
Chapter 7
Boundary Layer

In Chap.6, we considered the model of incompressible inviscid fluid in plane irro-
tational flow. Through the application of the theory of complex potential around an
airfoil profile, we discovered that the model can deduce the lift while the drag asso-
ciated with the perfect fluid vanishes. This is in perfect contradiction to experimental
observations that show that drag affects all flows of real fluids. As these fluids are
viscous, in principle they stick to the walls and the tangential velocity component is
zero if the wall is fixed. This last condition is never met by the inviscid fluid. Further-
more, the irrotationality condition is far from representing the reality as we observed
in Chap.4 that vorticity production occurs at the walls. In order to remedy the defi-
ciencies of perfect fluid theory, one resorts to the theory of boundary layer that brings
a necessary correction for the flows at high Reynolds numbers. The boundary layer
theory is due to Ludwig Prandtl who was a distinguished aerodynamicist. Initially
developed within the framework of fluid mechanics, the boundary layer theory knew
a great success and today belongs to the corpus of applied mathematics methods. A
complete presentation is given in the excellent book by Bender and Orszag [13]. On
the fluid side, the reference monographs are the ones by Hermann Schlichting [85]
and Louis Rosenhead [82].

The boundary layer is the flow zone close to the wall, either of an obstacle sitting
in a uniform upstream flow, either of a container that confines an inner flow. Inside
the boundary layer which is a very thin zone, one assumes that the viscous effects
are of the same order of magnitude as the inertial effects (the local Reynolds number
in the boundary layer is of the order of unity), whatever the value of the global
Reynolds number characterizing the full flow is. The boundary layer is the location
of intense vorticity generation that will diffuse and advect in the exterior region in
the long run. Therefore we reach a very modern approach of the complete problem
by decomposing it in two sub-domains: on the one hand the boundary layer where
viscous effects will be handled by a simplified Navier-Stokes model, and on the other
hand, the outer region where the theory of complex potential for the irrotational flow
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of perfect fluid will be used. Note that this outer region is characterized by velocities
that are of the same order of magnitude as those of the incoming flow.

The boundary layer along an obstacle is consequently thin as the fluid flows over
long distances downstream the leading edge during the time interval in which the
vorticity diffuses slowly over a short orthogonal distance starting from the wall. The
vorticity creation within the boundary layer allows for the physical realization of the
fluid circulation around the profile. The circulation generates a wake in the region
close to the trailing edge. The wake size will depend on the obstacle shape and the
angle of attack of the upstream flow at the leading edge.

7.1 The Equations of the Laminar Boundary Layer

To set up these equations, we will carry out a dimensional analysis of the problem
at hand. For the sake of facility, let us consider the uniform upstream flow of a
viscous incompressible fluid with constant velocity U on a plane horizontal wall of
characteristic length L . A laminar boundary layer develops from the leading edge of
the plane wall. We use a Cartesian (x1, x2) coordinate system. Inside the boundary
layer, in the x2 direction orthogonal to the wall, the velocity goes from a zero value
at the wall to a value of the order ofU at the edge of the boundary layer. We conclude
that the thickness of the boundary layer is always small with respect to the distances
measured in the parallel direction to the wall along which it is developed.

7.1.1 Dimensional Analysis

Therefore we assume that the variation of every unknown in the x2 direction across
the boundary layer will be more important than the variation in x1 direction. This
allows us to write the following approximations on the next derivatives

| ∂v1

∂x1
|<<| ∂v1

∂x2
|, | ∂2v1

∂x21
|<<| ∂2v1

∂x22
| . (7.1)

Let us inspect themomentum equation in the x1 direction taking the previous inequal-
ities into account and neglecting the body forces. One writes

ρ
Dv1

Dt
= − ∂p

∂x1
+ μ

∂2v1

∂x22
. (7.2)

If one neglects viscosity in (7.2), one recovers the Euler equation. This relation will
be adequate in the region outside the boundary layer where the fluid viscosity does
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not supposedly affect the flow physics. As the local Reynolds number in the boundary
layer is of the order of unity, one obtains

| ρ
Dv1

Dt
|= O

(
| μ

∂2v1

∂x22
|
)

, x2 → 0 . (7.3)

The order of magnitude of the left hand side may be evaluated through the term
ρv1∂v1/∂x1 for a steady state flow. We will observe that the term ρv2∂v1/∂x2 is of
the same order of magnitude. One replaces (7.3) by

| ρv1
∂v1

∂x1
|= O

(
| μ

∂2v1

∂x22
|
)

, x2 → 0 (7.4)

TakingU as the reference velocity, L as reference length and δ0 the average thickness
of the boundary layer as reference length in the x2 direction, we estimate the order
of magnitude of the terms appearing in (7.4), namely

ρ
U 2

L
= O(μ

U

δ20
), x2 → 0 , (7.5)

or (
δ0

L

)2

= O

(
μ

ρLU

)
= O(Re−1), x2 → 0 . (7.6)

This last dimensionless number is the global Reynolds number. As per the defini-
tion of the Bachmann symbol O , the product ( δ0

L )2 Re is bounded by a constant. If
Re → ∞, the ratio δ0

L becomes very small, while remaining finite. One concludes
the following estimate

δ0

L
∼ Re− 1

2 , for Re → ∞ . (7.7)

For example, on a wing profile with a chord of the order of one meter and a Reynolds
number Re ∼ 106, the boundary layer thickness will be of the order of a few mil-
limeters (2 − 3).

By the incompressibility constraint (1.50), it is possible to obtain the order of
magnitude of the vertical velocity component in the boundary layer. One has

v2 ∼ δ0

L
U ∼ U Re− 1

2 . (7.8)

For high Reynolds numbers, the vertical velocity will be several orders of magnitude
less than the flow characteristic velocity.
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7.1.2 Prandtl’s Equations

As we mentioned in the preceding paragraphs, the boundary layer possesses essen-
tially two normative space scales: the length L in the main flow direction and the
thickness of the boundary layer we will now denote by δ. For this reason, we perform
a multi-scale approach to write down the dimensionless form of the Navier-Stokes
equations, using these normative scales in the plane case. Let us define the dimen-
sionless variables

x ′
1 = x1

L
, x ′

2 = x2
δ

= x2
L
Re

1
2 , t ′ = tU

L
, (7.9)

v′
1 = v1

U
, v′

2 = v2

U
Re

1
2 , p′ = p − p∞

ρ U 2
, (7.10)

where p∞ is the pressure at infinity upstream.With these variables, theNavier-Stokes
equations become

∂v′
1

∂t ′
+ v′

1
∂v′

1

∂x ′
1

+ v′
2
∂v′

1

∂y′ = − ∂p′

∂x ′
1

+ 1

Re

∂2v′
1

∂x
′2
1

+ ∂2v′
1

∂x
′2
2

, (7.11)

1

Re

(
∂v′

2

∂t ′
+ v′

1
∂v′

2

∂x ′
1

+ v′
2
∂v′

2

∂x ′
2

)
= − ∂p′

∂x ′
2

+ 1

Re2
∂2v′

2

∂x
′2
1

+ 1

Re

∂2v′
2

∂x
′2
2

, (7.12)

∂v′
1

∂x ′
1

+ ∂v′
2

∂x ′
2

= 0 . (7.13)

Assuming that the velocities v′
1, v

′
2 and pressure p

′ togetherwith their derivativeswith
respect to space and time variables remain bounded, when Re → ∞, one produces
the reduced form of the equations of the laminar boundary layer

∂v′
1

∂t ′
+ v′

1
∂v′

1

∂x ′
1

+ v′
2
∂v′

1

∂x ′
2

= − ∂p′

∂x ′
1

+ ∂2v′
1

∂x
′2
2

, (7.14)

0 = − ∂p′

∂x ′
2

, (7.15)

∂v′
1

∂x ′
1

+ ∂v′
2

∂x ′
2

= 0 . (7.16)

Equation (7.15) expresses that pressure remains constant over the boundary layer
thickness. Therefore the boundary layer pressure will be equal to the pressure pre-
vailing at its border, i.e. the one in the outer flow. The pressure gradient of the exterior
region is thus the development engine of the boundary layer.

Coming back to dimensional variables, the boundary layer or Prandtl’s equations
are
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∂v1

∂t
+ v1

∂v1

∂x1
+ v2

∂v1

∂x2
= − 1

ρ

∂pe(x1, 0, t)

∂x1
+ ν

∂2v1

∂x22
, (7.17)

∂v1

∂x1
+ ∂v2

∂x2
= 0 , (7.18)

with the following boundary conditions

v1 = v2 = 0, for x2 = 0 (7.19)

v1 → Ue(x, 0, t) for x2 → ∞ . (7.20)

The subscript e for p and U characterizes these variables in the exterior (inviscid)
sud-domain. In the Eqs. (7.17) and (7.20), the variables pe and Ue are evaluated by
the Euler equation

ρUe
dUe

dx1
= −dpe

dx1
. (7.21)

Note that in (7.20), one imposes that at the location where the boundary layer
meets the zone of perfect fluid, it is considered that the distance to the wall goes to
infinity, namely x2 → ∞. For the perfect fluid region, everything occurs as if the
boundary layer did not exist or at least is so thin that we use Ue(x, 0, t) on the solid
wall, while for the boundary layer, everything is treated as if it would ignore the
presence of the outer zone, whence x2 → ∞. In Sect. 6.5.2 of [83], Ryhming writes
“According to (7.20) one requires that when the inner solution approaches the outer
solution, the value of the inner solution for x2 → ∞ be equal to the value of the outer
solution for x2 → 0.” A similar line of reasoning introduces in (7.17) the exterior
pressure pe evaluated at the wall x2 = 0.

The link between the inner and outer solutions may be explained by a simple
example proposed by von Mises and Friedrichs [116]. The problem is given by a
second-order linear ordinary differential equation for a function f (x2) defined on
the interval [0, 1] with two boundary conditions

ε f ′′ + f ′ = a , (7.22)

f (0) = 0, f (1) = 1 , (7.23)

where a is a positive constant and ε a positive coefficient such that ε � 1. This equa-
tion mimics the full Navier-Stokes equations. The small parameter ε that multiplies
the second-order derivative corresponds to ν and is proportional to Re−1. Therefore
when the viscosity ν goes to zero, the mathematical nature of the problem changes.
Instead of having a second-order problem with two boundary conditions, we are
facing a first-order problem with the same conditions. This is typical of a singular
perturbation problem.

In (7.22) the linearity of the problem allows for an exact solution of the prob-
lem comprising a particular solution and the general solution of the homogeneous
ordinary differential equation. We obtain
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f (x2) = ax2 + (1 − a)
1 − e− x2

ε

1 − e− 1
ε

. (7.24)

If we set the limit ε → 0 for any fixed value of x2, we get

lim
ε→0

f (x2) = ax2 + 1 − a = fe(x2) . (7.25)

This exterior solution fe satisfies the outer condition f (1) = 1 but not the inner
condition as fe(0) �= 0. Let us inspect now the limit of f (x2)when ε → 0 for a fixed
value of x2/ε. We obtain

lim
f i xed

x2
ε

ε→0

f (x2) = a
x2
ε

ε + (1 − a)(1 − e−x2/ε)

= (1 − a)(1 − e−x2/ε) = fi (x2) . (7.26)

The inner solution fi satisfies the inner condition fi (0) = 0 but fails to satisfy the
exterior condition, fi (1) �= 1. However we note that the exterior limit x2/ε → ∞ of
the inner solution is equal to the inner limit x2 → 0 of the exterior solution

fi (∞) = fe(0) = 1 − a . (7.27)

Therefore the solution of a singular perturbation problem is built by addition of the
inner and outer solutions and by subtraction of their common quantity, which in our
case is 1 − a. The approximate complete solution for ε � 1 reads

fa = fi + fe − (1 − a) = ax2 + (1 − a)(1 − e−x2/ε) . (7.28)

In Fig. 7.1 we observe that the approximate (red) fa solution is not very far from
the (green) analytical solution f .

The condition (7.20) with the use of pe(x1, 0, t) at x2 = 0 in Eq. (7.17) must be
justified. As the thickness δ0 given by (7.7) is small, we can imagine an intermediary
length ζ small with respect to the dimension L and large with respect to δ0 as is
shown in Fig. 7.2.

Let us choose
δ0

ζ
∼ Re−1/4 . (7.29)

This induces
ζ

L
∼ Re−1/4 . (7.30)

The exterior solution will not vary much when x2 will go from ζ to 0. Indeed, the
exterior solution changes significantly over distances of the order of magnitude of
L , much larger than ζ . Therefore we can approximate the following quantities
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Fig. 7.1 Solutions of problem (7.22)

Fig. 7.2 Scales in the boundary layer theory

v1e(x1, ζ, t) � Ue(x1, 0, t) (7.31)

pe(x1, ζ, t) � pe(x1, 0, t) . (7.32)

On the other hand, the interior solution is totally linked to the exterior solution at
distances ζ from the wall which are larger than the thickness δ0 of the boundary
layer. Consequently, we write the following approximations

v1(x1, ζ, t) � Ue(x1, ζ, t) (7.33)

p(x1, ζ, t) � pe(x1, ζ, t) . (7.34)
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Taking these various approximations into account, we conclude

v1(x1, ζ, t) � Ue(x1, 0, t) . (7.35)

If Re → ∞, we can write the relation

lim
x2→∞ v1(x1, x2, t) = Ue(x1, 0, t) . (7.36)

For the pressure, via a similar reasoning, we write

p(x1, ζ, t) � pe(x1, 0, t) . (7.37)

As the pressure is constant over the boundary layer thickness, we replace in the
Prandtl equations the pressure p(x1, x2, t) by p(x1, ζ, t), leading to

p(x1, x2, t) � pe(x1, 0, t), x2 ≤ ζ. (7.38)

The pressure pe(x1, 0, t) and the velocity Ue(x1, 0, t) will be computed by (7.21).

7.2 Boundary Layer on a Flat Plate

In this section we analyze the development of the boundary layer on a semi-infinite
flat plate located in steady-state uniform flow parallel to direction x1 of a Cartesian
coordinates system. We will solve Prandtl’s equations and introduce several relevant
considerations about boundary layer thicknesses and friction coefficient.

7.2.1 Solution of Prandtl’s Equations

We will assume that the boundary layer thickness is sufficiently thin not to affect
the velocity distribution in the exterior zone modeled by the perfect fluid. Then the
exterior flow is such that Ue = U, v2e = 0. The pressure distribution is obtained by
the Euler equation (7.21) giving with Ue = U

dpe
dx

= 0 . (7.39)
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With (7.39), the Prandtl’s equations simplify

v1
∂v1

∂x1
+ v2

∂v1

∂x2
= ν

∂2v1

∂x22
(7.40)

∂v1

∂x1
+ ∂v2

∂x2
= 0 . (7.41)

We position the origin of the axes at the leading edge of the plate. The boundary
conditions are

v1 = v2 = 0, for x2 = 0, x1 ≥ 0, (7.42)

v1 = U, for x2 → ∞, x1 ≥ 0 . (7.43)

To impose a zero boundary layer thickness at the leading edge, we prescribe

v1 = U, for x1 = 0, x2 �= 0 . (7.44)

The boundary layer thickness will grow with the distance x1 and therefore

δ0 = δ0(x1) . (7.45)

As the semi-infinite plate has no normative scale that can be derived from the geom-
etry, the abscissa x1 will fulfill this purpose. The Eq. (7.7) becomes

δ0(x1)

x1
=

(
Ux1
ν

)−1/2

= Re
− 1

2
x1 (7.46)

with the definition of a local Reynolds number Rex1 based on the distance to the
leading edge. We conclude

δ0(x1) =
(ν x1

U

)1/2
. (7.47)

Let us write the system (7.40)–(7.41) in dimensionless form (cf. Chap.2). We search
a solution of these equations such that

v1

U
= F(

Ux1
ν

,
Ux2
ν

) . (7.48)

Relation (7.48) can be simplified by writing it in self-similar form. Indeed, if
x1, x2, v1, v2 are replaced respectively by α2x1, αx2, α2v1, αv2, the Eqs. (7.40)–
(7.41) are not modified. This suggests to write relation (7.48) as

v1

U
= g(s) (7.49)
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with the variable

s = Ux2/ν

(Ux1/ν)1/2
= x2

√
U

νx1
= x2

δ0(x1)
. (7.50)

This type of solution is self-similar as the function that will describe the velocity
profile at various stations x1 will be the same with respect to the variable x2, normal-
ized by the local boundary layer thickness δ0(x1), this thickness taking the variation
of the solution in direction x1 into account.

The incompressibility constraint (7.41) is trivially satisfied by the introduction of
the stream function ψ(x1, x2). One has

ψ =
∫ x2

0
v1 dx

′
2 = Uδ0

∫ ∞

0
g(s ′) ds ′ = Uδ0 f (s) = (Uνx1)

1/2 f (s) , (7.51)

with f ′(s) = d f/ds = g(s). The component v2 is obtained easily

v2 = − ∂ψ

∂x1
= 1

2

√
νU

x1
[s f ′(s) − f (s)] . (7.52)

With the help of relations (7.49) and (7.52), Eq. (7.40) produces the third-order non
linear ordinary differential equation, named Blasius equation

f
′′′
(s) + 1

2
f ′′(s) f (s) = 0 (7.53)

with the boundary conditions

f (s ) = f ′(s) = 0, for s = 0, (7.54)

f ′(s ) = 1, for s → ∞ . (7.55)

This equation is numerically integrated by a fourth-order Runge-Kutta method for
example. As we have only two initial conditions in s = 0, we must calculate a third
condition, namely f ′′(0), in an iterative fashion. This is nicely performed by a shoot-
ing method [39].

One notes that v1 goes quickly towards the value U of the perfect fluid flow as
numerical results yield

v1

U
= 0.99 for s = 4.99 , (7.56)

v1

U
= 0.999 for s = 5.99 . (7.57)

We observe in Fig. 7.3 the excellent concordance of the theory and the experimental
results represented by small circles. The boundary layer theory constitutes one of the
major achievements of the twentieth century fluid mechanics.
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Fig. 7.3 Blasius profile and
experimental data [83] where
u = v1, x = x1, y = x2

7.2.2 Boundary Layer Thicknesses

There exists several ways to define with accuracy the boundary layer thickness. We
know that the component v1 tends asymptotically towards the value U when one
approaches this thickness. A first definition giving the sensitive thickness δ∞ is the
value of the ordinate x2 where v1 is equal to 99% ofUe. For the flat plate, one obtains

δ∞ = δ0.99 � 5

√
νx1
U

. (7.58)

We notice that this thickness depends on the chosen accuracy indicated by the index
of δ∞. Note also that the thickness grows along the obstacle according to

√
x1.

The concept of displacement thickness δ∗ is based on the effective displacement of
the exterior flow generated by the reduction of the mass flow rate inside the boundary
layer close to the wall, because of the viscous effects as can be seen in Fig. 7.4. It is
defined by the relation

δ∗ =
∫ ∞

0

(
1 − v1

U

)
dx2 . (7.59)

This notion corresponds to the idea of a thickened obstacle, the displacement thick-
ness being defined in such a way to maintain the flow rate conservation between
transverse sections made in the flow. We write the relation
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Fig. 7.4 Displacement thickness δ∗ in relation with the velocity v1 at position x1

Uδ∗ =
∫ ζ

0
(U − v1) dx2 (7.60)

or ∫ ζ

0
v1dx2 = U (ζ − δ∗) (7.61)

expressing the flow rate conservation over the height ζ introduced by (7.29). This
length is large with respect to the boundary layer thickness so that it can stretch to
infinity. In this case, (7.61) becomes (7.59). For the flat plate, the computation gives

δ∗ = 1.721

√
νx1
U

. (7.62)

Last but not least, the momentum thickness θ defined by the relation

θ =
∫ ∞

0

v1

U

(
1 − v1

U

)
dx2 (7.63)

is linked to the loss of momentum in the boundary layer with respect to the one in
the exterior flow. We calculate it as follows

ρ

∫ ∞

0
v1(U − v1) dx2 = ρU 2θ . (7.64)

For the flat plate, one has

θ = 0.664

√
νx1
U

. (7.65)

These various thicknesses are in the ratio

δ∗

δ∞
= 1

3
,

θ

δ∞
= 1

8
. (7.66)



7.2 Boundary Layer on a Flat Plate 187

7.2.3 Friction and Drag Coefficients

The knowledge of the velocity profile in the vicinity of the flat plate allows the
calculation of the wall shear stress and the drag on the plate in the flow. The wall
shear stress is given by the relation

τw = μ
∂v1

∂x2
|x2=0 . (7.67)

With the stream function (7.51), we obtain

v1 = ∂ψ

∂x2
= U f ′(s) (7.68)

∂v1

∂x2
= U f ′′(s)

1

δ0
. (7.69)

Consequently,

τw = μU f ′′(s) |s=0
1

δ0
= 0.33μU

√
U

νx1
. (7.70)

The drag on a plate of length L and of unit width is worth

2Fx1 = 2
∫ L

0
τw dx1 . (7.71)

The factor of 2 takes into account the existence of the two faces of the plate. By
(7.70), one gets

Fx1 = 0.33μU

√
U

ν

∫ L

0
x−1/2
1 dx1 = 0.66

√
μρU 3L . (7.72)

In practice, one expresses the wall shear stress and the drag by dimensionless quan-
tities: the local friction coefficient and the drag coefficient

C f = τw

1
2ρU

2
, Cx1 = Fx1

1
2ρU

2L
(7.73)

this last expression corresponding to a plate with unit width.
For the flat plate, one has

C f = 0.66
ν

U

√
U

ν1x
= 0.66

Re1/2x1

, (7.74)
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with the Reynolds number defined by (7.46). The drag coefficient is

Cx1 = 1.33

Re1/2x1

. (7.75)

7.3 von Kármán Integral Equation

Prandtl’s equations become difficult to integrate in closed form as soon as we do
not deal with thin profiles. Of course we may always resort to numerical integration;
however in this monograph we like to use the analytical tools as much as possible.
Therefore wewill use another approach based on the integral equation of themomen-
tum relation for the boundary layer. This method is valid for an obstacle shape placed
in a moving fluid inasmuch the considered ordinates are small with respect to the
local radius of curvature of the obstacle profile.

We integrate Eq. (7.17) in x2 direction between x2 = 0 and ζ(x1) > δ0. This pro-
cedure will generate an ordinary differential equation for θ , called the von Kármán
integral equation. The detailed development goes as follows. The first term of (7.17)
yields

ζ(x1)∫
0

v1
∂v1

∂x1
dx2 = 1

2

ζ(x1)∫
0

∂v2
1

∂x1
dx2 . (7.76)

An analytical formula that will be most helpful is Leibnitz relation

d

dx1

ζ(x1)∫
0

f (x2, x1)dx2 =
ζ(x1)∫
0

∂ f

∂x1
dx2 + f (x2 = ζ(x1), x1)

dζ

dx1
. (7.77)

Using (7.77), we obtain

ζ(x1)∫
0

∂v2
1

∂x1
dx2 = d

dx1

ζ(x1)∫
0

v2
1dx2 − v2

1(ζ(x1))
dζ

dx1
. (7.78)

The second term of (7.17) reads

ζ(x1)∫
0

v2
∂v1

∂x2
dx2 = v1v2

∣∣ζ(x1)

0 −
ζ(x1)∫
0

v1
∂v2

∂x2
dx2 . (7.79)
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At the wall x2 = 0, we have v1 = v2 = 0.We assume that at x2 = ζ(x1), v1(ζ(x1)) =
Ue(x1). Furthermore by the incompressibilty constraint, v2(ζ(x1)) is expressed by
the integral

v2(ζ(x1)) =
ζ(x1)∫
0

∂v2

∂x2
dx2 = −

ζ(x1)∫
0

∂v1

∂x1
dx2 . (7.80)

Consequently we write

ζ(x1)∫
0

v2
∂v1

∂x2
dx2 = −Ue(x1)

ζ(x1)∫
0

∂v1

∂x1
dx2 + 1

2

ζ(x1)∫
0

∂

∂x1

(
v2
1

)
dx2 . (7.81)

Applying Leibnitz formula to both integrals on the right-hand side of (7.81), one gets

ζ(x1)∫
0

(
v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
dx2 = d

dx1

ζ(x1)∫
0

v2
1dx2 −Ue

d

dx1

ζ(x1)∫
0

v1dx2 . (7.82)

Using Eq. (7.21) the pressure gradient becomes

ζ(x1)∫
0

− 1

ρ

dpe
dx1

dx2 =
ζ(x1)∫
0

Ue
dUe

dx1
dx2 . (7.83)

The viscous term yields

1

ρ

ζ(x1)∫
0

∂

∂x2

(
μ

∂v1

∂x2

)
dx2 = 1

ρ

[
μ

∂v1

∂x2

] ∣∣ζ(x1)

0 = −τw

ρ
, (7.84)

as in the exterior region, we have a perfect fluid (no shear stress involved). At this
stage, Prandtl’s equation is transformed into the relation

d

dx1

ζ(x1)∫
0

v2
1dx2 −Ue

d

dx1

ζ(x1)∫
0

v1dx2 −
ζ(x1)∫
0

Ue
dUe

dx1
dx2 = −τw

ρ
. (7.85)

Using Leibnitz formula again, let us compute the following term with Ue = Ue(x1)
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d

dx1

ζ(x1)∫
0

v1Uedx2 =
ζ(x1)∫
0

∂

∂x1
(v1Ue)dx2 + v1Ue(ζ(x1))

dζ

dx1

=
ζ(x1)∫
0

Ue
∂v1

∂x1
dx2 +

ζ(x1)∫
0

v1
dUe

dx1
dx2 + v1Ue(ζ(x1))

dζ

dx1

= Ue

ζ(x1)∫
0

∂v1

∂x1
dx2 + dUe

dx1

ζ(x1)∫
0

v1dx2 + v1Ue(ζ(x1))
dζ

dx1

= Ue
d

dx1

ζ(x1)∫
0

v1dx2 − v1Ue(ζ(x1))
dζ

dx1
+ v1Ue(ζ(x1))

dζ

dx1

+ dUe

dx1

ζ(x1)∫
0

v1dx2 . (7.86)

With (7.86) the second term of relation (7.85) is rewritten

Ue
d

dx1

ζ(x1)∫
0

v1dx2 = d

dx1

ζ(x1)∫
0

v1Uedx2 − dUe

dx1

ζ(x1)∫
0

v1dx2 . (7.87)

The left hand side of (7.85) leads to the relationship

d

dx1

ζ(x1)∫
0

(v2
1 − v1Ue)dx2 + dUe

dx1

ζ(x1)∫
0

(v1 −Ue)dx2

= − d

dx1

⎡
⎣U 2

e

ζ(x1)∫
0

v1

Ue

(
1 − v1

Ue

)
dx2

⎤
⎦ −Ue

dUe

dx1

ζ(x1)∫
0

(
1 − v1

Ue

)
dx2 . (7.88)

As ζ(x1) is still arbitrary, we impose now that ζ(x1) → ∞. Therefore, with (7.88)
and the definitions (7.59) and (7.63), the relation (7.85) reads

d

dx1
(U 2

e θ) +Ue
dUe

dx1
δ∗ = τw

ρ
. (7.89)

Dividing through by U 2
e and carrying the algebra, we find the classical form of von

Kármán equation
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dθ

dx1
= τw

ρU 2
e

− 1

Ue

dUe

dx1
(2θ + δ∗)

= C f

2
− θ

Ue
(H + 2)

dUe

dx1
, (7.90)

where H is the shape factor defined by

H = δ∗

θ
. (7.91)

The increase of the momentum thickness θ depends on the wall shear stress. If the
exterior flow is accelerated, i. e. dUe/dx1 > 0, the θ growth is penalized. On the
contrary, if dUe/dx1 < 0, the thickness θ will grow. If the deceleration is strong
enough, the boundary layer will separate from the wall involving that τw = 0 and
therefore the separation criterion is

∂v1

∂x2
|x2=0 = 0 . (7.92)

7.4 von Kármán-Pohlhausen Approximate Method

When the boundary layer theory was proposed by Prandtl, the computational
resources of today did not exist. The integral equation of the previous section was
very much in use. The von Kármán-Pohlhausen method is a solution procedure
that consists in assuming the approximate shape of the velocity profile. Pohlhausen
considered a fourth degree polynomial. For the sake of simplicity we will restrict
ourselves to a third degree case and we then write the velocity as follows

v1

Ue(x1, 0)
= a(x1) + b(x1)s + c(x1)s

2 + d(x1)s
3, s = x2/δ∞, 0 ≤ s ≤ 1 . (7.93)

This profile is subjected to several boundary conditions. On the obstacle, the fluid
sticks to the wall

v1 = 0 for s = 0 . (7.94)

Furthermore along thewall, the velocity profilemust satisfy Prandtl’s equation (7.17).
We write

1

ρ

dp

dx1
= ν

∂2v1

∂x22
for s = 0. (7.95)

The velocity v1 for x2 = δ∞ where the boundary layer meets the exterior flow, must
be very close to Ue(x1, 0). Thus we have
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v1 = Ue(x1, 0),
∂v1

∂x2

∣∣∣
x2=δ∞

= 0 for s = 1. (7.96)

The variable Ue(x1, 0) will be computed from the theory of perfect fluids taking the
shape of the obstacle into account. Then the conditions (7.94) and (7.95) with the
integral equation (7.89) will provide the evaluation of the four coefficients introduced
in (7.93) and the thickness for the matching condition. When the shape of the profile
is more complex, one utilizes a polynomial of higher degree. We thus impose that
derivatives of degree equal or higher than two are zero at s = 1 and expressions
obtained by successive derivatives of Prandtl’s equationwith respect to the x2 variable
vanish at s = 1.

We illustrate the Pohlhausen method for the uniform flow over a flat plate. Condi-
tions (7.94) and (7.95) show immediately that coefficients a and c are zero. Imposing
conditions (7.96), the two other coefficients must satisfy the relationships

b + d = 1 ,

b + 3d = 0 . (7.97)

The polynomial reads
v1

Ue
= s

2

(
3 − s2

)
. (7.98)

We are able now to calculate the approximate displacement thickness

δ∗ = δ∞
∫ 1

0
(1 − v1

Ue
)ds = 3

8
δ∞ (7.99)

and the approximate momentum thickness

θ = δ∞
∫ 1

0

v1

Ue

(
1 − v1

Ue

)
ds = 117

840
δ∞ . (7.100)

The wall shear stress is given by

τw

ρ
= ν

∂v1

∂x2

∣∣∣
x2=∞

= ν
3

2

Ue

δ∞
. (7.101)

To compute the matching thickness δ∞ we use Prandtl’s equation which is simplified
as the variable Ue(x1, 0) is equal to the constant velocity U

τw

ρ
= U 2 dθ

dx1
. (7.102)
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Combining (7.100)–(7.102), we obtain

3νU

2δ∞
= U 2 117

840

dδ∞
dx1

. (7.103)

Integrating (7.103) we eventually get

δ∞ =
√
840

39

√
νx1
U

= 4.64

√
νx1
U

. (7.104)

This last equation shows that the approximate method is not that far from the exact
solution (7.58).

Exercises

7.1 Evaluate by the von Kármán-Pohlhausen method the velocity profile for the
plane plate case. The profile is approximated by the fourth degree polynomial

v1

Ue(x1)
= a(x1) + b(x1)s + c(x1)s

2 + d(x1)s
3 + e(x1)s

4, s = x2
δ∞

, 0 ≤ s ≤ 1 .

(7.105)
where x2 is the normal distance to thewall and δ∞ the thickness of the boundary layer.

Deduce the boundary layer thicknesses, the displacement thickness δ∗, the momen-
tum thickness θ and the wall shear stress τw.

7.2 The velocity profile of a laminar boundary layer over a flat plate can be approx-
imated by the relation

v1(x2) = A sin(Bx2) + C . (7.106)

• Enumerate the boundary conditions for the problem and obtain the values of the
constants A, B,C .

• Compute the expression of the boundary layer thickness δ0 = δ0(x1).

The method goes through the following steps

1. Calculate θ the momentum thickness as

θ =
∫ δ0

0

v1

U

(
1 − v1

U

)
dx2 . (7.107)

2. Show that the equation for θ is
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Fig. 7.5 Boundary layer over a flat plate

Fig. 7.6 Boundary layer over a porous wall

∂θ

∂x1
= τw

ρU 2
, (7.108)

using the momentum conservation and continuity on the control volume (dotted
lines) displayed in Fig. 7.5.

• Calculate the wall shear stress τw and deduce δ0.

7.3 We consider the plane flow of an incompressible fluid over a porous plate.
Through evenly distributed small holes, part of the laminar boundary layer is sucked.
Let us denote byV the normal component of the velocity to the plate surface at x2 = 0.
Assuming V is constant, it is possible to demonstrate that for very small values of the
aspiration velocity, i.e. V/U∞ � 1, the boundary layer thickness becomes constant
and the shape of the velocity profile invariable at long distance from the leading edge
(Fig. 7.6).

At a long distance from the leading edge, it is requested to calculate

• from Prandtl’s equations, the velocity profile v1(x2)/U∞.
• the value of the wall shear stress τw.
• the displacement and momentum thicknesses. Compute the shape factor (7.91).
Compare this factor to the one of the laminar boundary layer over a non porous
plate.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
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indicate if changes were made.
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included in the chapter’s Creative Commons license and your intended use is not permitted by
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