.
(9.19) by v′ and taking the mean. We have

∂K

∂t
+ v · ∇K = −τ : ∇v − ν∇v′ : ∇v′ − ∇ · j , (9.22)

where the flux vector of turbulent kinetic energy j is defined by

j = 1

ρ
p′v′ + 1

2
(v′ · v′)v′ − ν∇K . (9.23)

We notice in (9.23) the appearance of the triple velocity correlation. The first and
second terms of the right hand side of (9.22) are the production rates of turbulent
energyP and of dissipation of turbulent energyD, respectively. We will denote them

P = −τ : ∇ v = −τ : d, (9.24)

D = ν∇v′ : ∇v′ . (9.25)

The production P is the result of the inner product of Reynolds tensor and the
mean strain rate tensor.We observe that it is most often positive, although theremight
be situations where it is negative.

As the source of turbulent kinetic energy is the mean flow, we should retrieve this
term with its sign changed in the equation governing the average kinetic energy, Ek ,
defined by the relation

Ek = 1

2
v · v . (9.26)

Let us multiply Eq. (9.14) by v. After some tedious but simple manipulations, one
obtains:

∂ Ek

∂t
+ v · ∇Ek = − 1

ρ
∇ · (p v) − 2ν d : d + 2ν ∇ · (v d) − P − ∇ · (v τ ) .

(9.27)
In (9.27), appears the right product of tensor d and the vector v. In indexed form,
this product reads

(v d) j = vi di j . (9.28)

In the right hand side of (9.27), we find successively the following terms. The first one
is associated with pressure and expresses the flow power. The two terms involving
viscosity are one, the dissipation rate of turbulent kinetic energy by the molecular
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viscous effects and the other, a reversible transfer of viscous power. The fourth term
is a sink of mean turbulent kinetic energy −P. Finally the last term is a divergence.
If it is integrated on a sufficiently large volume, bounded by fluid in laminar flow,
this term vanishes. Thus it takes into account a conservative transfer in the volume
of mean kinetic energy.

9.4 Dynamic Equation of the Reynolds Tensor

This equation is developed by multiplying the momentum equation (9.19) of fluctu-
ation v′

i by v′
j and the one of fluctuation v′

j by v′
i . Adding the resulting equations and

averaging, one obtains

∂τ

∂t
+ v · ∇τ = P + � − D − ∇ · J (3) . (9.29)

Recall that the inner product of two tensors A and B is written in indexed notation
as (AB)i j = Aim Bmj ; thus, (ABT )i j = Aim B jm . Consequently the production term

P = −(τ (∇ v)T + (∇v) τ T ) (9.30)

is the source of the Reynolds stresses. We note that its trace yields

tr P = 2P . (9.31)

The correlation term of pressure-strain rate

� = 1

ρ
p′(∇v′ + (∇v′)T ) (9.32)

possesses a zero trace. It redistributes the energy among the components of normal
stresses as it contributes to an exchange between the components v′2

1 , v′2
2 , v′2

3 without
modifying their sum. The dissipation-rate term

D = 2ν (∇v′)(∇v′)T (9.33)

has a trace whose value is
tr D = 2D . (9.34)

Finally the tensor of order three, J (3), is given by the equation

J (3) = 1

ρ
(p′v′ I + (p′v′ I)T ) + v′ ⊗ v′ ⊗ v′ − ν∇τ . (9.35)
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The first term is the exterior product of vector p′v′ and the identity tensor I

(p′v′ I)i jk = p′v′
i δ jk . (9.36)

The second term is the transpose, the last index remaining unchanged, such that

(p′v′ I)T
i jk = p′v′

jδik . (9.37)

The third term v′ ⊗ v′ ⊗ v′ is the triple velocity correlation defined by the tensor
product of three vectors, namely

(v′ ⊗ v′ ⊗ v′)i jk = v′
iv

′
jv

′
k . (9.38)

Finally the gradient of the second order tensor τ is a third-order tensor with compo-
nents

(∇τ )i jk = ∂

∂xk
τi j . (9.39)

The tensor J (3) is diffusive in essence and induces a spatial redistribution of energy
(cf. the divergence theorem). We notice that in Eq. (9.29), the non-linear terms have
generated triple velocity correlations v′

iv
′
jv

′
k . It is possible to write the dynamic

equations that govern the evolution of these triple correlations; they will call for
quadruple correlations. The dynamics of quadruple correlations will entail quintuple
correlations, and so forth. Themathematical complications will increase at each step.
The hierarchy of the equations for the moments (averages of higher order products
of velocity fluctuations) is not only infinite but also divergent, in the sense that
additional unknowns produced at each stage appear in greater number than that of
new equations. To overcome this difficulty, the problem is simplified in order to close
the open equations hierarchy. This procedure is called the closure problem.

The simplest closure consists in truncating the set of equationswith the assumption
that the correlations are negligible beyond a certain order, in practice, the third or
fourth order. We try then to express the high order correlations in terms of smaller
order correlations.

A classification of turbulence models is based on the number of additional partial
differential equations (with respect to the average Navier–Stokes equations) required
to close the model.

The zero equation model consists in retaining only order two moments and there-
fore in linking the turbulent stress tensor to some characteristics of the mean flow
via a turbulent viscosity. The one equation model, also called K model, is due to
Prandtl. A partial differential equation is used to describe the dynamics of the tur-
bulent kinetic energy. Eventually the two equation model is based on the dynamics
of the turbulent kinetic energy and its dissipation rate. It is the well known K − ε

model.
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9.5 Structures and Scales of Homogeneous Turbulence

Turbulence is homogeneous when the averaged quantities are invariant by spatial
translation. Particularly, the mean velocity field in homogeneous turbulence is inde-
pendent of the position x. We then conclude that in homogeneous turbulence, all
spatial points are statistically equivalent. If moreover, these statistical properties are
independent of the orientation of the frame of reference, the field is called isotropic.
The homogeneous and isotropic turbulence (HIT) allows using Fourier methods to
build analytical turbulence models.

Experimentally and theoretically, it is observed that turbulence dynamics is
strongly linked to vorticity dynamics. The vorticity filaments are stretched and
twisted. This phenomenon is at the origin of the creation of large vorticity structures
(large eddies). The large scales are very efficient to generate the Reynolds stresses
that extract their energy from the mean flow. Through non-linear interactions, that
are inviscid processes, the turbulent energy is transferred to smaller and smaller sized
vortices. The viscosity only comes into play for sufficiently small vortices, of the
order of Kolmogorov scale defined later, where this energy is dissipated.

Experiments lead to assuming the existence of an energy transfer from the large
scales to the small ones without any dissipation. This is viewed as the energy cascade
(or Richardson’s cascade). Let us note that locally, “inverse” fluxes exist and give
rise to the formation of larger scales from smaller ones. This is called retro-diffusion.
Figure 9.2 shows the spectral energy E(k) (introduced in the sequel) as a function
of the Kolmogorov scale 	K . Dissipation occurs for the small scale structures.

We will suppose that dissipation characterized by its dissipation rate ε (m2 s−1)
operating at the level of small vortices arises from the large scales and that the
turbulent energy is linked to them. Therefore if one chooses K and ε to qualify these
large structures, by dimensional analysis, we obtain for their characteristic length

	 = K 3/2/ε (9.40)

with ε defined by the relation

Fig. 9.2 Energy cascade
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ε = 2ν d ′ : d ′ = ν
∂v′

i

∂x j

(
∂v′

i

∂x j
+ ∂v′

j

∂xi

)
= ν

2

(
∂v′

i

∂x j
+ ∂v′

j

∂xi

)2

. (9.41)

The characteristic time scale of these large vortices is given by

τ = K/ε (9.42)

with K 1/2 as the velocity scale. The turbulence Reynolds number rests upon the
previous scales and reads

ReT = K 1/2	

ν
= K 2

ε ν
. (9.43)

Very often, the turbulence Reynolds number is smaller than the physical Reynolds
number of the flow by a factor in between 20 and 100. The scale 	 (9.40) of vortices
energetic enough to influence the mean momentum is called mixing length. At the
other end of the energy cascade, we find small vortices that are determined essentially
by ε and ν. Dimensional analysis yields the Kolmogorov scale 	K defined by the
relationship

	K = (ν3/ε)1/4 (9.44)

corresponding to the scale where dissipative viscous phenomena start acting on the
vortices that have a size of the order of that scale, and time τK

τK = (ν/ε)1/2 (9.45)

characterizing the lifetime of a vortex of size ∼ 	K . As we can admit that viscosity
will fully play its role if the Reynolds number associated to small structures are of
the order of unity, we can set that

vK 	K

ν
≈ 1 . (9.46)

Thus we obtain
vK = (νε)1/4 . (9.47)

Dividing (9.40) by (9.44), the ratio of large to small scales constitute an estimate of
the spectrum:

	

	K
= ReT

3/4 . (9.48)

With (9.48), when the Reynolds number increases, it is the chain of space structures
that spreads (often over several decades). This large range limits the direct numerical
simulations to low or moderate Reynolds numbers. On the contrary, the large eddy
simulation where the structures of smaller size than the mesh step are modeled,
depends precisely on these models. It is considered that small scale turbulence is
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homogeneous and that small scales dynamics is isotropic, and consequently more
universal than that of the large scales. Thus, it is necessary to understand what is
meant by HIT.

9.6 Homogeneous Turbulence

Homogeneous turbulence is described within the framework of the statistical prop-
erties of random homogeneous fields. To this end, we need to introduce the concept
of correlations and spectra. In this section we follow closely the presentation of the
subject by W. C. Reynolds [78].

9.6.1 Correlations and Spectra

Let f and g denote two random fields. Then the two-point correlation of f and g is
defined by the relation

Q f g(x, x′, t) = 〈 f (x, t)g(x′, t)〉 (9.49)

with upper line for the volume average

f (t) = lim
L→∞

1

L3

∫ L

0
f (x, t) d3x (9.50)

and the brackets for the ensemblemean. For homogeneous fields, the ergodic assump-
tion implies the equivalence of these two types of averaging.

For homogeneous fields, Q f g depends only on the distance between the two points
r = x′ − x and on t

Q f g(r, t) = 〈 f (x, t)g(x + r, t)〉 . (9.51)

In homogeneous turbulence, we use Fourier series to represent the fields, with the
hypothesis that turbulence occurs in a cube with a periodicity of length L . Most of
the time, for the sake of simplicity and ease of analysis, one chooses L = 2π . This
procedure allows to forget about the influence of the boundary conditions on the flow
and to rely on the space periodicity of the fields.

The representation of f (x) reads

f (x) =
∑
k

f̂ (k) e−ik·x , −∞ < k < +∞ , (9.52)
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where f̂ (k) is the associated spectrum to f . The three-dimensional wave-vector k
is such that k = (k1, k2, k3). Imposing that f (x) be a real function implies

f̂ (k) = f̂ ∗(−k) (9.53)

with the symbol ∗ denoting the conjugate complex. The relation (9.53) is the Her-
mitian property.

To express the two point correlation between f and g, we write

〈 f (x)g(x′)〉 =
∑
k

∑
k′

〈 f̂ (k)ĝ(k′)〉e−i(k·x+k′ ·x′) . (9.54)

Setting k′′ = −k′ and r = x′ − x, we get

〈 f (x)g(x + r)〉 =
∑
k

∑
k′′

〈 f̂ (k)ĝ∗(k′′)〉e−ix·(k−k′′)+ik′′ ·r . (9.55)

By orthogonality of the Fourier modes, we have the relation

∫
ei(k−k′)·xd3x =

{
0 if k �= k′,
L3 or (2π)3 if k = k′ ,

(9.56)

and the Eq. (9.55) becomes with k′′ = k

Q f g(r) =
∑
k

〈 f̂ (k)ĝ∗(k)〉eik·r . (9.57)

In the Fourier representation (9.57), we use again L as the size of the cubic box with
ki = 2πni/L , ni = 0,±1,±2, . . .. If we let L → ∞, the sums become integrals and
one writes

Q f g(r) =
∫

〈 f̂ (k)ĝ∗(k)〉eik·rd3k , (9.58)

where d3k denotes the elemental volume in Fourier space. Defining by E f g(k) the
cospectrum of f and g as 〈 f̂ (k)ĝ∗(k)〉, we obtain

E f g(k) = 1

(2π)3

∫
Q f g(r)e−ik·rd3r . (9.59)

One notices that Q f g and E f g are Fourier transforms of each other.
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9.6.2 Velocity Correlations and Associated Spectra

Setting f = v′
i and g = v′

j , we define the two-point velocity correlation tensor

Qi j (r) = v′
i (x)v′

j (x + r) . (9.60)

When f = g = v′
i , this is the self-correlation function. For r = 0, we have

Qii (0) = v′
i (x)v′

i (x) = 2K . (9.61)

The velocity spectrum tensor E is thus the Fourier transform of Qi j

Ei j (k) = 1

(2π)3

∫
Qi j (r)e−ik·rd3r . (9.62)

Moreover,

Qi j (r) =
∫

Ei j (k)eik·rd3k . (9.63)

The Reynolds tensor τi j is obtained by

τi j = Qi j (0) . (9.64)

With (9.63), we have

τi j =
∫

Ei j (k)d3k . (9.65)

It is easily shown that Q possesses a symmetry such that

Q(−r) = QT (r) . (9.66)

Consequently, the tensor E has the property

E(−k) = ET (k) . (9.67)

Let us introduce the general tensor

Di jpq = ∂v′
i

∂x p

∂v′
j

∂xq
. (9.68)

From the definition (9.60), one obtains

∂ Qi j (r)
∂rq

= v′
i (x)

∂v′
j (x + r)

∂rq
. (9.69)
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Replacing x by x′ − r in (9.69) and taking the derivative with respect to rp, we have

∂2Qi j (r)
∂rp∂rq

= −∂v′
i (x

′ − r)
∂rp

∂v′
j (x

′)
∂rq

. (9.70)

Letting r go to zero, the tensor Di jpq yields

Di jpq = −∂2Qi j (r)
∂rp∂rq

|r=0 . (9.71)

Applying Eqs. (9.73) to (9.63), we find

Di jpq =
∫

kpkq Ei j (k)d3k . (9.72)

The dissipation rate ε (9.41) may be linked to the previous tensor by the relation

ε = νDii j j . (9.73)

With the Eqs. (9.72) and (9.73), we compute

ε = ν

∫
k2Eii (k)d3k . (9.74)

With Eq. (9.61) the turbulent kinetic energy is expressed as

K = 1

2
tr Q(0) = 1

2

∫
Eii (k)d3k . (9.75)

The k2 factor in (9.74) shows that the main contribution to the dissipation comes
from wave numbers higher than those characterizing the kinetic energy. This is a
partial confirmation of the validity of Kolmogorov hypothesis for the energy cascade
in homogeneous turbulence.

9.6.3 Correlations and Spectra in Isotropic Turbulence

In isotropic turbulence, the tensor E is an isotropic tensor function of only k =√
k · k. Its more general form is

E(k) = C1 I + C2 k ⊗ k . (9.76)

The incompressibility condition (1.50) applied to the Fourier expansion of the veloc-
ity field
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v(x) =
∑
k

v̂(k) e−ik·x (9.77)

imposes k j v̂ j (k) = 0 such that the Fourier coefficients of the velocitymust be orthog-
onal to k. Therefore, we have

ki Ei j = k j Ei j = 0, (9.78)

and thus, one obtains
C1k j + C2k2k j = 0 (9.79)

and consequently
C2 = −C1/k2 . (9.80)

Redefining C1 as

C1 = E(k)

4πk2
, (9.81)

(and that is justified by the isotropy in the spectral space with d E = 4πk2 E(k) dk
which gives the energy density between the spherical layers k and k + dk), we get

E(k) = E(k)

4πk2

(
I − k ⊗ k

k2

)
. (9.82)

We call E(k) the spectral energy function.
The turbulence energy via (9.75) and (9.82) becomes

K =
∫

1

4πk2
E(k)d3k . (9.83)

This integral is computed in spherical coordinates as shown in Fig. 9.3.
We have

K = 1

4π

∫ ∞

k=0

∫ π

θ=0

∫ 2π

φ=0

E(k)

k2
k2 sin θ dθ dϕ dk . (9.84)

Integrating with respect to θ and ϕ, and because of the isotropy, we obtain

K =
∫ ∞

0
E(k) dk . (9.85)

Let us note that E(k) has dimension m3s−2. In isotropic turbulence, the energy
spectrum is completely determined as soon as E(k) is specified.

As the E tensor is the Fourier transform of Q (Eq. (9.62)) in isotropic turbulence,
the velocity correlation tensor is completely defined by two correlation functions
(Fig. 9.4). The longitudinal correlation function
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Fig. 9.3 Spherical coordinates for Fourier space integration

Fig. 9.4 Longitudinal and transverse correlations
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f (r) = 3

2K
Q11(r1, 0, 0) (9.86)

describes the coherence of fluctuations aligned in the direction of the vector separat-
ing the two points. The transverse correlation function

g(r) = 3

2K
Q22(r1, 0, 0) (9.87)

is the image of the coherence of fluctuations of velocities orthogonal to the separation
line. The most general expression of tensor Q is

Q(r) = C1 I + C2 r ⊗ r (9.88)

with the definition
r = √

riri . (9.89)

The constants C1 and C2 are easily evaluated

Q22(r1, 0, 0) = 2K

3
g(r) = C1,

Q11(r1, 0, 0) = 2K

3
f (r) = C1 + C2r

2.

Solving this system, we find

Q(r) = 2K

3

[
f (r) − g(r)

r2
r ⊗ r + g(r)I

]
. (9.90)

In this last expression, we note that the functions f and g are scalar functions of the
(scalar) distance of separation.

In theory, homogeneous isotropic turbulence evolves with time and we should
measure the spectral tensor by taking measurements in many points. In reality,
this is very difficult. Therefore the experimenters use Taylor’s hypothesis which
assumes that the turbulence time history mirrors the space history as turbulence is
only advected around the measurement device. We conclude that the measurement
of v′

1(x, t) yields Q11(r1, 0, 0, t). In other words, we replace time correlations by
space correlations.

Inserting (9.82) in (9.63), we obtain

Q11(r1, 0, 0) =
∫

E(k)

4πk2

(
1 − k2

1

k2

)
eik1r1d3k . (9.91)

Referring to Fig. 9.5 for the Fourier wavenumber integration, we observe that k1
wavenumbers contribute substantially. As k1 goes from −∞ to +∞, these terms
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Fig. 9.5 k coordinates for
Fourier spectral integration

have the imaginary parts of eik1r1 with opposite signs and therefore cancel each other
leaving only cosines in the integral. This integral reads now

Q11(r1, 0, 0) =
∫ ∞

k1=0

∫ ∞

k=k1

∫ 2π

ϕ=0

E(k)

4πk2

(
1 − k2

1

k2

)
2 cos(k1r1)kdϕdkdk1 . (9.92)

The ϕ integration gives 2π and we are left with

Q11(r1, 0, 0) =
∫ ∞

k=k1

E1(k1) cos(k1r1)dk1 (9.93)

with the definition of the one-dimensional spectral function E1

E1(k1) =
∫ ∞

k=k1

E(k)

k

(
1 − k2

1

k2

)
dk . (9.94)

With relation (9.93), we notice that the Fourier cosine transform of measurements
Q11(r1, 0, 0) is an efficient tool to obtain E1(k1). By taking twice the derivative of
Eq. (9.94) with respect to k1, one has

E(k1) = k2
1

2

∂2E1(k1)

∂k2
1

− k1
2

∂ E1(k1)

∂k1
. (9.95)

This equation allows to establish E(k). Its general shape is shown in Fig. 9.2. By
(9.85), the surface beneath the curve gives the turbulent kinetic energy that receives
its maximum contribution from wave-numbers located near the maximum.
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Fig. 9.6 Spectrum of the
longitudinal fluctuation

E(k)

ν5/4ε1/4
with respect to the

Kolmogorov variable kν3/4

ε1/4

It is supposed that the small scalemotions in every turbulent flowbecome isotropic
for high Reynolds numbers and that the Kolmogorov scales characterize the region of
large wave-numbers (or of small spatial scales) of any turbulent flow. If we suppose
the existence of a universal spectrumat small scale, bymeans of dimensional analysis,
we have

E(k)

v2
K 	K

= E(k)

ν5/4ε1/4
= F(	K k) = F(

kν3/4

ε1/4
) . (9.96)

Figure 9.6 shows that the experimental data for a vast diversity of flows fall effectively
on a common curve when Kolmogorov variables are used.

Kolmogorov [42, 43] suggests that there exists a wave-number range for which
the dominant physical mechanism consists in transmitting the energy of the large
structures towards the small scales (cascade) and that the structure of this region
depends only on the speed of the energy transfer. This interval is called the inertial
zone or else inertial range. Since this cascade ends with the small-scale dissipation,
the transfer rate is equal to the dissipation rate ε. We assume, therefore, that E(k)

depends only on k and ε. Applying dimensional analysis, we get

E(k) = C ε2/3 k−5/3 . (9.97)
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This is Kolmogorov spectrum. Note that this result proved in homogeneous isotropic
turbulence remains valuable in many non homogeneous and non isotropic turbulent
configurations.

The correlation functions f and g give a certain idea of the turbulent motion. The
integral scales are useful for the large scale motion. One can define for example:

L11(t) =
∫ t
0 Q11(r1, 0, 0, t)dr1

Q11(0, 0, 0, t)
(9.98)

giving a measure of the size of the vortices in direction x1. Another scale that is often
used is Taylor’s microscale λT . A possible definition is

ε = ν
K

λ2
T

. (9.99)

If we compare Taylor’s microscale to Kolmogorov scale, we have

λT

	K
= Re1/4T . (9.100)

If we compare λT to the size of energetic structures (9.40), we obtain

	

λT
= Re1/2T . (9.101)

Thus, the microscale is comprised between the smallest and the largest scales.

9.7 Fourier Spectral Solution

The assumption of spatial homogeneity naturally leads to a Fourier representa-
tion of the primitive variables of the Navier–Stokes equations. In this case, the
absence of solid walls eases the elaboration of solutions and the differential operators
are replaced by wavenumber multiplications in spectral space. Nevertheless, these
Fourier tools yield direct access to spectra that are convenient and reliable theoretical
instruments to interpret the physical phenomena. As might be expected, the field has
been extensively explored and exploited by several authors arguably starting with the
monograph by Batchelor [11]. Over the intervening decades there have been several
reviews and these are nicely highlighted by Lesieur [50] and McComb [54].

The velocity field is approximated by the following Fourier series given in a 2π
periodic box

v(x, t) =
∑
k

u(k, t) exp(ik · x) , (9.102)
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where the wavevector k = (k1, k2, k3) goes from −∞ to ∞. The ki are integers.
For the sake of facility, we rewrite theNavier–Stokes equationswith the non-linear

term in conservative form taking the incompressibility into account

∂v

∂t
+ ∇ · (v ⊗ v) = − 1

ρ
∇ p + νv . (9.103)

With (9.102), the Fourier representation of the tensor product appearing in the non-
linear term is obtained as follows

(v ⊗ v)i j = viv j =
∑
k′

ui (k
′, t)eik′ ·x ∑

k′′
u j (k

′′, t)eik′′ ·x

=
∑

k′+k′′=k

ui (k
′, t)u j (k

′′, t)ei(k′+k′′)·x . (9.104)

The pressure field is also given by a Fourier series such that

1

ρ
p =

∑
k

p̂(k, t) exp(ik · x) . (9.105)

The insertion of the Fourier approximations of the various terms in (9.103), followed
by the multiplication of the resulting relation by e−ik·x and then integration on the
periodic cube leads to the equation

dui

dt
+ νk2ui = −iki p̂ − Ci , (9.106)

where Ci is the non-linear convective term which in Fourier space is given by

Ci = ikm

∑
k′+k′′=k

ui (k
′, t)um(k′′, t) . (9.107)

Taking the divergence of (9.106) with the incompressibility constraint, we get the
pressure Poisson equation

k2 p̂ = iki Ci . (9.108)

The pressure p̂ is then

p̂ = i
kl

k2
Cl . (9.109)

The dynamical Navier–Stokes equation (9.106) becomes
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(
d

dt
+ νk2

)
ui = ki kl

k2
Cl − Ci

= −(δil − ki kl

k2
)Cl

= −PilCl , (9.110)

with Pil = δil − ki kl/k2, the projection tensor of the velocity field on a plane that is
orthogonal to the k vector.

It is very often preferred to write (9.110) in symmetric form, i.e. in terms of the
compound projection operator Pilm

Pilm = kl Pim + km Pil , (9.111)

such that
(

d

dt
+ νk2

)
ui = − i

2
Pilm

∑
k′+k′′=k

ul(k
′, t)um(k′′, t) , (9.112)

ki ui = 0 . (9.113)

Equations (9.112) and (9.113) are amenable to numerical Fourier spectral approx-
imation if we apply a cut-off wavenumber kc in the k space in such a way that
‖k‖ < kc. In the convolution term, ‖k′‖ < kc and ‖k′′‖ < kc, cf. S. A. Orszag [67].

Even though the numerical integration is carried out in spectral space, the non-
linearity is computed in physical space by so-called pseudo-spectral or more appro-
priately collocation method. The passage between Fourier and physical space and
vice-versa is performed by discrete Fourier transforms (DFT). All derivatives are
accurately computed in spectral space. For the non-linear terms the various contri-
butions are transformed in physical space by DFT on the collocation grid, where the
product v · ∇v is evaluated at these nodes and transformed back to Fourier space by
inverse DFTs. Dealiasing procedures are needed to avoid spectral pollution in the
high wave numbers.

9.8 Linear Turbulence Models

The real life applications are very seldom taking place in periodic geometries. Engi-
neering practice implies complicated internal or external shapes and the presence of
walls renders matters quite complex. Therefore a number of approaches of turbulent
flows require the use of turbulent models following the lead of Lumley [52] andmore
recently Gatski [33]. We review some of them in the next subsections.
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9.8.1 Zero Equation Model

This closure scheme is often called algebraic to clearly demonstrate the fact that
there is no transport equation to describe the Reynolds stresses, but only algebraic
expressions relating them to the velocity field v(x). By analogy with the viscous
Newtonian fluid model, we write the constitutive turbulent equation for the Reynolds
stress as

R = 2μT d , (9.114)

using the turbulent (dynamic) viscosity μT . This turbulent viscosity was introduced
by Boussinesq [17]. It should be emphasized that we reason by analogy with the
mechanics of continuous media where we deduce equations for the viscous Newto-
nian fluid. Here, however, we do not characterize a material behavior but the state of
a flow. In order to ensure a correct writing of the Reynolds tensor, we write the Eq.
(9.114) in the form:

τ − 2K

3
I = −2νT d . (9.115)

The addition of the diagonal term allows to obtain in the left hand side a tensor with
a zero trace as is d and τi i = 2K . The turbulent viscosity is fixed by K , ε and 	, the
mixing length. By dimensional analysis, we have

νT � K 1/2	 or νT � K 2/ε = τ K , (9.116)

where τ is the turbulent velocity time.

9.8.2 Turbulent Flow in a Plane Channel

Here we deal with the case of a particular flow that will enable us to write with
full details the closure problem described by Eqs. (9.115)–(9.116). We consider
a statistically steady state flow between two parallel planes of infinite horizontal
extension that constitute a channel of height 2h. The mean flow is a pure shear flow,
homogeneous in direction x1, such that

v = (v1(x2), 0, 0) . (9.117)

The Eqs. (9.14) of the mean motion become
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0 = − ∂ p

∂x1
+ μ

∂2v1

∂x2
2

+ ∂

∂x2
(−ρ v′

1v
′
2), (9.118)

0 = − ∂ p

∂x2
+ ∂

∂x2
(−ρ v′2

2 ), (9.119)

∂v1

∂x1
= 0 . (9.120)

Integrating (9.119) yields
p + ρv′2

2 = p0(x1) . (9.121)

We may rewrite (9.118) as

∂

∂x2
(μ

∂v1

∂x2
− ρ v′

1v
′
2) = dp0

dx1
= −A . (9.122)

As the left hand side can only be a function of x2 because of the hypotheses of steady
state homogeneous turbulence and as the right hand side is only function of x1, each
side must be equal to a constant. One gets

μ
∂v1

∂x2
− ρ v′

1v
′
2 = −Ax2 + B . (9.123)

In the left hand side, we have the total stress resulting from the viscous and Reynolds
stresses. If the origin of the axes is located at mid-height of the channel, by symmetry,
B must vanish in x2 = 0.

Let us move the origin of the coordinate system on the lower wall. We assume
that the mixing length increases linearly with the distance to the wall, i.e.

	 = κx2 . (9.124)

The vortices close to a wall have a characteristic dimension proportional to the wall
distance. Let us note that turbulence is zero on this wall by the no-slip condition.

Using the model of turbulent viscosity (9.115) and assuming a steady state homo-
geneous turbulence, one obtains with (9.22)

P = D, (9.125)

and
P = 2νT di j di j = ε . (9.126)

By (9.40), (9.116) and (9.126), we eliminate K 1/2 and ε. We have

νT ≈ K 1/2	 = ε1/3	4/3

= (2νT di j di j )
1/3	4/3 (9.127)
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and therefore
νT ≈ 	2(2di j di j )

1/2 . (9.128)

For the flow between two parallel walls, we have d12 = d21 and then,

νT = 	2
∂v1

∂x2
. (9.129)

9.8.3 The Logarithmic Velocity Profile

Combining (9.115), (9.123) and (9.129), we obtain

(
μ + ρ	2

∂v1

∂x2

)
∂v1

∂x2
= −Ax2 + B , (9.130)

where B is the wall shear stress that we denote τw. In the neighborhood of the wall
assumed to be smooth, the turbulent exchanges are negligible with respect to the
molecular viscosity effects. We are in the viscous sub-layer. The Eq. (9.130) reduces
to:

μ
∂v1

∂x2
= τw = ρv2

∗, | Ax2 |� B , (9.131)

with v∗, the friction velocity. The velocity profile is linear

v1

v∗
= v∗x2

ν
= Re∗ . (9.132)

In (9.132), Re∗ is the wall Reynolds number.
Beyond the viscous sub-layer, we neglect the molecular diffusion with respect to

the turbulent diffusion. The relation (9.130) with (9.124) becomes:

ρκ2x2
2

(
dv1

dx2

)2

= −Ax2 + B . (9.133)

The integration of this non-linear differential equation is not simple.We notice exper-
imentally that the result obtained for x2/h < 0.2 is very close to that obtained when
Ax2 is neglected compared to B. Consequently, in this zone, the shear stress remains
constant. We have the relation:

dv1

dx2
= v∗

κx2
. (9.134)
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Integrating Eq. (9.134) yields

v1 = v∗
κ

log x2 + C . (9.135)

To know the velocity variation close to the wall, we need to determine the value of
the integration constant C . To this end, we will admit that the velocity v1 vanishes, at
a distance from the wall corresponding to the thickness δs of the viscous sub-layer.
We set the condition:

v1 = 0 in x2 = δs = β
ν

v∗
, (9.136)

β being a numerical constant. This way to express the thickness δs is classically
adopted in order to get the wall distance x2 dimensionless using the wall Reynolds
number Re∗:

v∗x2
ν

= Re∗ . (9.137)

Condition (9.136) applied to (9.135) yields

C = −v∗
κ

log
βν

v∗
. (9.138)

The relation (9.135), with C given by (9.138), is written as:

v1

v∗
= 1

κ
(log

x2v∗
ν

− logβ) = 1

κ
(log Re∗ − logβ) . (9.139)

The experimental data show that κ , the vonKármán constant, has a value independent
on the wall nature (rough or smooth) and is equal to 0.4. On the other hand, the β

value, that is in the mean of the order of 0.1, is influenced by the wall roughness.
The logarithmic profile (9.139) is one of the most celebrated results of turbulence

theory. Figure 9.7 is a semi-log plot. The straight line corresponding to Eq. (9.139)
is obvious. When x2v∗/ν is <30, the molecular viscosity becomes important in this
zone. The laminar stresses are dominant and the turbulent stresses are negligible,
allowing to write the next equalities:

τ12 = μ
∂v1

∂x2
= τw = ρv2

∗ (9.140)

or
v1

v∗
= v∗x2

ν
= Re∗ . (9.141)

The curve corresponding to this profile is included in Fig. 9.7. The experimental
data are in good agreement for x2v∗/ν < 8. For x2/h > 0.2, the logarithmic law no
longer fits exactly the experimental results. In the region between x2/h = 0.2 and
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Fig. 9.7 Logarithmic velocity profile in a turbulent boundary layer with u = v1, y = x2. Crosses
are experimental data

x2/h = 1, one uses the wake function. The profile is then the logarithmic relation
plus a functionw(x2/δ)with δ a characteristic thickness of the problem. One obtains

v1(x2)

v∗
= 1

κ
log

v∗x2
ν

+ C + 1

κ
�w(

x2
δ

) (9.142)

with
w = 2 sin2(

x2
δ

π

2
) . (9.143)

The parameter� is linked to the pressure gradient. In a boundary layer with constant
pressure, � = 0.6. For a pipe flow, � = 1/4 with δ = R.

9.9 The One-Equation Model: the K − � Model

The algebraic closure of the zero equation model is often criticized for two reasons.
The first one notices that there exists a number of flow experiments where d and
v′ ⊗ v′ do not change sign at the same location. Therefore, the turbulent viscosity
could be negative and this is physically not expected. However, experimentally the
regionswhere the turbulent viscosity is negative, are spatially small inmost industrial
applications so that the local failure of this model has no major consequence.

The second reason consists in that the relationship between d and v′ ⊗ v′ is purely
local, ignoring de facto the “history” of turbulence. In order to improve this situation,
one adds a transport equation for a relevant velocity scale of the turbulent motion.
The most significant scale from the physical point of view is K 1/2, cf. (9.20). With
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the Eqs. (9.22) and (9.23) of the turbulent kinetic energy, we observe that we have
generated new correlations in the diffusion and dissipation terms. In order to close
the system of equations, the K − 	 model introduces the following hypotheses. One
replaces the first two terms of the turbulent kinetic energy flux (9.23) by a gradient
and one develops a link between the dissipation rate ε and the kinetic energy by an
algebraic relation. One gets

−
(
1

ρ
p′v′ + 1

2
(v′ · v′)v′

)
= νT

σq
∇K (9.144)

ε = CD

	
K 3/2 , (9.145)

with σq and CD empirical constants. Usually, one sets CD = 0.164. Similarly, one
chooses μT as:

μT = ρK 1/2	 , (9.146)

where the mixing length 	 is determined again by an algebraic relation. For com-
pleteness, it is worth noting that an alternative approach to determining the eddy
viscosity is to solve a transport equation directly for the eddy viscosity νT (Spalart
and Allmaras [94]). Such a one-equation model, though based primarily on empiri-
cism and on dimensional analysis, is popular among industrial users, especially in
aerodynamics and in turbomachinery, due to its ease of implementation and relatively
inexpensive cost.

For three-dimensional flows, the concept of mixing length (9.124) can be gener-
alized. With the gradient velocity tensor we have the Eq. (9.128) or if we use the
vorticity

νT = 	2(ω · ω)1/2 , (9.147)

where ω = curl v is the average vorticity. This is the Baldwin–Lomax mixing length
model [7].

Consequently, the governing equation of the K − 	 model reads:

∂K

∂t
+ v · ∇K = ∇ ·

(
(ν + νT

σK
)∇K

)
+ 2νT d : ∇v − CD

K 3/2

	
. (9.148)

Very often one sets σK equal to 1. This practice produces good results for various
types of flows. To solve (9.148) the boundary condition imposes a vanishing K value
on solid walls and a zero normal gradient on inflow and outflow sections.
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9.10 The Two-Equation Models

In this section we will look at the widely used K − ε and K − ω models. These
approaches try to circumvent the deficiencies of the one-equation modeling by the
addition of a second partial differential equation. Both models use (9.115) for the
Reynolds stress tensor.

9.10.1 K − ε Model

One takes the derivative of the dynamic equation for the velocity fluctuations (9.19)
with respect to xl . Then, one multiplies the resulting equation by ∂v′

i/∂xl . This last
relation is averaged. We obtain

∂

∂t

1

2

(
∂v′

i

∂xl

)2

+ ∂2vi

∂xl∂x j
v′

j

∂v′
i

∂xl
+ ∂vi

∂x j

∂v′
i

∂xl

∂v′
j

∂xl
+ ∂v j

∂xl

∂v′
i

∂xl

∂v′
i

∂x j

+ v j
∂

∂x j

1

2
(
∂v′

i

∂xl
)2 + ∂v′

i

∂xl

∂v′
j

∂xl

∂v′
i

∂x j
+ v′

j

∂

∂x j

1

2
(
∂v′

i

∂xl
)2

= − 1

ρ

∂v′
i

∂xl

∂2 p′

∂xl∂xi
+ ν

∂v′
i

∂xl
(

∂2

∂x2
j

(
∂v′

i

∂xl
)) . (9.149)

Defining the dissipation rate ε

ε = ν
∂v′

i

∂xl

∂v′
i

∂xl
, (9.150)

we write Eq. (9.149) as follows

∂ε

∂t
+ vk

∂ε

∂xk
= ∂

∂xk

(
ν

∂ε

∂xk
− ν v′

k

∂v′
i

∂xl

∂v′
i

∂xl
− 2

ν

ρ

∂p

∂xi

∂v′
k

∂xi

)

−2ν
∂vi

∂xk

(
∂v′

i

∂xl

∂v′
k

∂xl
+ ∂v′

l

∂xi

∂v′
l

∂xk

)
− 2νv′

k

∂v′
i

∂xl

∂

∂xk

(
∂vi

∂xl

)

−2ν
∂v′

i

∂xl

∂v′
k

∂xl

∂v′
l

∂xk
− 2ν2

(
∂

∂xk

(
∂v′

i

∂xl

))2

. (9.151)

On the left hand side of (9.151), we find thematerial derivative of the dissipation rate.
Then in the first expression on the right hand side we have several diffusion terms:
molecular, turbulent by velocity fluctuations, turbulent by pressure fluctuations. The
two terms of the second line shows the production by the mean velocity gradients
indicating the interaction between the turbulence and themean flow. The penultimate
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term in the third line shows the interaction between the gradients of the velocity
fluctuations. Finally the last term is the dissipation of ε.

The Eq. (9.151) is often rewritten on the basis of empirical rather than theoretical
considerations in the form

∂ε

∂t
+ v · ∇ε = ∇ ·

(
(ν + νT

σε

)∇ε

)
+ 2Cε1

ε

K
νT d : d − Cε2

ε2

K
, (9.152)

where the eddy viscosity is defined as

νT = Cμ

K 2

ε
. (9.153)

Observe the strong similarity of Eqs. (9.148) and (9.152).
There has been many attempts to obtain the numerical values for the constants

appearing in the K − ε model by a careful analysis of the experimental data. How-
ever a convincing theoretical approach is based on the renormalization group theory
(RNG) proposed by Yakhot and Orszag [123]. The RNG theory is well beyond of
the scope of this monograph and we refer the reader to the available literature. The
constants are given by Yakhot et al. [124]

Cε1 = 1.42 Cε2 = 1.68 σε = σK = 0.719 Cμ = 0.0845 . (9.154)

The boundary conditions for K are identical to those proposed for the one-equation
model. However for the two-equation approach, the appearance of ε induces compli-
cations to set up the boundary condition for that variable on the wall as its evaluation
is rather tricky. The numericists and modelers resort to wall functions whereby the
boundary conditions are not applied directly on the wall but at the beginning of the
turbulent region close to the boundary. In the turbulent boundary layer, Eq. (9.126)
yields

νT

(
∂v1

∂x2

)2

= ε . (9.155)

We also know that in the turbulent boundary layer, the shear stress is constant

μT

(
∂v1

∂x2

)
= τw . (9.156)

Combining (9.155) and (9.156) with τw = ρv2∗ , we find

K = v2∗√
Cμ

. (9.157)
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The dissipation rate is obtained from (9.156) and the velocity profile (9.139)

ε = | v∗ |3
κx2

. (9.158)

Sometimes, Neumann type conditions are needed

∂K

∂n
= 0, v∗ = (Kw)1/2C1/4

μ , (9.159)

where Kw is the wall turbulence kinetic energy and ∂/∂n the normal derivative.

9.10.2 K − ω Model

In this model proposed by Wilcox [119, 120], K is still the turbulent kinetic energy
while ω is the specific rate of dissipation of K , also referred to as the average
frequency of the turbulence. The definition of ω is given as

ω = ε

K
. (9.160)

The dimension of ω is indeed the inverse of time. The kinematic eddy viscosity is
defined as

νT = K

ω
. (9.161)

The dynamic equation forωmay be obtained easily by formally dividing the variable
in (9.148) by K and multiplying by ω yielding

∂ω

∂t
+ v · ∇ω = ∇ ·

(
(ν + νT

σω

)∇ω

)
+ 2ανT

ω

K
d : ∇v − βω2 . (9.162)

The constants have the following values α = 5/9, β = 3/40, σω = 1/2.
Two important topics have played a central role in the formulation of recentmodels

of the Reynolds stresses: realizability and objectivity. Realizability imposes that the
tensor diagonal components be individually positive

Rαα ≥ 0, α = 1, 2, 3, (9.163)

the greek index α indicating that there is no summation on the repeated indices in
this case. Objectivity is a more delicate topic and is beyond the framework of this
monograph [21, 95].
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9.11 Non-linear Turbulence Models

So far we have examined linear turbulence models. However the physical reality of
turbulence, as it is generated by the non-linear terms of the Navier–Stokes equations,
is definitely non-linear. Therefore in this section we will tackle the construction
of non-linear models to be able to cope better with the experimental data and the
knowledge of turbulent phenomena. The two-equation models present the following
defects: firstly, the inability to take into account the curvature effects of the stream-
lines and the deformations due to rotation; secondly, the neglect of non-local effects
and history on the anisotropy of the Reynolds stresses.

9.11.1 Anisotropy Tensor

The anisotropy tensor of the Reynolds tensor is defined by the relationship

bi j = τi j − 2K
3 δi j

2K
, (9.164)

and describes the deviations with respect to the isotropic situation. This tensor offers
interesting properties. We notice that its trace which is the first invariant I1

bii = I1(b) = 0 (9.165)

is zero by Eq. (9.21). Most of the time, the use of the anisotropy tensor is related to its
eigenvectors because then, the tensor is diagonal.As a consequenceof (9.165) the sum
of its eigenvalues vanish in such a way that only two such quantities are independent.
Therefore the anisotropy is characterized by two independent invariants

I2(b) = −bi j b ji/2 = −1

2
tr b2, I3(b) = bi j b jkbki/3 = det b . (9.166)

If the turbulence is two-dimensional, because one velocity component in the direction
of one of the principal axes always vanishes, we obtain

bαα = −1/3 if ταα = 0 . (9.167)

There is no summation on Greek indices. If now all the energy is concentrated in a
single component, we have

bαα = 2/3 if ταα = 2K . (9.168)

This last case is namedone-dimensional turbulence.We conclude that the eigenvalues
of b are contained in the interval [−1/3, 2/3].
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Fig. 9.8 Anisotropy
invariant map.
1D-axisymmetric boundary
at (I3,−I2) = (2/27, 1/3);
2D-axisymmetric boundary
at
(I3,−I2) = (−1/108, 1/12)

Lumley [53] examined the limiting values associated with bi j in incompressible
flows. For isotropic turbulence, the anisotropies vanish and the corresponding point
is the origin in the anisotropy invariant map defined with the axes (I3,−I2). From the
origin, two other limiting boundaries are associated with axisymmetric turbulence
where two of the diagonal elements are equal and the third is the negative sum of
the other two (incompressibility). For example the anisotropy tensor in the principal
coordinates is given by

bi j = diag(a, a,−2a) . (9.169)

We compute
I2 = −3a2, I3 = −2a3 . (9.170)

For a > 0, we have I3 = +(−2I2/3)3/2, corresponding to an axisymmetric expan-
sion. When a < 0, I3 = −(−2I2/3)3/2 that corresponds to an axisymmetric contrac-
tion.

As Fig. 9.8 shows, a straight line connects the one-component axisymmetric limit
with the two-component axisymmetric limit. This turbulence case corresponds to a
Reynolds tensor with only two non zero components

τi j = diag(0, p, q) , (9.171)

with p, q both positive and p + q = 2K . Now let us set q = K (1 − a/3), with
0 ≤ a ≤ 3. We have successively

τi j = diag(0, K (1 + a/3), K (1 − a/3))) (9.172)

and the anisotropy tensor reads

bi j = diag(0, (1 + a)/6, (1 − a)/6) . (9.173)
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The invariants are

I2(b) = − 1

12

(
1 + a2

3

)
, I3(b) = a2 − 1

108
(9.174)

For a = 0, I3(b) = −1/108 and with a = 3, I3(b) = 2/27.

Theorem 9.1 (Cayley–Hamilton theorem) The Cayley–Hamilton theorem specifies
that every tensor b satisfies its own characteristic equation

b3 − I1b
2 + I2b − I3 I = 0 . (9.175)

In our case, (9.175) reduces to

b3
i j + I2bi j − I3δi j = 0 . (9.176)

Using (9.176) with (9.174), the straight line of Fig. 9.8 is given by the relation

1 + 9I2 + 27I3 = 0 . (9.177)

Referring to Eq. (9.115) for the Reynolds stress, the anisotropy tensor yields

b = −2νT d
2K

. (9.178)

This relation shows that the principal axes of the stress and the averaged strain rate are
aligned. However this is not true for a particularly important engineering application,
namely shear flows.

9.11.2 Dynamic Equation for the Anisotropy Tensor

In this section, we will resort to the index notation for ease of mathematical devel-
opments. The dynamic equation for the Reynolds stress (9.29) reads

Dτi j

Dt
= −τik

∂v j

∂xk
− τ jk

∂vi

∂xk
+ �i j − εi j + Di j , (9.179)

where the various terms are
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�i j = p′
(

∂v′
i

∂x j
+ ∂v′

j

∂xi

)
(9.180)

εi j = 2ν
∂v′

i

∂xk

∂v′
j

∂xk
(9.181)

Di j = −∂Ci jk

∂xk

= − ∂

∂xk

(
v′

iv
′
jv

′
k + p′v′

iδ jk + p′v′
jδik − ν

∂τi j

∂xk

)
. (9.182)

By incompressibility �i i = 0. Evaluating the trace of (9.179) leads to the dynamic
equation of the turbulent energy

DK

Dt
= P − ε + D , (9.183)

where

P = −τik
∂vi

∂xk
, ε = εi i

2
, D = Di i

2
. (9.184)

Taking (9.179) and (9.183) into account, we obtain

Dbi j

Dt
= 1

2K

(
Dτi j

Dt
− τi j

K

DK

Dt

)
. (9.185)

Defining the anisotropy tensor for the dissipation-rate correlation

di j = εi j − 2K
2K δi j

2K
(9.186)

the combination of (9.179) and (9.183) gives using the definition

di j + ω̇i j = ∂vi

∂x j
, (9.187)

the relationship

Dbi j

Dt
= −bi j

(P
K

− ε

)
− 2

3
di j −

(
bikdk j + dikbk j − 2

3
bmndmnδi j

)

+ (
bikω̇k j − ω̇ikbk j

) + �i j

2K
+ 1

2K

(
Di j − τi j

K
D

)
− 1

τ
di j , (9.188)

with τ = K/ε.
To treat the pressure-strain rate correlation, we take the divergence of (9.19) that

produces the pressure Poisson’s equation
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1

ρ

∂2 p′

∂x2
i

= −2
∂v′

i

∂x j

∂v j

∂xi
−

(
∂v′

i

∂x j

∂v′
j

∂xi
− ∂v′

i

∂x j

∂v′
j

∂xi

)
. (9.189)

It is customary (cf. [24]) to decompose the turbulent pressure field p′ into slow p′(s)
and rapid p′(r) contributions

1

ρ

∂2 p′(s)

∂x2
i

= −
(

∂v′
i

∂x j

∂v′
j

∂xi
− ∂v′

i

∂x j

∂v′
j

∂xi

)
(9.190)

1

ρ

∂2 p′(r)

∂x2
i

= −2
∂v′

i

∂x j

∂v j

∂xi
. (9.191)

Equation (9.190) expresses the “slow” relaxation of the turbulence toward isotropy
while (9.191) is concerned with the “rapid” response of turbulence to imposed mean
velocity gradients.

The modeling of the pressure-strain rate correlation is based on the hypothesis of
local homogeneity. Therefore, for the case of a one-point closure, the model is based
on functionals of the Reynolds stress and the turbulent dissipation rate. We write

�i j = εAi j (b) + KMi j (b) . (9.192)

Gatski and Jongen [32] propose a nonlinear form in the anisotropy tensor bi j that
reads

�i j = −
(

C0
1 + C1

1
P
ε

)
εbi j + C2K di j

+ C3K

(
bikd jk + b jkdik − 2

3
bmndmnδi j

)

− C4K
(
bikω̇k j − ω̇ikbk j

)

+ C5ε

(
bikbk j − 1

3
bmnbnmδi j

)
. (9.193)

Substituting (9.193) in (9.188) and rewriting yields

Dbi j

Dt
− 1

2K

(
Di j − τi j

K
D

)

= −
(

bi j

a4
+ a3

(
bikdk j + dikbk j − 2

3
bmndmnδi j

)

− a2
(
bikω̇k j − ω̇ikbk j

) + a1di j

− 1

τ
a5

(
bikbk j − 1

3
bmnbnmδi j

)
+ 1

τ
di j

)
, (9.194)
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with the pressure-strain rate closure coefficients

a1 = 1

2

(
4

3
− C2

)
, a2 = 1

2
(2 − C4) ,

a3 = 1

2
(2 − C3) , (9.195)

a4 = τ

(
C0
1

2
− 1 +

(
C1
1

2
+ 1

) P
ε

)−1

,

a5 = 1

2
C5 . (9.196)

The closure coefficients are obtained from experimental data or numerical results
on benchmark problems. Following Speziale et al. [96], we have C0

1 = 3.4, C1
1 =

1.8, C2 = 0.36, C3 = 1.25, C4 = 0.4, C5 = 4.2.

9.12 Reynolds Stress Tensor Representation Using
Integrity Bases

From the previous section, we know that

b = b
(
d, ω̇, τ

)
, (9.197)

where τ is the integral turbulence time.The tensor bmust satisfy the isotropyproperty,
namely

Qb
(
d, ω̇, τ

)
QT = b

(
Qd QT , Qω̇QT , τ

)
, (9.198)

for all orthogonal transformation matrices Q such that QQT = QT Q = I and
det Q = ±1, where QT is the transpose of Q and det denotes the determinant. By
(9.198), it is required that b be invariant to the full orthogonal group that includes all
reflection and rotation matrices. By the Cayley–Hamilton theorem (9.175), given an
arbitrary finite set of input tensors, it is possible to construct a finite basis of invari-
ant tensors, called an integrity basis [24]. Any invariant tensor function of these
given tensors, d, ω̇, will be a linear combination of the integrity basis tensors. These
integrity bases have been tabulated in chapter two of Deville-Gatski monograph [24]
where a clear presentation is aimed at achieving readability.

To summarize the theoretical development that is beyond the scope of this mono-
graph, the integrity basis for a single symmetric tensor T is given by the associated
matrix invariants

tr T , tr T 2, tr T 3 . (9.199)
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For the case of a product of two tensors T ,U the matrix products to be considered
are

TU, TU2,UT 2,T2U2, TUT 2U2 (9.200)

and the invariants associated with the matrix products of T and U are

tr TU, tr TU2, tr UT 2, tr T 2U2, tr TUT 2U2 . (9.201)

Of these five invariants the first four are irreducible. A polynomial invariant is called
irreducible if it cannot be expressed as a polynomial in other invariants. The fifth
invariant in (9.201) can be written in terms of the irreducible invariants. As a con-
sequence, the resulting integrity basis for symmetric second-order tensors consist of

tr T , tr T 2, tr T 3, tr TU, tr TU2, tr UT 2, tr T 2U2 . (9.202)

Wewant to develop a general representation for the anisotropy tensor for turbulent
flows. Our minimal integrity basis for the tensors d and ω̇ is given by

η1 = tr d
2
, η2 = tr ω̇

2
, η3 = d

3
,

η4 = tr ω̇
2
d, η5 = tr ω̇

2
d
2
, η6 = tr d ω̇ d

2
ω̇
2
. (9.203)

Rivlin and Ericksen [80] showed that it is possible to write a linear relation between
the dependent tensor b and a finite number N of other tensors T (1), T (2), . . . , T (N )

formed from the elements of the independent tensors d and ω̇

α0b =
N∑

n=1

αnT (n) . (9.204)

The linear system (9.204) is solved by projecting it onto the T (n) basis in a way
very similar to a Galerkin projection, the details of which are left for the curious and
interested reader in the paper by Jongen andGatski [40]. For a five term representation
N = 5, the basis reduces to

T (1) = d, T (2) = d ω̇ − ω̇ d, T (3) = d
2 − 1

3
(tr d

2
)I

T (4) = ω̇
2 − 1

3
(tr ω̇

2
)I, T (5) = ω̇ d

2 − d
2
ω̇ . (9.205)

We leave at this stage the detailed writing of the final form of the equations. Further
considerations may be found for turbulence modeling in Deville-Gatski [24] where
are tackled the closure for the dissipation rate tensor, low-Reynolds turbulence mod-
eling and the important engineering problem related to the constraints imposed by
the presence of solid boundaries.
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9.13 Large Eddy Simulation

RANS models even though as sophisticated as they might be have produced in
some cases dismal performances and failed to resolve properly the turbulent physical
phenomena. As the advent of more powerful computers made computational fluid
dynamics (CFD) amore amenableway to tackle turbulence, the large eddy simulation
(LES) became the appropriate tool.

LES comes from the observation that these large structures depend strongly on
the flow type under scrutiny through the geometrical configuration, the boundary
conditions, etc., while the small scales are more universal and therefore simpler
to model. Moreover, as we will resort to numerical computation to integrate the
equations (e.g. CFD), the large scales will be resolved by the simulation inasmuch the
computational mesh be fine enough, while the small structures whose characteristic
size is much lower than themesh size, will be taken into account by a sub-grid model.

We will compute the motion of the large turbulent structures and their dynamics
by the transient three-dimensional simulation in the flow domain. The statistical
properties of the flow will be obtained by time averaging and/or by spatial means in
the homogeneous (periodic) planes or by repeating several computations. This last
possibility is never carried out because of its sky-rocketing cost.

This section is only an introduction to the subject and is missing a lot of details,
interesting comments and presentation of the many LES models. The interested
reader is referred to the monographs of P. Sagaut [84] and L. Berselli et al. [15] for
a complete LES analysis.

9.13.1 Definitions

Let us consider the function f (x, t). The filtered field f̃ is defined by the convolution
product

f̃ (x, t) =
∫ ∞

−∞
G(x, x′;�x) f (x′, t) d3x′ . (9.206)

The filtering function G allows to determine exactly which proportion (spatially
speaking) of the flow will be incorporated in the large scales. The filtering parameter
�x is used to fix this choice. In a compact form, this relation reads

f̃ = G � f , (9.207)

where G� represents the filtering operator. The filter function is normalized such that
∫ ∞

−∞
G(x, x′;�x) d3x′ = 1, ∀x . (9.208)

The residual field f ′ is the complement of the filtered function



250 9 Turbulence

f (x, t) = f̃ (x, t) + f ′(x, t) . (9.209)

The filtered field unlikewhat occurs in theReynolds decomposition,does not vanish.
Indeed, we can verify that

˜̃f �= f̃ , f̃ ′ �= 0 . (9.210)

Filtering (9.209), one obtains the residual filtered field

f̃ ′ = f̃ − ˜̃f . (9.211)

In the particular case of homogeneous turbulence, the filter has the simpler form
G(x − x′;�x). Consequently, the equation

f̃ (x, t) =
∫

G(x − x′;�x) f (x′, t) d3x′ (9.212)

is Fourier transformed into

ˆ̃f (k, t) = Ĝ(k;�x) f̂ (k, t) . (9.213)

Here, we observe that G depends only on the norm k of the wavevector k. For the
Fourier case, various filters have been elaborated. The sharp cut-off filter corresponds
to set all high frequency modes to zero beyond the cut-off frequency kc in spectral
space. This practice produces a clear separation between small and large scales

Ĝ =
{
1 if | ki − k ′

i |≤ kc,

0 otherwise .
(9.214)

However, the filtered signal obtained by inverse Fourier transform in the physical
space presents a Gibbs phenomenon, which complicates the flow interpretation. A
more even filter is defined with the Gaussian filter

G(x − x′,�x) = C exp−6(xi −x ′
i )
2/�2

, (9.215)

where the constant C depends on the normalisation. The Fourier transform of the
Gaussian filter is also Gaussian.

9.13.2 LES Equations

The velocity is decomposed as
v = ṽ + v′ . (9.216)
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The filtered incompressibility equation yields

∇ · ṽ = 0 , (9.217)

so that by subtracting (9.217) from the continuity equation, one obtains

∇ · v′ = 0 . (9.218)

The resolved and residual velocity fields are incompressible. Filtering the Navier–
Stokes equations, one gets

∂ ṽ

∂t
+ ∇ · (ṽ ṽ) = −∇ p̃ + νṽ − ∇ · τ , (9.219)

div ṽ = 0. (9.220)

The sub-grid stress (SGS) tensor τ takes into account the small scales effects on the
dynamics of the resolved scales and is given by

τ = ṽv − ṽ ṽ. (9.221)

With the decomposition (9.216), the SGS tensor may be redefined as

τ = L + C + R , (9.222)

where

L = ˜̃v ṽ − ˜̃v ˜̃v ,

C = ˜(ṽ v′ + v′ṽ) − ( ˜̃v ṽ′ + ṽ′ ˜̃v) , (9.223)

R = ṽ′v′ − ṽ′ ṽ′ ,

are the Leonard stress, L, and the SGS cross terms, C, together with the Reynolds
stress, R, respectively. The Leonard term can be computed by the resolved quanti-
ties. The cross tensor C represents the interactions between resolved and unresolved
scales. The turbulent stress tensor R represents the interaction between unresolved
small scales.

9.13.3 The Smagorinsky Model

The Smagorinsky SGS model (SM) [92] utilises the concept of turbulent viscosity
νT and is given by the relation
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τ − 1

3
tr(τ ) I = −2νT S̃ = −2CS�̃

2(IIS̃)
1/2 S̃ = −2CSb, (9.224)

where S̃ is the filtered strain rate tensor

S̃ = 1

2
(∇̃v + (˜∇v)

T
), (9.225)

and the tensor b is defined as

b = �̃2(IIS̃)
1/2 S̃ . (9.226)

The constant CS is the Smagorinsky constant such that CS ≈ 0.18, �̃ the filter size
and IIS̃ the second invariant of S̃. The symbol tr denotes the trace of the tensor. The
SM presents several flaws. The most severe one consists in the CS constant value
during the computation and this defect produces too much dissipation. Furthermore,
the SM does not allow backscatter that transfers kinetic energy from small to large
scales in the opposite direction of Richardson cascade. Finally, in the a priori tests
where the correlation between the modeled tensor and the exact SGS tensor (9.221)
is evaluated, one obtains poor quality results.

9.13.4 The Dynamic Model

The dynamicmodel (DM) proposed byGermano et al. [35] circumvents the difficulty
of the constant CS by letting it depend on space and time. We thus have a dynamic
parameter Cd = Cd(x, t). Let us introduce the length-scale of a test-filter �̂ that is
larger than the mesh length-scale �̃ (e.g. �̂ = 2�̃). Using the information provided
by both filters and assuming that in the inertial part of the turbulent energy spectrum,
the statistical self-similarity applies, we can better determine the characteristics of
the SGS tensor. The scale-similarity hypothesis assumes that the behavior of the
smallest resolved scales is similar to the subgrid unresolved scales being modeled.
With the test filter, the previous LES equations (9.219) lead to a relation implying
the sub-tests scales stresses

T = ̂̃vv − ˆ̃v ˆ̃v . (9.227)

One introduces Germano’s identity to obtain the relation between T and the SGS
filtered tensor τ̂ such that

G = T − τ̂ = ̂̃v ṽ − ˆ̃v ˆ̃v. (9.228)

Applying the turbulent viscosity model to T and using the self-similarity hypothesis
for the Cd constant, one obtains
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T − 1

3
tr(T) I = −2Cd�̂

2(II ˆ̃S)
1/2 ˆ̃S := −2Cda. (9.229)

Inserting (9.224) and (9.229) in the deviatoric part of G, one has

G − 1

3
tr(G)I = 2(̂Cdb − Cda). (9.230)

Supposing that Cd does not vary too much in space, we set Ĉd ≈ Cd and then we
deduce from a least square minimisation of the error linked to (9.230) (cf. [51] for
details) that

Cd = −1

2

M : G
M : M , (9.231)

where
M = a − b̂ (9.232)

and the notation : designates the inner tensorial product (double contraction).
In the case where the flow has no homogeneous direction, the previous hypothesis

about the slow spatial variation of Cd and its elimination of the filtering operation
are no longer valid. To avoid this difficulty, we follow the procedure proposed by
Piomelli and Liu [72]. Taking the scalar product of Eq. (9.230) with a, one obtains
the relation

Cd = −1

2

(L − 1
3 tr(L)I − 2̂C∗b) : a

a : a , (9.233)

where the known quantity C∗ = Cn−1
d , i.e. the Cd value at the former time level in

the CFD time integration scheme.

9.13.5 The Dynamic Mixed Model

The dynamic mixed model [126] introduced to simulate cavity flows is a blending of
themixedmodel ofBardina et al. [8] and of the previous dynamicmodel.Note that the
mixedmodel is not amodel basedon the turbulent viscosity.On the contrary it belongs
to the class of structural models [84] and rests upon the similarity principle of scales.
It hardly produces dissipation and for that reason we must use it with the dynamic
model. We decompose the velocity field in a resolved field and a sub-grid field as
done in Eq. (9.216) and we redefine the stress as Germano [34] proposed in Eqs.
(9.221)–(9.223). The Leonard term computed by the resolved quantities corresponds
essentially to the mixed models. The other two terms are the non resolved residual
stresses and they are treated via the Smagorinsky model. The dynamic procedure is
applied to the C constant in order to obtain a dynamic coefficient. Let us introduce
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a test filter denoted now by a hat .̂ By application of the test filter to (9.219), one
generates the sub-tests scales stress

T = ̂̃vv − ˆ̃v ˆ̃v = Lt + C t + Rt , (9.234)

with

Lt = ̂̃̃
v ṽ − ˆ̃̃

v
ˆ̃̃
v

C t = ̂

˜(ṽ v′ + v′ṽ) − (
ˆ̃̃
v

ˆ̃
v′ + ˆ̃

v′ ˆ̃̃
v), (9.235)

Rt = ̂̃v′v′ − ˆ̃
v′ ˆ̃

v′ .

The deviatoric turbulent stress tensors associated with the sub-grid and sub-tests
filters are expressed as follows

τ − 1

3
tr(τ ) I = −2Cd�̃

2(IIS̃)
1/2 S̃ + L − 1

3
tr(L) I

= −2Cdb + L − 1

3
tr(L) I, (9.236)

T − 1

3
tr(T ) I = −2Cd

ˆ̃
�

2
(II ˆ̃S)

1/2 ˆ̃S + Lt − 1

3
tr(Lt ) I

= −2Cda + Lt − 1

3
tr(Lt ) I. (9.237)

Substituting Eqs. (9.236) and (9.237) in Germano’s identity (9.228) and introducing
tensor H

H = ̂̃̃
v ˜̃v − ˆ̃̃

v
ˆ̃̃
v (9.238)

one evaluates the C constant following the same steps as for the dynamic model

C = −1

2

((G − H) − 2̂C∗b) : a
a : a . (9.239)

9.13.6 The Approximate Deconvolution Method

The approximate deconvolution method (ADM) [98, 99] extracts the information of
the resolved scales in order to deduce from them the behavior of the sub-grid scales.
The founding hypothesis leading to ADM consists in the existence of G−1 that can
be computed by a finite series in ṽ. As G = I − (I − G), the inverse of G may be
written as a non convergent series
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G−1 =
∞∑

n=0

(I − G)n . (9.240)

Van Cittert [113] proposed to approximate G−1 by a finite series such as

G−1
a := QM =

M∑
n=0

(Id − G)n , (9.241)

where Id is the identity operator.
The ADM approach constructs an approximation of the velocity field v∗ that must

be used in the non-linear term

v∗ = QM � (G � v). (9.242)

The deconvolutions to order three and five yield

v∗ = Q3 � ṽ = 4(ṽ(1) + ṽ(3)
) − 6ṽ(2) − ṽ(4)

, (9.243)

v∗ = Q5 � ṽ = 6(ṽ(1) + ṽ(5)
) − 15(ṽ(2) + ṽ(4)

) + 20ṽ(3) − ṽ(6)
, (9.244)

with the notation ṽ(k) indicating that the velocity field is filtered k times.
We then solve the set of equations

∂ ṽ

∂t
+ ˜(∇ · v∗ v∗) = −∇ p̃ + ν�ṽ, (9.245)

div ṽ = 0. (9.246)

9.14 Concluding Remarks

At the end of this chapter the reader may feel overwhelmed, lonely and trapped in
a chaotic ocean of equations, models and choices that are not obvious. Fortunately
enough, some researchers felt the same and wrote review articles like the paper by
Argyropoulos and Markatos [4] to delineate the pros and cons of each approach
versus the target to be reached within a given time frame.

It is of course a complete different situation to solve an engineering problem using
a RANS model because it should be done within minutes rather than getting a nice
simulation by an LES approach that requires weeks or months of computing time on
a large parallel machine. Therefore the choice of the turbulence model depends on
many parameters: the time allotted to solving the problem, the computer available,
the accuracy demanded (a few percents like in most engineering design or more
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precision). Is computing a trend instead a full solution sufficient if one changes only
one data, do we need a physically meaning solution?, etc.

Whatever complicated the situation is, there remains still hope for improvement
and better comprehension of turbulence. I will finish by quoting Sébastien Galtier
[31] in his introduction (my own translation) “A detailed analytical understanding of
turbulence remains limited because of the difficulty intrinsic to non-linear physics.
Therefore one often reads that turbulence is one of the lastmajor non solved problems
of the classical physics. This long conveyed affirmation that can be found in the book
of Feynman [29] does no longer correspond to the modern view. Indeed, even though
turbulence remains a very active research subject, we have today availability to many
theoretical, experimental and observational results which allow us to know in detail
the physics of turbulence”.

Exercises

9.1 Prove relation (9.53)

9.2 Show that the two-point velocity correlation tensor (9.60) is symmetric.

9.3 Demonstrate Eqs. (9.243) and (9.244).
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