
Chapter 6
Plane Irrotational Flows of Perfect Fluid

In this chapter we consider the steady state two-dimensional irrotational flows of
inviscid incompressible fluid. The monograph by L. M. Milne-Thomson [59] is a
major contribution to the subject of this chapter.

In order to introduce the theory of complex variables, we will leave the index
notation and use the standard coordinates, namely x = x1, y = x2. In that case the
velocity components are u = v1, v = v2. We follow closely the book by Rhyming
[83] that has been a cornerstone in the fluid mechanics courses of the Mechanical
Engineering Department at the Swiss Institute of Technology Lausanne.

The assumption of irrotational flow induces the existence of a velocity potential
such that

v = ∇ϕ . (6.1)

The plane flow satisfies two relations

∇ · v = ∂u

∂x
+ ∂v

∂y
= 0 (6.2)

ω = ∂v

∂x
− ∂u

∂y
= 0 . (6.3)

The incompressibility constraint is trivially satisfied by the stream function ψ

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (6.4)

On the other hand by the velocity potential, one has

u = ∂ϕ

∂x
, v = ∂ϕ

∂y
. (6.5)
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Let us show that the stream function and velocity potential are conjugate harmonic
functions. Indeed, combining (6.1) and (6.2), one obtains �ϕ = 0. Inserting (6.4)
in (6.3), one gets �ψ = 0. With (6.4) and (6.5), one writes

∂ϕ

∂x
= ∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
. (6.6)

These relations are the Cauchy-Riemann conditions. If the partial derivatives
∂ϕ

∂x ,
∂ϕ

∂y ,
∂ψ

∂x ,
∂ψ

∂y are continuous in a simply connected domain, relations (6.6) are
necessary and sufficient conditions for the existence of a holomorphic (continuous,
analytic and uniform) function f (z) called the complex potential of the flow. It is
defined as

f (z) = ϕ(x, y) + i ψ(x, y) (6.7)

anddepends on the complex variable z = x + iy, i = √−1. If the domain ismultiply
connected, the function given by (6.7) is analytic, although not necessarily uniform.

The complex analytic potential generates two sets of orthogonal curves: the
equipotentials ϕ = cst and the streamlines ψ = cst . From the definitions of the
velocity potential and the stream function, it appears that the differentials dϕ and
dψ are exact differentials

dϕ = u dx + v dy , (6.8)

dψ = −v dx + u dy . (6.9)

For an irrotational flow, the circulation of the velocity vector along a closed contour
surrounding neither obstacle nor singularity is zero. We have using Stokes theorem

� =
∫
C

v · dτ =
∫
S
curl v · n dS = 0 , (6.10)

with τ the unit tangent vector to the curve C . In a simply connected domain, for any
curvy segment located between points A and B, the circulation is independent on
the followed path. One has

� =
∫ B

A
v · dτ =

∫ B

A
(u dx + v dy) =

∫ B

A
dϕ = ϕB − ϕA . (6.11)

The flow rate Q across the segment AB is also independent on the path. One has

Q =
∫ B

A
v · n dτ =

∫ B

A
(unx + vny)dτ =

∫ B

A
(udy − vdx) =

∫ B

A
dψ = ψB − ψA .

(6.12)
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6.1 Complex Velocity

The use of complex variables enables the introduction of the velocity vector in the
complex plane, namely u + iv. The conjugate velocity is called the complex velocity

w = u − iv , (6.13)

which is evaluated by the derivative of the complex potential f by the relation

w = d f

dz
= u − iv . (6.14)

As the function f (z) is analytic, its derivative f ′(z) is independent on the way the
limit is taken, i.e. on how the increment �z goes to zero. As a reminder, by analogy
with the derivative of a real function, one has

f ′(z) = d f

dz
= lim

�z→0

f (z + �z) − f (z)

�z
. (6.15)

It is easy to verify that using �z = �x or �z = i�y, the same limit is obtained and
one has

d f

dz
= ∂ f

∂x
= ∂ϕ

∂x
+ i

∂ψ

∂x
= u − iv , (6.16)

d f

dz
= 1

i

∂ f

∂y
= −i

(
∂ϕ

∂y
+ i

∂ψ

∂y

)
= u − iv . (6.17)

The polar representation of complex numbers z = reiθ gives the relation

dz = eiθ dr , (6.18)

leading to the definition

f ′(z) = 1

eiθ
∂ f

∂r
= w . (6.19)

Examination of Fig. 6.1 shows that

vr − ivθ = (u − iv)eiθ . (6.20)

Combining Eqs. (6.19) and (6.20), one obtains

∂ f

∂r
= vr − ivθ . (6.21)
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Fig. 6.1 Rotation of the
complex velocity w by the
angle θ

6.2 Complex Circulation �

Integration of the complex potential along an arbitrary path AB yields the following
result

∫ B

A
d f (z) =

∫ B

A
(u − iv) dz =

∫ B

A
(udx + vdy) + i

∫ B

A
(udy − vdx)

= � + i Q = fB − f A . (6.22)

The complex velocity w must be defined in a univocal manner at each point of
the complex plane for obvious physical reasons. Thus it is a holomorphic function.
If this velocity were a multiform (or multivalued) function, cuts must be used in
order to make w uniform and therefore integrable. As far as the complex potential
is concerned, the situation is different as it results from the integration of (6.19) and
may be a multiform function.

Recall that every point, where w(z) is holomorphic in a circle centered in z0 and
may be developed in Taylor series, is an ordinary or regular point. If this develop-
ment is not possible, the point is singular. Singularities are poles, essential singular
points and branch points. Without rigorous definitions, consider the next examples
to illustrate these concepts. The function 1/z2 has a pole of order two at the origin.
Function 1/(z2 + 1) has two simple poles z = ±i . Function e

1
z−a has an essential

singular point in z = a. Function z
1
n presents a branch point at the origin.

Let us now examine two cases in detail.

1. If z0 is the center of a circle of radius R where the flow is regular, cf. Fig. 6.2, it
is possible to develop w as a Taylor series with complex coefficients such that

w = a0 + a1(z − z0) + a2(z − z0)
2 + . . . , | z − z0 |< R . (6.23)
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Fig. 6.2 Regular flow in a
circle of radius R centered in
z0

Fig. 6.3 Regular flow
between two circles centered
in z0

2. If z0 is the center of an annular domain comprisedbetween twocircles of respective
radii r and R where the flow is regular, cf. Fig. 6.3, w is developed in Laurent
series

w =
n=∞∑
n=−∞

an (z − z0)
n, r <| z − z0 |< R . (6.24)

TheLaurent series includes two power series, one of ratio z − z0 that converges for
| z − z0 |< R, the other one of ratio 1/(z − z0) converging for 1

|z−z0| < 1
r . Integrating

the series (6.24), one obtains the complex potential

f (z) =
n=∞∑
n=0

an
n + 1

(z − z0)
n+1 + a−1 ln(z − z0) +

n=−2∑
n=−∞

an
n + 1

(z − z0)
n+1 + C .

(6.25)
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In (6.25), the presence of the multiform complex function ln(z − z0) influences the
integration of the complex potential in relation (6.22). If the integration path is an
arbitrary closed curveC that circles around z0 only once, then the theorem of residues
allows writing that the complex circulation � is

�C =
∫
C
d f (z) = 2π ia−1 . (6.26)

When the radius r is zero and the isolated singularity in z0 is a pole, the calculus of
residue utilises the relation

a−1 = lim
z→z0

(z − z0)w (6.27)

for a pole of order one and

a−1 = lim
z→z0

dn−1

dzn−1

(z − z0)nw

(n − 1)! (6.28)

for a pole of order n. If R goes to infinity and the velocity at infinity is uniform,
the complex potential (6.25) is such that ai = 0, i = 1, . . . ,∞ and the velocity at
infinity is given by

w(∞) = a0 . (6.29)

6.3 Elementary Complex Potential Flows

The irrotational flow is essentially a linear problem as the velocity potentials and the
stream function satisfy each of them a Laplace equation. Thus in order to build up a
somewhat complicated flow, we take full advantage of the superposition principle by
combining simple complex potentials. This new potential will allow the calculation
of the flow rate and the resulting circulation using the same superposition principle.
For the pressure field, the Bernoulli equation will be our tool for analysis.

In the following figures, the equipotentials will be represented by dashed lines
and the streamlines by solid lines with arrows pointing in the flow direction.

6.3.1 Parallel Homogeneous Flow

The complex potential
f (z) = Az, w = A = const , (6.30)
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is a homogeneous parallel flow. If A is real, the flow is parallel to direction x while
if A is imaginary, it is in direction y. For complex A we have a superposition of both
previous cases.

6.3.2 Vortex and Source

Let the potential be
f (z) = (A + i B) ln z (6.31)

with A and B real. In polar coordinates,

f (z) = (A + i B)(ln r + iθ) = (A ln r − Bθ) + i(B ln r + Aθ) (6.32)

The complex velocity is

w = f ′(z) = A + i B

z
. (6.33)

In polar coordinates, by (6.21),

∂ f

∂r
= vr − ivθ = A + i B

r
. (6.34)

This velocity has a pole of order one and the residue is (A + i B). The integration of
the velocity involves a closed contour encircling once the origin. By (6.22), one has

�0 + i Q0 = 2π i(A + i B) (6.35)

and thus
�0 = −2πB, Q0 = 2π A . (6.36)

Let us inspect the various cases corresponding to this potential.

6.3.2.1 Sink or Source

A �= 0, B = 0 ,

ϕ = A ln r, vr = A

r
, � = 0 , (6.37)

ψ = Aθ, vθ = 0, Q = 2π A . (6.38)



144 6 Plane Irrotational Flows of Perfect Fluid

Fig. 6.4 Source flow,
f = A ln z

O

In Fig. 6.4, one observes that the equipotentials are circles centered at the origin and
the streamlines are half-straight lines from the same point. The velocity is radial and
inversely proportional to the distance to the origin. The flow is a source for A > 0
or a sink (A < 0) with a flow rate 2π A.

6.3.2.2 Vortex

A = 0, B �= 0 ,

ϕ = −Bθ, vr = 0, � = −2πB , (6.39)

ψ = B ln r, vθ = − B

r
, Q = 0 . (6.40)

Here (cf. Fig. 6.5), we may just swap the streamlines and the equipotentials of the
previous case. The equipotentials are radial lines while the streamlines are circles
centered at the origin. A fluid particle rotates around the origin with a velocity
inversely proportional to the distance to the origin. If B > 0, the rotation is clockwise
(on an analog watch). Note that the motion is irrotational except at the origin where

Fig. 6.5 Vortex flow,
f = i B ln z

O
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Fig. 6.6 Logarithmic spiral
flow, f = (A + i B) ln z

O

a vortex is concentrated in the singularity. This is the reason why �0 is different from
zero.

6.3.2.3 Spiral Flow

A �= 0, B �= 0 . (6.41)

The velocity potential and the stream function read

ϕ = A ln r − Bθ, ψ = Aθ + B ln r . (6.42)

One deduces

vr = A/r, � = −2πB, vθ = −B/r, Q = 2π A . (6.43)

The fluid particles rotate around the origin while moving away if there is a source at
the origin. The equipotentials and the streamlines are orthogonal nets of logarithmic
spirals as can be seen in Fig. 6.6.

6.3.3 Complex Potential in Power of z

Let the complex potential be

f (z) = Azn = Arn einθ = Arn(cos nθ + i sin nθ) (6.44)

with A ∈ R and A > 0. The velocity potential is

ϕ = Arn cos nθ (6.45)
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and the stream function
ψ = Arn sin nθ . (6.46)

The complex velocity reads

w = f ′(z) = nAzn−1 , (6.47)

and presents a singularity at the origin for n non-positive integer or negative n. In
polar coordinates, by (6.21),

∂ f

∂r
= vr − ivθ = nArn−1(cos nθ + i sin nθ) . (6.48)

In order to obtain a uniform velocity everywhere in the complex plane, n must be an
integer. The streamlines ψ = 0 are radial lines going through the origin given by

θ = kπ

n
, k = 0, 1, . . . . (6.49)

For non-integer values of n, cuts in the complex plane are needed tomake the velocity
uniform. The stream lines ψ = 0 are again radial lines through the origin.

Let us examine successively the following cases: integer n ≥ 0, non integer n ≥ 0,
integer n < 0.

6.3.3.1 Positive Integer n

1. n = 0. The fluid is at rest, i.e. hydrostatic regime. One has

w = 0 . (6.50)

2. n = 1. This is the case of homogeneous and parallel flow described in Sect. 6.3.1.
3. n = 2. The complex potential gives

f (z) = A(x2 − y2) + 2i Axy , (6.51)

the velocity components of which are

u = 2Ax, v = −2Ay . (6.52)

The equipotentials are equilateral hyperbolas whose asymptotes are bisectors
of the coordinate axes. The streamlines are also equilateral hyperbolas that are
orthogonal to the previous ones and whose asymptotes are the coordinate axes,
cf. Fig. 6.7. The origin of the axes is called the stagnation point.
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Fig. 6.7 Flow
corresponding to f = Az2

x

y

O

6.3.3.2 Non Integer n ≥ 1/2

The use of fractional values for n is possible inasmuch one carries out cuts in the
complex plane to get a uniform velocity in the domain at hand. These cuts are made
most of the time along streamlines that are assimilated to obstacles. The best choice
to obtain a very wide domain consists in utilizing cut lines going through the origin.

1. n = 1
2 . The potential

f (z) = Ar1/2(cos
θ

2
+ i sin

θ

2
) (6.53)

produces the streamlines

ψ = Ar1/2 sin
θ

2
. (6.54)

For values θ = 0 or θ = 2π , ψ = 0. One has the flow around a thin plate (cf.
Fig. 6.8) that coincides with the semi-axis x > 0. One notices that the radial
velocity component depends on r−1/2 indicating that it goes to infinity at the
origin.

2. n > 1
2 .The streamlines ψ = 0 are obtained for θ = kπ

n , k = 0, 1, . . . ,.
Figure6.9 shows that the flow is generated in the concave part of a dihedron
n > 1 or around the convex part of a dihedron n < 1. The velocity at the tip of the
convex dihedron (n < 1) goes to infinity, cf. Fig. 6.10 (left) while for a concave
dihedron cf. Fig. 6.10 (right), the velocity at the origin goes to zero. Bernoulli’s
law that connects pressure and the square of the velocity shows that for a convex
dihedron, we will have an infinite negative pressure at the origin and for the
concave dihedron, pressure will be maximum at the vertex (Fig. 6.10).
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Fig. 6.8 Flow
corresponding to f = Az1/2

O

Fig. 6.9 Flow
corresponding to
f = Azn, n > 1/2

O
x

y

π
n

π
n

π
n

θ = 0

θ = π
n

θ = 2π
n

θ = 3π
n

Fig. 6.10 Convex dihedron Concave dihedron
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6.3.3.3 Dipole

Consider the case n = −1. The complex potential

f (z) = A

z
= A

r
(cos θ − i sin θ) (6.55)

yields real and imaginary parts

ϕ = Ax

x2 + y2
= A

r
cos θ, ψ = −Ay

x2 + y2
= − A

r
sin θ . (6.56)

The equipotential lines are circles centered on Ox and tangent to Oy at the origin,
while the streamlines are circles centered on Oy and tangent to Ox in O , cf. Fig. 6.11.
The f function and its derivative present a pole at the origin. The velocity

w = − A

z2
(6.57)

has a pole of order two at the origin. The relations (6.57) and (6.22) show that the
residue a−1 at the origin is zero. Thus the flow rate and the circulation associated to
a closed contour around the origin also vanish. In fact everything happens as if we
had at the origin a source and a sink of the same flow rate. This case corresponds to
a doublet or dipole.

The shape of the streamlines (Fig. 6.11) show that they become tighter at the
origin. The velocity increases when one approaches to the origin and goes to infinity
at that precise point. It is possible to demonstrate that the potential of a dipole is the
limit of the potential of a couple source-sink located from either side of the origin
on the x axis, when the distance between the singularities goes to zero, while their
opposite flow rates go to infinity (cf. Fig. 6.12)

Fig. 6.11 Flow corresponding to f = Az−1
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Fig. 6.12 Flow
corresponding to a doublet

x

y

Sink

6.4 Flow Around a Circular Cylinder

For the sake of simplicity, the cylinder has a circular cross section of radius a centered
at the origin.

6.4.1 Flow Without Circulation Around a Cylinder

Let us apply the superposition principle by combining a dipole with a homogeneous
parallel flow. The complex potential reads

f (z) = U

(
z + a2

z

)
. (6.58)

This potential corresponds to the definition (6.25). Decomposing real and imaginary
parts, the velocity potential is given by

ϕ = Ux

(
1 + a2

x2 + y2

)
(6.59)

and the streamline

ψ = Uy

(
1 − a2

x2 + y2

)
. (6.60)

The streamline ψ = 0 is composed of the circle of radius a centered at the origin
x2 + y2 = a2 and of the abscissa axis y = 0. The velocity is easily evaluated as
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w = f ′(z) = U

(
1 − a2

z2

)
= U [1 − a2(x2 − y2 − 2i xy)

(x2 + y2)2
] . (6.61)

Inspection of (6.61) shows that the velocity is zero at the two points of intersection of
the abscissa axis with the circle in x = ±a, y = 0; these are the stagnation points S1
and S2 of the flow. We note also that the velocity reaches its maximum norm equal to
2U at the intersection points of the circle with the ordinates axis in x = 0, y = ±a.

To obtain the velocity on the cylinder, it is easier to work in polar coordinates.
One has

f (z) = U

(
reiθ + a2

reiθ

)
. (6.62)

The equation of the circle is z = aeiθ . The components vr and vθ are obtained by
(6.21)

vr − ivθ = U

(
eiθ − a2

r2eiθ

)
. (6.63)

On the cylinder, the velocity is such that

vr = 0, vθ = −2U sin θ (6.64)

showing that it is tangent to the cylinder with a sine variation.
For the steady state flow with the effects of gravity neglected, Bernoulli’s relation

(4.41) gives

C = p

ρ
+ v · v

2
, (6.65)

We have
p∞
ρ

+ U 2

2
= p

ρ
+ 2U 2 sin2 θ . (6.66)

Defining the pressure coefficient Cp by

Cp = p − p∞
ρ U 2

2

, (6.67)

one obtains
Cp = 1 − 4 sin2 θ . (6.68)

The pressure field is symmetric with respect to the axial plane orthogonal to the
flow direction and therefore if we integrate the pressure on the cylinder to obtain the
lift force Fy , it will be zero. The streamlines are exhibited in Fig. 6.13.
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Fig. 6.13 Flow without
circulation around a cylinder

S1 S2

6.4.2 Flow with Circulation Around a Cylinder

To produce circulation, it is necessary to introduce a logarithmic term in the potential

f (z) = U

(
z + a2

z

)
− i

�

2π
ln

z

a
. (6.69)

This logarithmic term is modified in such a way that the streamline ψ = 0 contains
the circle of radius a centered at the origin. The velocity is computed as

w = f ′(z) = U

(
1 − a2

z2

)
− i�

2π z
. (6.70)

The velocity potential and the streamlines are easily obtained

ϕ = Ur cos θ

(
1 + a2

r2

)
+ �

θ

2π
(6.71)

ψ = Ur sin θ

(
1 − a2

r2

)
− �

2π
ln

r

a
. (6.72)

The velocity components are

vr = 1

r

∂ψ

∂θ
= U cos θ

(
1 − a2

r2

)
(6.73)

vθ = −∂ψ

∂r
= −U sin θ

(
1 + a2

r2

)
+ �

2πr
. (6.74)

The radial component vanishes on the circle. The calculation of the flow stagnation
points is carried out via (6.70)
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Fig. 6.14 Flow around a
circular cylinder with
� = 4πUa sin θ

S 2S 1

z2 − i�

2πU
z − a2 = 0 . (6.75)

The solution reads

z = i�

4πU
±

√
a2 − (

�

4πU
)2 . (6.76)

Consider the case of a positive discriminant

a2 − (
�

4πU
)2 > 0 . (6.77)

Let us set sin θ = �/(4πUa). The solution (6.76) becomes

z = a(± cos θ + i sin θ) . (6.78)

If | � |< 4πUa, Eq. (6.78) shows that two stagnation points are located symmet-
rically with respect to the vertical axis and the streamlines are shown in Fig. 6.14.
For � = 4πUa with � < 0, sin θ = −1 and θ = 3π/2, z = −ia and the stagnation
point is unique and situated at the bottom point of the cylinder. Figure6.15 displays
the streamlines of this particular case.

If | � |> 4πUa, then one finds

z = i

(
�

4πU
±

√
(

�

4πU
)2 − a2

)
. (6.79)

The two stagnation points are conjugated with respect to the circle of radius a. One
of these points is inside the circle and does not participate to the flow, cf. Fig. 6.16.

The streamline ψ = 0 separates the flow in two distinct regions. The fluid close
to the cylinder stays locked up because of the vortex strength. The velocities in that
region are high and consequently, pressure decreases. The pressure on the cylinder
surface is obtained by the Bernoulli equation (4.41)
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Fig. 6.15 Flow around a
circular cylinder with
� = 4πUa

S1 ≡ S2

Fig. 6.16 Flow around a
circular cylinder with
| � |> 4πUa

S 1

p

ρ
= p∞

ρ
+ 1

2
U 2 − 1

2

(
4U 2 sin2 θ + �2

4π2a2
− 2�U

πa
sin θ

)
. (6.80)

The last term in the parenthesis generates the lift as we will verify in the sequel.

6.5 Blasius Theorem: Forces and Moment

Let C be a closed contour corresponding to the wall of a rigid obstacle in the steady
irrotational flow of an inviscid fluid, cf. Fig. 6.17.

The wall coincides with a streamline. To evaluate the force exerted by the fluid
on the wall, one integrates the density of the contact forces on the curve C . Using
Cauchy theorem (1.53) and the constitutive relation for the perfect fluid (1.70), one
obtains

F =
∫
C
t(n)ds =

∫
C

−pn ds . (6.81)
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n

Fig. 6.17 Flow around an airfoil

In complex variables, the wall unit normal is given by

n = nx + iny = dy

ds
− i

dx

ds
= −i

dz

ds
, (6.82)

where s is a curvilinear coordinate along C .
Combining (6.81) and (6.82) we find

F = i
∫
C
p dz . (6.83)

The pressure field on the profile C is governed by Bernoulli equation

p

ρ
+ (v · v)C

2
= p0

ρ
, (6.84)

with the last term evaluated at the upstream airfoil stagnation point. The term (v · v)C
is given by

(v · v)C = (u2 + v2)C = [(u − iv)(u + iv)]C = (ww)C = (
d f

dz

d f

dz
)C , (6.85)

with the overline indicating complex conjugation. Therefore the Bernoulli equation
is rewritten as

p

ρ
+ 1

2

d f

dz

d f

dz
= p0

ρ
. (6.86)
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Consequently, the force vector F (6.83) becomes

F = Fx + i Fy = i
∫
C
(p0 − ρ

2

d f

dz

d f

dz
)dz

= i p0

∫
C
dz − iρ

2

∫
C

d f

dz
d f . (6.87)

On the streamlineC ,ψ = cst , thus the differential d f = dϕ + idψ is real as dψ = 0
and thus d f = d f . Moreover d f /dz = d f/dz. By Cauchy theorem, the first term
of the right hand side of (6.87) is zero. One obtains

F = iρ

2

∫
C
(
d f

dz
)2dz = iρ

2

∫
C

w2dz . (6.88)

The moment exerted by the fluid on the obstacle with respect to the origin of the axes
is given by

M =
∫
C

−p n × x ds = −
∫
C
p(nx y − nyx)ds =

∫
C

−p(x
dx

ds
+ y

dy

ds
)ds

= −
∫
C
p	(zdz) = 	[

∫
C

−p0(zdz) + ρ

2

∫
C
z
d f

dz
d f ] , (6.89)

where 	 indicates the real part of the expression. Along a streamline, one has

M = ρ

2
	

∫
C
zw2dz = ρ

2
	

∫
C
zw2dz , (6.90)

as (wdz)C = (w dz)C .
Let us apply these force and moment relations to the case of the cylinder in a flow

with circulation. By (6.70) and the theorem of residues, one gets

F = iρ�U, Fx = 0, Fy = −ρ�U . (6.91)

We find a zero drag and a lift proportional to the circulation. As we assumed � < 0
and U > 0, the force Fy is positive and oriented in direction Oy.

Let us now examine the moment. From (6.70) and (6.90), we have

M = ρ

2
	

∫
C

(
U (1 − a2

z2
) − i

�

2π z

)2

zdz

= ρ

2
	

(
2π i a2

[
−2U 2 + �2

4π2a2

])
= 0 . (6.92)

Thus the couple exerted on the cylinder vanishes as the resulting M is purely imag-
inary.
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6.6 The Method of Conformal Transformation

Let z and ζ be two complex planes, the first one with variable z = x + iy and the
second one with variable ζ = ξ + iη. We consider a one-to-one correspondance, i.e.
a bijective transformation between these two planes, given by

ζ = ζ(z) , (6.93)

such that each point z in the z plane has an image in the ζ plane. Therefore a curve in
z plane is equivalent to another curve in ζ plane in such a way that the second curve
is an image or mapping of the first one.

6.6.1 A Few Properties of the Conformal Transformation

The mapping is conformal because it preserves or conserves the angles but allows
stretching or shortening of lengths. In Fig. 6.18, two elementary vectors dz1 and dz2
of the z plane are mapped onto the corresponding counterpart vectors dζ1 and dζ2.
We write

dζ1 = dζ

dz
dz1, dζ2 = dζ

dz
dz2 . (6.94)

As ζ is an analytic function, the value of dζ/dz depends on the location of point
z and is independent of the orientation. Therefore by (6.94) with the relations z =
reiθ , ζ = seiϑ , one obtains

arg dζ1 − arg dζ2 = ϑ1 − ϑ2 = arg dz1 − arg dz2 = θ1 − θ2 . (6.95)

The angle between the two vectors is conserved by the transformation. Moreover, it
is easily shown that

Fig. 6.18 z (left) and ζ (right) planes
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|dz2
dz1

| = |dζ2

dζ1
| . (6.96)

The ratio of the length of two infinitesimal vectors in a plane is equal to the ratio of
the length of the corresponding vectors in the other plane.

6.6.2 Application to Potential Flows

In the z plane, the complex potential f (z) transformed via (6.93) yields the complex
potential G in the ζ plane. Indeed we have

f (z) = f (z(ζ )) ≡ G(ζ ) . (6.97)

The argument z(ζ ) is the inverse function of the transformation (6.93). The analytical
function G(ζ ) defines a flow in the ζ plane. The streamlines and the equipotentials
in the original plane z are transformed and present different shapes in the ζ plane.
By analogy with the definition (6.7) one has

G(ζ ) = �(ξ, η) + i�(ξ, η) . (6.98)

Equating f and G by (6.97), one obtains

	 f (z) = 	G(ζ ), � f (z) = �G(ζ ) , (6.99)

along homologous curves. The symbol � denotes the imaginary part.
The complex velocity in the ζ plane is computed as

wζ = G ′(ζ ) = d f

dz

dz

dζ
= w(z)

ζ ′(z)
. (6.100)

Let us note that both velocities wζ and w vanish at homologous points inasmuch
ζ ′(z) �= 0, i.e. when the mapping remains conformal.

The transformation is no longer conformal at the singular points ζ ′(z) = 0. A first
case occurs when the z point is a stagnation point (w = 0) and the derivative ζ ′ is
finite, then the velocity wζ remains finite. The second case corresponds to ζ ′(z) = 0
with the second derivative ζ ′′(z) �= 0. The homologous point ζ is a cusp (cf. Fig. 6.19)
because by (6.93), we write

dζ = 0 + 1

2

d2ζ

dz2
dz2 , (6.101)

where the infinitesimal quantity dζ is the dominating term in the development in
series of the difference ζ(z + dz) − ζ(z). This leads to the result that two infinitesimal



6.7 Schwarz-Christoffel Transformation 159

Fig. 6.19 Cusp in the ζ plane. The airfoil on the right is a NACA 64-1112 profile

segments dz1 and dz2 tangents to the circle in the z plane are transformed into two
segments dζ1 and dζ2 such that

dζ2

dζ1
=

(
dz2
dz1

)2

. (6.102)

Therefore one has

arg dζ1 − arg dζ2 = 2(arg dz1 − arg dz2) . (6.103)

As arg dz1 − arg dz2 = π , we obtain arg dζ1 − arg dζ2 = 2π that corresponds
indeed to a cusp.

The complex circulation remains unchanged in the transformation

(� + i Q)ζ =
∫
Cζ

G ′(ζ )dζ =
∫
Cz

w

ζ ′(z)
dζ

dz
dz = (� + i Q)z . (6.104)

6.7 Schwarz-Christoffel Transformation

The polygonal boundary of a domain located in the complex plane z with interior
angles α, β, γ, . . . can be transformed in the real axis ξ of the complex plane ζ

by a conformal transformation. The transformed domain is the half plane η > 0 in
Fig. 6.20. The transformation is given by a differential equation that is integrated for
any polygonal shape. The equation defining the transformation z = f (ζ ) is given by
the relationship

dz

dζ
= K (ζ − a)

α
π

−1(ζ − b)
β

π
−1(ζ − γ )

γ

π
−1 . . . , (6.105)
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Fig. 6.20 Schwarz-Christoffel transformation of polygonal contour

where K is a constant and a, b, c, . . . are the real values of the complex variables
corresponding to the polygon vertices in the z plane. If the polygon is closed and
possesses n vertices, from Euclid’s geometry, the quantities α, β, γ, . . . are such
that α + β + γ + · · · = (n − 2)π . The function f can be expressed by an indefinite
integral

z = z0 + K
∫

(ζ − a)
α
π

−1(ζ − b)
β

π
−1(ζ − γ )

γ

π
−1 . . . dζ . (6.106)

The K and z0 constants allow the determination of the position and the size of the
domain.

It is sometimes convenient to place at infinity the point in the ζ plane corresponding
to one of the vertices, e.g. ζ = a. The factor (ζ − a)

α
π

−1 is incorporated in the K
constant generating a new constant K ′ = (−a)

α
π

−1 such that we can write

dz

dζ
= K ′ζ − b)

β

π
−1(ζ − γ )

γ

π
−1 . . . . (6.107)

It is possible to show that two real values corresponding to the verticesmay be chosen
arbitrarily. This will be implemented in the following examples.

6.7.1 Mapping of a Semi-infinite Strip

Let us consider in Fig. 6.21 a semi-infinite strip A, B,C, D of height h. This strip
may be assimilated to a rectangle with two vertices at infinity. The point A will be
mapped on the point ζ = −∞, while B,C will be at ζ = b, ζ = c, respectively. We
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Fig. 6.21 Schwarz-Christoffel transformation of a semi-infinite strip

can conclude easily that D will be at ζ = ∞. The interior angles that are relevant
for the transformation are those at B and C , and then β = γ = π/2.

Eq. (6.107) is

dz

dζ
= K ′(ζ − b)−

1
2 (ζ − c)−

1
2 = K ′

√
(ζ − b)(ζ − c)

= K ′√
(ζ − b+c

2 )2 − ( b−c
2 )2

. (6.108)

Let us set

δ = ζ − b+c
2∣∣ b−c

2

∣∣ . (6.109)

Therefore the Schwarz-Christoffel relation (6.108) becomes

dz

dδ
= K ′

√
δ2 − 1

. (6.110)

The integration leads to (cf. [1])

z = z0 + K ′ ln(δ +
√

δ2 − 1) = z0 + K ′ cosh−1 δ . (6.111)

Consequently

δ = cosh

(
z − z0
K ′

)
. (6.112)

Using 6.109) and (6.112), we write

ζ = b + c

2
+ ∣∣b − c

2

∣∣ cosh
(
z − z0
K ′

)
. (6.113)

If b ≥ c and z = z0, (6.113) yields ζ = b. With z = z0 + iπ K ′, we obtain ζ = c.
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6.7.2 Mapping of a Plane Channel

The problem of plane channel may be considered as a polygon with two vertices
located at infinity with zero angles as shown in Fig. 6.22.

The Schwarz-Christoffel formula (6.106) allows writing

dz

dζ
= K (ζ − a)0−1(ζ − b)0−1 . (6.114)

Let us choose a at infinity and b any value. Equation (6.114) becomes

dz

dζ
= K ′(ζ − b)0−1 , (6.115)

which gives
ζ = b + e(z−z1)/K ′

, (6.116)

where z1 is a complex constant corresponding to any point of the channel. Note that
ζ = b for z → −∞ and ζ = b + 1 when z = z1.

A point z1 + d with real d is transformed in a real ζ = b + ed/K ′
. The real half-

line ζ with ζ > b corresponds to the channel boundary going through z1. This was
expected as the goal of the Schwarz-Christoffel transformation consists in building
up the correspondance of the domain boundary with the real axis of the ζ plane. We
also desire that the other plane channel wall corresponds to another portion of the
real axis ξ = 0. Let H denote the channel height and d be a positive real value. We
write

z = z1 + i H + d ⇒ ζ = b + eiH/K ′
ed/K ′

. (6.117)

Therefore ζ will be real if eiH/K ′
is also real, i.e. if sin(H/K ′) = 0. We deduce that

we must have the condition H/K ′ = nπ with n, an integer. If we require that the
second channel wall corresponds to the real half-line ζ with ζ < b, one must choose
an odd n and K ′ = H/π .

Fig. 6.22 Schwarz-
Christoffel transformation of
a plane channel
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A parallel line to the channel walls is defined as

z = z1 + iαH + d with 0 ≤ α ≤ 1 , (6.118)

where α is a constant and d a variable parameter. The corresponding transformation
reads

ζ = b + eπd/Heiπα . (6.119)

This corresponds to a half-line that begins at point ζ = b and making an angle α

with the positive real axis. Moreover, as 0 ≤ α ≤ 1, this half-line is located in the
upper half-plane η > 0.

A straight line orthogonal to the channel walls is defined by the relationship
(6.118), except that now α is varying and d is constant. Its transformation (6.119) is
a semicircle centered in ζ = b with the radius eπd/H .

6.7.3 Schwarz-Christoffel Transformation of a Converging
Channel

In order to tackle the flow in a converging channel as shown in Fig. 6.23, the problem
is solved with the help of the Schwarz-Christoffel transformation. We notice the
following considerations:

• The first polygon angle is located at the vertices [2] and [3] coinciding at infinity.
Therefore α2 = α3 = 0. The corresponding point in the ζ plane may be placed at
the origin without loss of generality ξ2 = ξ3 = 0.

• For point [4], we have α4 = 3π/4 and ξ4 = a4.
• For point [5], we have α5 = 5π/4 and ξ5 = 1.
• Point [1] (resp. [6]) is sent to ξ = −∞ (resp. ξ = ∞) with zero angles in [1] and

[6] (Fig. 6.23).

Fig. 6.23 Flow through a converging channel by the Schwarz-Christoffel method
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With the help of (6.107), we write

dz

dζ
= K ′(ζ − 0)0−1(ζ − a4)3/4−1(ζ − 1)5/4−1 = K ′

ζ

(
ζ − 1

ζ − a4

)1/4

. (6.120)

In the z plane, the entry flow is uniform with the velocity U . The volume flow
rate Q is UH . In the ζ plane, we look for a complex potential with this flow rate
generated between points [2] and [3] that coincide in ξ = 0. This is achieved by a
source located at the origin with the complex potential

f (ζ ) = Q

2π
ln ζ = UH

π
ln ζ . (6.121)

The last equality is due to the fact that Q = 2UH as the source flows also in the
half-plane η < 0. The complex velocity in the ζ plane is given by

wζ = d f

dζ
= UH

πζ
. (6.122)

At the corresponding points in the z plane, the velocity is

wz(z) = d f

dζ

dζ

dz
= UH

πK ′

(
ζ − a4

ζ − 1

)1/4

. (6.123)

Let us determine the K ′ value in order that the velocity at [6] in the z plane be equal
to the velocity at point [6] in the ζ plane. Due to the flow rate conservation, one has

wz([6]) = UH

h
⇒ UH

πK ′

(
ξ6 − a4

ξ6 − 1

)1/4

= UH

h
. (6.124)

But ξ6 = ∞. Taking the limit of (6.124), one gets

UH

πK ′ = UH

h
→ K ′ = h

π
. (6.125)

We must now compute the abscissa of point [4] in the ζ plane such that ζ4 = ξ4. The
z velocity in [4] is U . Using (6.123), we have

U = UH

h

(
0 − a4

0 − 1

)1/4

⇒ a = h

H
⇒ ξ4 = a4 =

(
h

H

)4

. (6.126)

With (6.120) and (6.125), we write

dz = h

πζ

(
ζ − 1

ζ − a4

)1/4

dζ (6.127)
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In order to ease the integration of (6.127), we introduce the change of variable

t4 = ζ − a4

ζ − 1
. (6.128)

Inverting (6.128) we have

ζ = t4 − a4

t4 − 1
. (6.129)

We can compute dζ/ζ and with this intermediate result, Eq. (6.127) becomes using
factorization

dz = 2h

π

(
1/2a

t − a
− 1/2a

t + a
− 1

2(t − 1)
+ 1

2(t + 1)
+ 1

t2 + a2
− 1

t2 + 1

)
dt .

(6.130)
Integrating we get

z = z0 + h

π

(
−1

a
ln(t + a) + 1

a
ln(t − a) + ln(t + 1) − ln(t − 1)

+ 2

a
arctan(

t

a
) − 2 arctan t

)
. (6.131)

The integration constant z0 is obtained by imposing that the point ζ4 = a4 ↔ t = 0
correspond to the origin in the z plane. This leads to the following expression (as
ln(−1) = (2k + 1)iπ )

z0 = i(H + h) . (6.132)

6.8 Joukowski Transformation

The Joukowski transformation is defined by

ζ = z + a2

z
, (6.133)

with a a real number. For large values of z, one has ζ � z and the homologous flows
given by (6.133) are identical at infinity. Let us consider the transformation of the
region outside a circle of radius R in the z plane given by

z = R eiθ . (6.134)

With (6.133) and (6.134), one obtains
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ζ = ξ + iη =
(
R + a2

R

)
cos θ + i

(
R − a2

R

)
sin θ . (6.135)

Eliminating θ one gets

ξ 2

r2
+ η2

s2
= 1 , (6.136)

r = R + a2

R
, s = R − a2

R
. (6.137)

The counterpart of the circle of radius R is an ellipse of semi-axes r and s. The two
foci1 of the ellipse are located on the ξ axis in ξ = ±2a. If the circle of ζ plane is
such that R = a, it is transformed in the segment −2a ≤ ξ ≤ 2a of the ξ axis. From
Eq. (6.135) we have

ξ = a eiθ + a e−iθ = 2a cos θ . (6.138)

For θ = 0, π/2, π, 3π/2, 2π , one has ξ = 2a, 0,−2a, 0, 2a. Thereforewhen a point
goes around the circle R = a in the z plane, the homologous point in the ζ plane
sweeps first the upper part of the segment and afterwards the bottom part. This means
that in the ζ plane we have a flat plate of span 4a.

The singular points of the transformation are the zeroes of the relation

dζ

dz
= 1 − a2

z2
. (6.139)

These are the points z = ±a and thus ζ = ±2a. The transformed circle generates
cusps at those points.

6.8.1 Flow over a Flat Plate

Let us consider the flow over a circular cylinder with circulation that is inclined by
an angle α with respect to the x axis. This is taken into account by the transformation
z = z0eiα where z0 corresponds to the case of a horizontal incoming flow. With
reference to relation (6.69) corresponding to z0, the complex potential reads

f (z) = U

(
ze−iα + a2

z
eiα

)
− i

�

2π
ln

( z

a
e−iα

)
. (6.140)

Taking the derivative of (6.140) with respect to z and taking (6.139) into account,
one produces the velocity relation on the plane ζ = a eiθ

1 The distance of the focus c to the ellipse center is such that c = √
a2 − b2, where a and b are the

semi-axes and the ellipse equation is (x/a)2 + (y/b)2 = 1.
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wζ = U

1 − e−2iθ

(
eiα − ei(α−2θ) − i

�

2πaU
e−iθ

)
. (6.141)

With the identity
1

1 − e−2iθ
= 1 − e2iθ

4 sin2 θ
(6.142)

we obtain

wζ |plate = U

2 sin2 θ

(
cosα − cos(α − 2θ) − �

2πaU
sin θ

)
. (6.143)

One notes that for the particular values α = � = 0, one gets wζ |plate = U , corre-
sponding to the uniform and parallel flow not perturbed by the presence of the plate.

For � = 0, wζ = 0 when

cosα = cos(α − 2θ) or θ1 = α, θ2 = α + π . (6.144)

Figure6.24 shows the streamlines for α = 25◦, � = 0. We notice the stagnation
points S1 and S2 on the pressure and suction sides. The velocities at x = ±2a are
infinite. Using the identity

cosα − cos(α − 2θ) = 2 sin2 θ cosα − 2 sin α sin θ cos θ

the velocity is

S 2

S 1

Fig. 6.24 Flow without circulation, inclined by an angle α = 25◦ around a flat plate
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Fig. 6.25 Flow inclined by
an angle α = 25◦ around a
flat plate with
|�| = 4πaU sin α

S 2

S 1

wζ |plate = U cosα − U

2 sin θ

(
�

2πaU
+ 2 sin α cos θ

)
. (6.145)

In order to avoid an infinite velocity at the trailing edge that corresponds to ξ = 2a
and θ = 0, we choose a � value that generates a finite velocity at that point. One has

|�| = 4πaU sin α . (6.146)

Figure 6.25 presents the streamlines for this particular value of �, corresponding
to a finite velocity at the trailing edge S2.

6.8.2 Joukowski Profiles

With the help of Joukowski transformation, it is possible to generate a series of various
profiles; among them, the ellipse and the flat plate constitute particular cases. This
series called Joukowski profiles is obtained by locating the center of the circle of the
transformation in a position different from the origin of the axes.

In Fig. 6.26, the circle is shifted in the negative direction of x axis. This procedure
generates a thick symmetric profile such that the leading edge presents an elliptic
shape and the trailing edge corresponds to the cusp of the flat plate case.

If the center of the circle is now located on the η axis, as it is shown in Fig. 6.27,
one obtains an arc of a thin circle. This type of off-set generates a cambered profile.

Finally, Fig. 6.28 corresponds to the more general situation where the center of
the circle is located inside the interior of the complex plane. We wish that the trailing
edge be no longer a cusp, but a dihedral with a small aperture angle. This dihedral
will be tied up with the intersection of the cylinder with the ξ axis. The center of the
circle is off-set at point z = zof f . The transformation is given by the relationship



6.8 Joukowski Transformation 169

Fig. 6.26 Symmetric Joukowski profile

Fig. 6.27 Cambered Joukowski profile

Fig. 6.28 General Joukowski profile

z = z0e
iα + zof f . (6.147)

The complex potential of the flow is then

f (z) = U
(
z − zof f

)
e−iα + Ua2

z − zof f
eiα − i

�

2π
ln

(
z − zof f

a
e−iα

)
. (6.148)
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The S2 point corresponds to the intersection of the circle with ξ axis. Referring to
Fig. 6.28, where the line connecting S2 to the center of the circle makes the angle β,
one gets by (6.147)

zS2 = aeiβ + zof f . (6.149)

Imposing a zero velocity at the trailing edge point S2, we obtain

w(S2) = U
(
e−iα − e+i(α+2β)

) − i�

2πa
eiβ = 0 . (6.150)

We are then able to compute the circulation �

|�| = 4πaU sin(α + β) . (6.151)

The lift on the profile is therefore

Fy = 4πρU 2 sin(α + β) . (6.152)

Imposing this value for the circulation constitutes the Kutta condition which yields
a finite velocity at the trailing edge on the pressure and suction sides of the profile.
In the steady state plane case, there is no downstream vortex sheet. On the contrary,
in the unsteady flow or downstream a three-dimensional profile, such a vortex sheet
is present. From the physical point of view, this will generate a wake and some
instabilities.

Consequently, the pressure coefficient is given by the relation

Cp = 1 − u2 + v2

U 2
= 1 − ww

U 2
. (6.153)

Figure 6.29 shows the flow with an incidence angle of five degrees. The circle of
the transformation is in zof f = 0.1 + i 0.14with radiusa = 1.16.Onenotices that the
pressure side (intrados) is subjected to high pressure and the suction side (extrados)

Fig. 6.29 Streamlines and
isocontours of the pressure
coefficient on a Joukowski
airfoil for an incidence angle
α = 5◦
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Fig. 6.30 Pressure coefficient on a Joukowski airfoil for an incidence angle α = 5◦

is low pressured. This phenomenon induces the lift of the airfoil. The next Fig. 6.30
shows the pressure variation between pressure and suction sides allowing computing
the center of pressurewhich is the average location of the pressure variation. Through
the center of pressure acts the aerodynamic force that is lift for an inviscid fluid and
lift and drag in the viscous case.

Exercises

6.1 Let the complex potential of the flow be given by the expression

f (z) = m ln

(
z − 1

z

)
, m > 0 . (6.154)

• Find the locations of the sources and sinks.
• Compute the velocity potential ϕ and the streamfunction ψ and show that with
these expressions it is possible to examine the flow in a positive half-disk r < 1.

• Evaluate the flow rate crossing the line between the points z1 = 1
2 + i

2 and z2 = 1
2 .

6.2 The complex potential of the flow reads

f (z) = (1 + i) ln(z2 − 1) + (2 − 3i) ln(z2 + 4) + 1

z
. (6.155)
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• Find the positions of the singular points.
• Compute the flow rate across the circleC : x2 + y2 = 9 and the circulation around
C .

6.3 The complex potential of the flow is given as

z = cosh f . (6.156)

• Compute the streamlines ψ and the equipotentials ϕ.
• Evaluate the velocity along the segment [−1, 1] of the real axis.
Reminder

cosh α = eα + e−α

2

sinh α = eα − e−α

2
cosh2 α − sinh2 α = 1 .

6.4 Flow in front of a circular obstacle
Let us consider in the upper part (η � 0)of the ζ complex plane, theflowgenerated

by a source with flow rate Q, at a distance a < 1 from a plane wall, and a sink with
the same flow rate at a unit distance. The complex potential in the ζ plane is given
by

g(ζ ) = Q

2π
ln

ζ 2 − a2

ζ 2 − 1
. (6.157)

• Justify the relation for the complex potential g(ζ ) using the concept of hydrody-
namic images analogous to that of electrical images in electrostatics.

• Express the complex velocity wζ in the ζ complex plane.

Consider now the conformal transformation between the complex ζ plane and the
physical z plane :

z = g(ζ ) = 1 + ζ

1 − ζ
, (6.158)

where z = x + iy represents the point in the physical plane. This transformation is
applied to the upper half plane η ≥ 0.

• Evaluate the image in the z plane of the line ξ = 0 by the conformal transformation
g.
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Fig. 6.31 Flow over a step

• Obtain the images in the z plane of the sources and sinks in the ζ plane.
For the sake of simplicity, set b = (1 + a)/(1 − a).

• Calculate the image in the z plane of the half-plane η ≥ 0.
• Express the complex velocity w(z) in the physical plane as a function of wζ .
Deduce the analytical expression of w(z).

• Show that the complex potential in the physical plane reads

f (z) = Q

2π

[
ln

(
1 − b

z

)
+ ln

(
z − 1

b

)]
. (6.159)

6.5 Flow over a forward facing step
Let us consider the conformal mapping ζ = f (z) of the upper half plane η ≥ 0

towards the physical plane z defined by

dz

dζ
=

(
ζ

ζ + a

)1/2

, (6.160)

where a is a positive real number. We denote by A the corresponding point of the
complex plane such that ζ = ξ = −a as is exhibited in Fig. 6.31. Moreover, it is
assumed that the origin O of the ζ plane corresponds to the origin of the physical
plane.

• Evaluate the image of the half line ξ > 0 and η = 0 by the conformal mapping.
To this end, use arguments based on angles.

• As in the previous item, evaluate the image of the segment AO and of the half line
ξ < −a. Deduce the flow domain in the physical plane.

• The flow in the ζ plane is uniform and represented by the complex potential
g(ζ ) = Uζ . Express the complex velocityw(z) in the physical plane as a function
of ξ for the domain boundary η = 0. Show that the image of point A in the z plane
is a stagnation point. Compute in the transformed plane the velocity at the origin
(Fig. 6.31).
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