
Chapter 8
Instability

8.1 Transition

The transition between laminar flow and turbulence is generated by instability mech-
anisms. Those mechanisms do not occur in the same operational mode in every geo-
metrical configuration. The associated dynamics. i. e. the temporal behavior of the
flow field may be sometimes smooth, sometimes brutal.

We will distinguish two types of transition. The first one, named spectral tran-
sition, characterizes the passage to turbulence by numerous bifurcations. The most
exemplary flow of this situation is the circular Couette flow between two concentric
cylinders. Suppose that the outer cylinder of radius R2 is fixed, while the inner cylin-
der of radius R1 rotates with an angular constant velocity ω. The Reynolds number
can be defined by the relation

Re = ωR1(R2 − R1)

ν
. (8.1)

For small values of the Reynolds number, the flow is laminar and the Navier-Stokes
equations allow to calculate the azimuthal velocity profile (3.41)

vθ = Ar + B/r , (8.2)

with A = −ωR2
1/(R

2
2 − R2

1) and B = ωR2
1R

2
2/(R

2
2 − R2

1). If the rotational speed ω

is increased, for a critical Reynolds number, a new configuration containing Taylor
vortices appears, cf. Fig. 1.1. On top of the fundamental flow (8.2) is superimposed a
secondary flow in such a way that a fluid particle moves on a toroidal axisymmetric
material surface. At higher Reynolds numbers, the torus is deformed in the azimuthal
direction, cf. Fig. 1.2. For high enough Reynolds numbers, turbulence is developing.

The second type of transition is catastrophic transition where the passage from
laminar state to turbulence occurs suddenly and instantaneously without a cascade
of transitions. This is the case of developed Poiseuille flow in a cylindrical pipe. This
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instability was first observed by O. Reynolds [77] who gave his name to the eponym
dimensionless number.

Fluid instability is a very rich and subtle subject. It influences all flows and the
investigations for a full understanding of those complex phenomena involve both
experiments, theoretical developments and today numerical simulations. Therefore
the reader is facing the challenge of selecting his preferences and choices. The recent
books by Tapan Sengupta [87, 88] constitute an updated review of those crucial
subjects. As far as I am concerned I will concentrate on parallel flows and the circular
Couette flow.

8.2 Orr-Sommerfeld Equation

The theory of hydrodynamic stability is a complicated subject from themathematical
point of view. We will tackle it in the framework of parallel flows of homogeneous
fluids. This theory consists in analysing a base flow on which perturbations of small
amplitude are superimposed. The non-linear term of theNavier-Stokes equationswill
generate an interaction with these perturbations. If they grow with respect to time,
then the flow is unstable. If, on the contrary, the viscosity is sufficient to prevent
those perturbations to grow, then the flow is stable.

Let us resume the dimensionless Navier-Stokes equations (2.47)–(2.48) where
the body force is neglected and the accents are omitted to alleviate the notation. Let
us consider the steady-state plane base flow satisfying the Navier-Stokes equations
such that

v = (V1(x1, x2), V2(x1, x2), 0) (8.3)

and let us suppose that it is almost parallel to x1 axis, namely

| V2 |�| V1 |, | ∂ V1/∂ x1 |�| ∂ V1/∂ x2 | . (8.4)

In order to enforce the flow stability criterion, three-dimensional velocity v′ and
pressure p′ perturbations are superimposed on the fundamental flow. We have

v = (V1(x1, x2) + v′
1(x, t), V2(x1, x2) + v′

2(x, t), v′
3(x, t)), (8.5)

p = P + p′ . (8.6)

Inserting (8.5)–(8.6) in (2.47)–(2.48) and neglecting the quadratic perturbations
terms, one obtains taking (8.4) into account the linearized equations

∇ · v′ = 0 , (8.7)
∂v′

∂t
+ V1

∂v′

∂x1
+ v′

2
∂V1

∂x2
e1 = −∇ p′ + 1

Re
�v′ . (8.8)
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As stability theory is more developed for shear flows, we will restrict our attention
to the fundamental parallel flow corresponding to v = (V1(x2), 0, 0). The stability
problem is considerably simplified if Squire theorem [97] is evoked:

Theorem 8.1 (Squire theorem) The behavior of three-dimensional perturbations
can be deduced from the behavior of two-dimensional perturbations in a parallel
flow of incompressible fluid.

A proof is given in Rieutord [79]. Note that Squire’s theorem pertains to disturbance
growth in time, while in actual flow the disturbances actually grow spatio-temporally.

Therefore, for every three-dimensional unstable perturbation, there exists a cor-
responding two-dimensional perturbation that is still more unstable. This allows us
to search the flow stability limit as a function of the Reynolds number, using a plane
perturbation, while being assured that this procedure yields the inferior stability limit.

To verify the incompressibility constraint in a plane problem, it is natural to resort
to the streamfunction.We get rid of the pressure variable by dealingwith the dynamic
vorticity equation. We have

v1 = ∂ψ

∂x2
, v2 = − ∂ψ

∂x1
, (8.9)

and consequently, by the vorticity definition (1.40)

ω = −�ψ . (8.10)

Using (8.10) in (4.25), we obtain

∂�ψ

∂t
+ ∂ψ

∂x2

∂�ψ

∂x1
− ∂ψ

∂x1

∂�ψ

∂x2
= 1

Re
��ψ . (8.11)

The boundary conditions to integrate (8.11) are no-slip conditions at the fixed lower
and upper walls located in x2 = x2,lo, x2,up expressed in term of the streamfunction

ψ = const,
∂ψ

∂x2
= 0, for x2 = x2,lo, x2,up. (8.12)

Decomposing the streamfunction as ψ = � + ψ ′, where � = ∫
V1(x2) dx2 repre-

sents the fundamental flow and ψ ′ the perturbation, (8.11) is linearized

∂�ψ ′

∂t
+ V1

∂�ψ ′

∂x1
− d2V1

dx22

∂ψ ′

∂x1
= 1

Re
��ψ ′ . (8.13)

The perturbation is approximated in normal modes

ψ ′ = φ(x2)e
iα(x1−ct) . (8.14)
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Insertion of the normal mode (8.14) in (8.13) leads to the Orr-Sommerfeld equation
[Orr [65]- Sommerfeld [93]]

(
d2

dx22
− α2)2φ = iα Re

[

(V1 − c)(
d2φ

dx22
− α2φ) − φ

d2V1

dx22

]

. (8.15)

This equation is the cornerstone of hydrodynamic stability. Numerical solutions
have been given by Jordinson [41] and Orszag [66] more than half a century after its
discovery. Equation (8.15) with the boundary conditions

φ = dφ

dx2
= 0 for x2 = x2,lo, x2,up (8.16)

can be solved if the profile V1(x2), the Reynolds number Re and the dimensionless
wavenumber α are given. The equation will produce the eigenfunction φ(x2), but
also the complex wave velocity c = cR + i cI as the associated eigenvalue. For fixed
α and Re, the eigenvalue problem generates a discrete spectrum of eigenvalues
c1, c2, c3, . . .. We consider that the eigenvalues are function of α and Re

cR = cR(α, Re)

cI = cI (α, Re) . (8.17)

The perturbation growth goes like eαcI t . The flow is unstable for cI > 0. A neutral
stability mode is obtained for cI = 0. Consequently, imposing cI = 0 in (8.17) gives
the neutral stability curve cI (α, Re) = 0. If, moreover, it is possible to show that cI
changes sign when we cross the neutral curve, then this curve is also that of marginal
stability. The marginal stability curve separates the stable and unstable regions in the
domain (α, Re).

Figure8.1 shows the stability diagram in the plane (α, Re) for the plane Poiseuille
flow (3.19). Instability occurs for parameter values inside themarginal stability curve.
The critical Reynolds number Recrit is obtained at the lowest value of the Reynolds
number defining the stability curve and corresponds to the vertical tangent line in
Fig. 8.1. The critical Reynolds number is 5772 for α = 1.02.

The numerical solution of the Orr-Sommerfeld equation by S. A. Orszag used the
Chebyshev Tau method [36, 66]. The Fortran program as coded in the 1970s is given
in the AppendixD.

8.3 Stability of the Circular Couette Flow

Referring to the radial Navier-Stokes equation (3.39) for the circular Couette flow,we
observe that the centrifugal force is balanced by the radial pressure gradient. There-
fore the destabilizing physical force of the laminar Couette flow is this centrifugal
force that is no longer in equilibrium with pressure and viscous forces.
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Fig. 8.1 Example of the marginal stability curve for the plane Poiseuille flow

8.3.1 Rayleigh’s Criterion

The first analysis of this unstable phenomenon was carried out by Rayleigh [76]
in the context of inviscid fluids. Suppose that the streamlines are circles and the
disturbances are axisymmetric in a cylindrical coordinate system. As the pressure is
independent of θ , the momentum equation in the azimuthal direction is

∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+ vrvθ

r
= 0 . (8.18)

If we multiply (8.18) by r we obtain the relation

∂(rvθ )

∂t
+ vr

∂(rvθ )

∂r
+ vθ

r

∂(rvθ )

∂θ
+ vz

∂(rvθ )

∂z
= D�

Dt
= 0 , (8.19)

showing that the circulation � = 2πrvθ should remain constant for a fluid element.
Let us consider twofluid annular elements of radii r1 and r2, respectively,with r1 <

r2. The kinetic energy of these rings are Ek = 1
2ρv2

θ = ρ�2/8π2r2. If we exchange
these two elements, their mass and angular momentum will be conserved, while the
kinetic energy will not. The total initial kinetic energy is

Ek,ini t = ρ

8π2

[(
�1

r1

)2

+
(

�2

r2

)2
]

. (8.20)
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As this exchange is a perturbation with constant circulation, the final kinetic energy
reads

Ek, f in = ρ

8π2

[(
�1

r2

)2

+
(

�2

r1

)2
]

. (8.21)

The difference between these two energies is

Ek, f in − Ek,ini t = ρ

8π2
(�2

2 − �2
1)(

1

r21
− 1

r22
) . (8.22)

If Ek, f in is larger than Ek,ini t , the perturbation needs receiving a definite quantity
of energy. This cannot be provided by the flow at hand and therefore the physical
situation is stable. On the contrary, if Ek, f in is smaller than Ek,ini t , this means that
the disturbance releases energy and it can be captured to feed the disturbance itself.
Consequently, for a stable flow, we have Rayleigh’s condition

�2
2 > �2

1 for r2 > r1 . (8.23)

Rephrasing the condition with the velocity profile, we write

(r2vθ2)
2 > (r1vθ1)

2 . (8.24)

With the solution of the circular Couette flow (3.41), we have

rvθ = Ar2 + B . (8.25)

If the outer cylinder rotates in the positive direction ω2 > 0, the quantity (8.25) will
increase with r provided the following condition obtained from the constant A in
(3.41) holds

ω2 ≥
(
R1

R2

)2

ω1 . (8.26)

If in (8.26) we use the equal sign, we obtained the Rayleigh line. Figure8.2 exhibits
the stability diagram for the perfect fluid in the (ω1, ω2) plane.

If the inner cylinder is fixed and the outer one rotates, the flow is stable. If the
outer cylinder is fixed with the inner rotating, the flow is unstable according to the
inviscid analysis. However, in the real world, viscosity is always present and damps
all disturbances if the Reynolds number is not too high.
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Fig. 8.2 For the inviscid fluid, theRayleigh lineω2 = (R1/R2)
2ω1 separates the stable and unstable

regions in the (ω1, ω2) plane

8.3.2 Linear Stability of Viscous Circular Couette Flow

Let us start from the Navier-Stokes equations written in cylindrical coordinates
(A.21)–(A.23) with the incompressibility constraint (A.20). Assuming axial symme-
try and neglecting the body force, with the simplification ∂/∂θ = 0, the equations
read

ρ(
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z
− v2

θ

r
) = −∂p

∂r
+ μ(�vr − vr

r2
) (8.27)

ρ(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vz

∂vθ

∂z
+ vrvθ

r
) = μ(�vθ − vθ

r2
) (8.28)

ρ(
∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z
) = −∂p

∂z
+ μ�vz (8.29)

∂vr

∂r
+ vr

r
+ ∂vz

∂z
= 0 . (8.30)

The stability analysis requires that the base flow be perturbed by three-dimensional
axisymmetric velocity and pressure disturbances, denoted for ease of notation by
(u, v, w) and pp, respectively,

v = (u, V + v,w) and p = P + pp , (8.31)

with V being the Couette flow solution (3.41). Inserting (8.31) in (8.27)–(8.30), we
proceed to a linearization keeping only the first-order terms in the perturbations,
while discarding higher order terms

ρ

(
∂u

∂t
− (V + v)2

r

)

= −∂(P + pp)

∂r
+ μ(�u − u

r2
) (8.32)

ρ

(
∂v

∂t
+ u

dV

dr
+ u

r
(V + v)

)

= μ(�v − v

r2
) (8.33)

ρ
∂w

∂t
= −∂(P + pp)

∂z
+ μ�w (8.34)
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∂u

∂r
+ u

r
+ ∂w

∂z
= 0 . (8.35)

With V satisfying the Navier-Stokes equations and carrying through a further step
of the linearization process, we obtain

ρ

(
∂u

∂t
− 2V v

r

)

= −∂pp

∂r
+ μ(�u − u

r2
) (8.36)

ρ

(
∂v

∂t
+ u(

V

r
+ dV

dr
)

)

= μ(�v − v

r2
) (8.37)

ρ
∂w

∂t
= −∂pp

∂z
+ μ�w (8.38)

∂u

∂r
+ u

r
+ ∂w

∂z
= 0 . (8.39)

This set of linear partial differential equations has coefficients depending only on
the radial direction r . Therefore it is usual to search solutions in the form of normal
axisymmetric modes such that

(u, v, w, pp) = (û(r), v̂(r), ŵ(r), p̂p(r))e
ikz+σ t , (8.40)

where k is the real wavenumber associated with the axial direction and σ the growth
rate.

Let us set

D = d

dr
and D∗ = d

dr
+ 1

r
. (8.41)

The stability equations become

σ û − 2V v̂

r
= − 1

ρ
D p̂p + ν(DD∗ − k2)û (8.42)

σ v̂ + ûD∗V = ν(DD∗ − k2)v̂ (8.43)

σŵ = −ik
p̂p

ρ
+ ν(D∗D − k2)ŵ (8.44)

D∗û + ikŵ = 0 . (8.45)

From Eq. (8.45) we extract ŵ in terms of û. This expression is then inserted in
Eq. (8.44) that yields the pressure

p̂p

ρ
= 1

k2
(
ν(D∗D − k2) − σ

)
D∗û . (8.46)

Taking the derivative D of (8.46) and using it in (8.42) we are left with the relations
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ν
(
DD∗ − k2

)2
û − 2k2

V

r
v̂ = σ(DD∗ − k2)û (8.47)

ν
(
DD∗ − k2

)
v̂ − (D∗V )û = σ v̂ (8.48)

û = v̂ = Dû = 0 for r = R1, R2 . (8.49)

The first analytical investigation of this eigenvalue problem was carried out by G.
I. Taylor [103] with the narrow-gap approximation where the gap d = R2 − R1 is
smaller than the mean radius Rm = (R1 + R2)/2. With this assumption, the operator
D∗ is approximated by D and the set of equations simplifies. The reader is referred to
Chandrasekhar [18] and Drazin and Reid [27] for the detailed analysis. The stability
problem is characterized by the dimensionless Taylor number Ta

Ta = 4

(
ω1R2

1 − ω2R2
2

R2
2 − R2

1

)
ω1d4

ν2
. (8.50)

Another definition of the Taylor number when the outer cylinder is fixed is

Ta =
(

ω1R1d

ν

)2 d

Rm
. (8.51)

The critical Taylor number is obtained for the fixed outer cylinder ω2 = 0, Tacrit =
1706. Figure8.3 exhibits the curve of marginal stability (σ = 0) for the apparatus
used by Taylor [103] where the full dots are observed data while open circles are
computational results. Above the marginal curve the flow is unstable. Note that the
dotted line in the right quadrant is the Rayleigh stability line for inviscid perturbation.
The axial wavenumber corresponding to the critical Taylor number, kcrit = 3.12,
corresponds to a wavelength λcri t = 2πd/kcrit ≈ 2d. This means that the Taylor
vortices have a height that is approximately equal to d so that each vortex has a
shape close to a square.

To solve the set of Eqs. (8.45)–(8.49) high-order numerical discretizations are
used like Chebyshev collocation or Tau methods or spectral elements [23]. The
resulting discrete equations form a generalized eigenvalue problem that is solved
using appropriate routines to be found in Lapack.

8.3.3 Non-linear Axisymmetric Taylor Vortices

The next step in analyzing the stability of Taylor vortices has been carried out by
Davey [22] (see alsoKoschmieder [44]) who developed the velocity and pressure dis-
turbances in Fourier series of k modes as non linearities excite high-order harmonics.
Therefore we write
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Fig. 8.3 Marginal stability curve for the Taylor-Couette flow with water. Experimental results and
narrow-gap calculations. R1 = 3.55cm and R2 = 4.035cm. Reproduced from [27]

u =
∞∑

n=1

un(r, t) cos nkz , (8.52)

v = v(r, t) +
∞∑

n=1

vn(r, t) cos nkz , (8.53)

w =
∞∑

n=1

wn(r, t) sin nkz , (8.54)

where v is the mean azimuthal velocity averaged in the z periodic direction. The
elimination of the pressure p and the vertical velocity w leads to two differential
equations.

Instead of solving the general initial value problem, Davey assumes that the spa-
tial shape of the disturbance is unaltered and characterized in time by an unknown
amplitude function A(t). Because of the non-linear terms, the fundamental distur-
bance will grow according to the linear theory for Ta > Tacrit , and will constrain
the harmonics cos nkz and a mean motion term. As cos2 kz = (1 + cos 2kz)/2, the
first harmonic cos 2kz and the mean motion will be O(A2). Afterwards the fun-
damental mode interacting with the first harmonic cos kz cos 2kz will generate a
second harmonic cos 3kz and a correction to the fundamental cos kz of order O(A3).
Consequently one writes

un(r, t) = An

[

un(r) +
∞∑

n=1

A2munm(r)

]

, n ≥ 1 (8.55)
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vn(r, t) = An

[

vn(r) +
∞∑

n=1

A2mvnm(r)

]

, n ≥ 1 (8.56)

v = vlam +
∞∑

n=1

A2m fm(r) , (8.57)

with vlam the mean of the laminar state. With these expansions, the time dependent
amplitudes are governed by the equation

d A

dt
= f (A) =

∞∑

m=0

am A
2m+1 , a0 = σ . (8.58)

We invoke the symmetry of the dynamical system following the line of reasoning in
Rieutord [79]. If the system is invariant under the symmetry A → −A such that if
A is a solution, −A is also a solution, and we thus have f (−A) = − f (A) because
of the linearity of d/dt . We then conclude that all even derivatives in f are zero
in (8.58). As the analysis is performed for small amplitudes, we discard all terms
after the first two terms in f reducing (8.58) to the Landau equation (cf. Sect. 26 of
Landau and Lifshitz [48] and Sect. 49.1 of Drazin and Reid [27])

d A

dt
= σ A + a1A

3 . (8.59)

Let us divide (8.59) by A3 and solve for A−2. Setting x = A−2 we have

dx

dt
+ 2σ x = −2a1 . (8.60)

The integration of (8.60) gives

x = −a1
σ

+ Ce−2σ t . (8.61)

Imposing the initial condition A−2
0 = C − a1/σ we find

1

A2
= a1

σ
(e−2σ t − 1) + 1

A2
0

e−2σ t . (8.62)

Eventually we obtain

A2 = A2
0e

2σ t

1 + a1A2
0

σ
(1 − e2σ t )

, (8.63)

to be compared with Davey’s solution
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A2 = A2
0e

2σ t

1 − a1A2
0

σ
e2σ t

. (8.64)

Let us inspect Landau equation written a bit differently

d A

dt
= (σ + a1A

2)A . (8.65)

The equilibrium amplitude corresponding to an effective growth rate going to zero
is such that

A2
eq = − σ

a1
. (8.66)

Depending on a1 > 0 or a1 < 0 we have subcritical or supercritical disturbances
that decay or amplify up to their equilibrium values, respectively. For the Taylor-
Couette flow, experimental evidence shows that the instability is supercritical. Davey
calculated the equilibrium amplitude for various cases, the wide and small gaps, and
found that the equilibrium amplitude A2

e was proportional to 1 − Tacrit/Ta. This
means that the amplitude increases as ε1/2 with ε = (Ta − Tacrit )/Tacrit .

To show the wealth of physical phenomena that can be generated in a Couette
flow, Fig. 8.4 [2] offers the various regimes produced in a small-gap apparatus.

Fig. 8.4 Flow regimes in a Couette apparatus with long co-rotating cylinders. Reproduced from
[2]
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d

T = T1

T = T0 x1

x2

Fig. 8.5 Convection in a fluid layer between two parallel plates

Exercises

8.1 Obtain the linearized equations for the stability analysis of the spiral flow made
of the combined circular Couette and Poiseuille flows under axisymmetric perturba-
tions.

8.2 Rayleigh-Bénard instability A heat conducting fluid is at rest in between two
parallel rigid plates, the lower one at temperature T = T0, the upper one at T = T1
such that T0 > T1, as shown in Fig. 8.5. The layer height is denoted by d. Using the
Boussinesq approximation, the question is “When does the layer become unstable
and show the presence of convection rolls?”. The question makes sense since there
are two stabilizing mechanics impeding the flow to start, namely the fluid viscosity
and its thermal conductivity.

• Compute the base solution of the rest state: velocity, pressure phyd and temperature
TC .

• As this is a conduction/convection problem, the thermal diffusivity is used to
define the referencevelocity in the dimensionless equations (10.27)–(10.29). These
relations are then linearized assuming that the perturbations are

v = 0 + v′ , p = phyd + p′ , T = TC + T ′ . (8.67)

• Eliminate the pressure variable by taking the curl of the linearized momentum
equation as curl∇ = 0. The result is a governing relation for the vorticity.

• To recover the velocity perturbation as the main variable, the curl operator is
applied to the vorticity equation. The velocity pops up as curlω = curl curlv =
−��v.

• Write the governing equation for the x2 perturbation velocity component.
• Obtain the fourth-order equation for the velocity perturbation by elimination of the
temperature in the former governing relation and write the boundary conditions.

• Carry out the normal modes analysis of the perturbations system.
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