
Chapter 4
Vorticity and Vortex Kinematics

In Sect. 1.8, the incompressible Navier–Stokes equations were derived for a viscous
Newtonian fluid in terms of primitive variables: velocity and pressure. The phenom-
ena observed in fluid flows have been interpreted by an equilibrium between the
inertial forces, the pressure gradient, the volume forces such as gravity, and the vis-
cous forces. In this chapter, we take a different point of view based on the concept
of vorticity.

The presence of vorticity in a flow is an indication of the importance of the viscous
effects, given that they are generated by viscous stresses. However rotational flows
are computed by solving Euler equation, which show the presence of vortices. For
example, the flow over a delta wing may be obtained by solving Euler equation.
Vorticity can also be generated by a baroclinic mechanism for compressible flow as
in Rayleigh–Taylor instability.

Therefore, under certain assumptions, vorticity possesses the followingproperties:

(i) in the absence of viscosity, it is transported by the flow as an elementary material
vector;

(ii) in the presence of viscosity, it diffuses into the surrounding fluid while being
continually produced at the solid walls that delimit the flow.

Thus the vorticity produced on a solid wall introduces the notion of a boundary
layer for which we are led to modify certain conclusions coming from the theory of
irrotational perfect fluids. In turbulence, flow dynamics is mostly the result of the
stretching or shortening of vortex filaments and their deformation.
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92 4 Vorticity and Vortex Kinematics

4.1 Kinematic Considerations

The velocity gradient tensor L can be decomposed into the sum of a symmetric
strain rate tensor d and an antisymmetric rotation rate tensor ω̇ according to Eq.
(1.36). The tensor d is given by (1.33) and ω̇ by (1.35). Recall that the dual vector
�̇, corresponding to the rotation rate tensor, is the rotation rate vector introduced by
(1.37).

In fluid mechanics, we classically introduce the vorticity vector ω, defined as the
curl of the velocity (1.40). To acquire familiarity with the concept of vorticity, we
study the flow near a stagnation point at the origin. The velocity components are
such that we have, with a constant C ,

v1 = Cx1, v2 = −Cx2, v3 = 0 . (4.1)

We easily calculate that for this flow ω = 0. A flow with zero vorticity is called
irrotational.

Now consider the plane Poiseuille flow in a channel of height h. If the coordinate
system has its origin on the lower wall, the velocity profile, (3.19) with definition
(3.24), is given by the relation

v1 = 4vmax
x2
h

(1 − x2
h

) , (4.2)

with vmax being the maximum velocity on the centerline of the channel at x2 = h/2.
The only component of the vorticity is ω3. It is perpendicular to the plane of the flow
and its value is

ω3 = ε321
∂v1

∂x2
= −4vmax

h
(1 − 2x2

h
) . (4.3)

In this case, the absolute value of the vorticity attains a maximum at the two walls
and goes to zero on the centerline of the channel.

From these examples we can conclude that the concept of vorticity has no relation
to the curvature of the streamlines. In the first case, the streamlines are curved (ψ =
Cx1x2), but the vorticity is zero; while in the second example, the streamlines are
straight lines and there is finite vorticity.

The Stokes theorem or the curl theorem transforms the flux of the curl of a vector
through a surface S into the line integral of that vector around the curvy boundary C
of the surface. The theorem reads
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Fig. 4.1 Vortex tube
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Theorem 4.1 (Stokes theorem)

∫
S
ω · n dS =

∮
C

v · τ dl . (4.4)

From the definition of vorticity, (1.40), and the Stokes theorem (4.4), we obtain
the identity

I (S) =
∫
S
ω · n dS =

∫
S

curl v · n dS =
∮

v · τ dl = � , (4.5)

where I (S) is the intensity of the vortex tube. The curvilinear integral in (4.5) defines
the velocity circulation, �, along the closed curve C , of the unit tangent vector τ .
It is thus equal to the vorticity vector flux through an arbitrary surface bounded by
the curve. In the following, this property will permit us to systematically link the
concept of circulation to an interpretation in terms of vorticity.

Recall that a vortex line (Fig. 4.1) is a line tangent at all its points to the vorticity
vector, and that a vortex tube is a family of vortex lines circumscribed by a closed
curve. The intensity of a vortex tube, for a surface S defined by a closed line enclosing
the vortex tube, is the flux I (S) of vorticity through the surface.

Theorem 4.2 (Helmholtz) (Vorticity properties) Helmholtz main theorems about
vorticity are as follows:

• the vorticity flux through a closed surface is always zero;
• the intensity of a vortex tube does not depend on the transverse section considered;
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• a vortex tube can only end connected to itself or extend to infinity unless it is cut
by a wall.

The proof of these theorems can be found in Panton’s book [71].

4.2 Dynamic Vorticity Equation

4.2.1 General Equation

The formulation of the equation that governs vorticity dynamics requires the estab-
lishment of certain preliminary relations.

The acceleration term a can be written as follows:

a = ∂v

∂t
+ ω × v + grad

(v · v

2

)
, (4.6)

that can be proved by induction

ai = ∂vi

∂t
+ εi jkω jvk + ∂

∂xi

(v jv j

2

)
,

= ∂vi

∂t
+ εi jkε jlm

(
∂vm

∂xl

)
vk + v j

∂v j

∂xi
,

= ∂vi

∂t
+ (δklδim − δkmδil)

(
∂vm

∂xl
vk

)
+ v j

∂v j

∂xi
,

or

ai = ∂vi

∂t
+ vk

∂vi

∂xk
.

This last expression is none other than the definition of acceleration (1.23). Thus,
relation

curl a = Dω

Dt
− ω · grad v (4.7)

is an identity. As can be seen, applying the curl operator to relation (4.6) leads to

curl a = ∂

∂t
curl v + curl(ω × v) + curl grad

(v · v

2

)

or

curl a = ∂ω

∂t
+ curl(ω × v) . (4.8)
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The term curl(ω × v) can be developed as follows:

curl(ω × v) = v · grad ω − (∇v) ω + ω div v − v divω . (4.9)

The last term of (4.9) is zero as div curl v = 0. From (4.8) and (4.9), it follows that

curl a = Dω

Dt
− (∇v) ω + ω div v .

From the mass conservation equation (1.50), we obtain the relation

curl a = Dω

Dt
− (∇v) ω ,

which is equivalent to Eq. (4.7) that can be written in the form

Dω

Dt
= (ω · grad) v + curl a . (4.10)

From the conservation of momentum (1.58), we write

Dω

Dt
= (ω · grad) v + curl (b + 1

ρ
divσ ) . (4.11)

Using the constitutive equation (1.67) in (4.11), we have

Dω

Dt
= (ω · grad) v + curl b − 1

ρ
curl(∇p) + 2ν curl(div d) . (4.12)

If the body force is conservative, it can be derived from a potential χ , as is the case
for gravity. Then we write

b = −∇ χ . (4.13)

Consequently, curl b = 0, and this term disappears from (4.12). We adopt this
hypothesis for the rest of the discussion. Furthermore as for the scalar field p one
has curl (∇ p) = 0, Eq. (4.12) is simplified as

Dω

Dt
= (ω · grad) v + 2ν curl(div d) . (4.14)

The left-hand side of relation (4.14) contains the material derivative of the vorticity.
On the right-hand side, we find two terms that describe the deformation (stretching
and shrinking) and the curvature (bending-tilting) of the vortex lines and the viscous
diffusion of the vorticity. We notice that in the incompressible case, the vorticity
equation does not contain any pressure contribution unlike the compressible case
where a baroclinicity term appears (cf. Botsis-Deville [16]).
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4.2.2 Physical Interpretation of Vorticity Dynamics for the
Incompressible Perfect Fluid

For an incompressible fluid (ρ = constant), that is inviscid (ν = 0), Eq. (4.14) yields

Dω

Dt
= (∇v) ω = (ω · ∇)v . (4.15)

The term
(ω · ∇)v

does not correspond to any term in the Navier–Stokes equations written with the
primitive variables, velocity and pressure. Let us examine what that term means
from the physical point of view.

In Fig. 4.2, consider two neighboring points Pr and Q on a vortex line. The points
P and Q also define a material line of length dx =‖ dx ‖, and we can show the
equality

D(dxi )

Dt
= dvi = ∂vi

∂x j
dx j or

D(dx)

Dt
= dx · grad v . (4.16)

This last equation simultaneously expresses the changes in length and direction of
a material line element. Comparison of (4.15) and (4.16) shows that the vorticity
vector ω plays a role analogous to that of the vector dx. Thus, ω behaves as if it were
a material line element instantaneously coinciding with a portion of the vortex line.
Let δv be the relative velocity of the fluid at Q with respect to P. In relation (4.15),
we can make the substitution

Fig. 4.2 Portion of a vortex
line δv

Q

P

ω
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(∇v) ω =‖ ω ‖ lim
PQ→0

δv

PQ
.

One part of the change of ω measured by (4.15) comes from the rigid body rotation
of the material line element (from the component of δv normal to ω), and the other
part is generated by the shrinking or stretching of the elementary line (from the
component δv parallel to ω). Finally, Eq. (4.15) can be interpreted as follows: the
vorticity is transported by the fluid particles, while being oriented and deformed as
if it were an elementary material vector.

4.2.3 The Vorticity Number

Truesdell [110] proposed to measure the vorticity in a flow by means of a dimen-
sionless invariant named the vorticity number. This number evaluates the relative
strengths of the rotation and stretching and is defined by the relation

W =
√

ω̇ : ω̇

d : d , (4.17)

where ω̇ and d are the vorticity tensor (1.35) and rate of deformation tensor (1.33),
respectively. The symbol : defines the scalar product of two tensors. For example,
d : d = di j di j .

The two limit cases are the irrotational motion where ω̇ = 0 andW = 0, and the
rigid body motion where d = 0 with ω̇ �= 0 and thus W = ∞. All flows with non
zero vorticity will be measured through the vorticity number the range of which is
in between 0 and infinity.

As an example, let us consider a generalized Poiseuille flow with the following
velocity profile

v1 = v2 = 0, v3 = v3(x1, x2) . (4.18)

It is easily computed thatW = 1.

4.3 Vorticity Equation for a Viscous Newtonian Fluid

We assume now that the viscosity μ is invariable. With (1.68), we write

div d = 1

2
(grad (div v) + � v) (4.19)

or using the identity for an arbitrary vector a
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�a = ∇ · ∇a = ∇(∇ · a) − curl curl a (4.20)

the relation (4.19) becomes

div d = grad (div v) − 1

2
curl curl v . (4.21)

Taking the curl of (4.21) leads to

curl(div d) = −1

2
curl( curl ω) . (4.22)

The vorticity dynamics equation is obtained by combining (4.14) and (4.22):

Dω

Dt
= (ω · grad) v − ν curl curl ω . (4.23)

Equation (4.23) may be rewritten with the help of (4.20) as

Dω

Dt
= (ω · grad) v + ν �ω . (4.24)

Special Case for Two-Dimensional Flow

For an incompressible two-dimensional flow, Eq. (4.23) becomes, with the notation
ω3 = ω,

Dω

Dt
= ν �ω , (4.25)

because in this special case the term (ω · grad v) is zero since ω is orthogonal to the
flow plane and thus to grad v. We note that Eq. (4.25) is analogous to that for heat
conduction, with the kinematic viscosity replacing the thermal diffusivity. We also
notice that Eq. (4.25) is satisfied for ω = 0, that is, for an irrotational flow. However,
that solution is inadequate. To understand why, we reason by analogy with the heat
equation, which also allows an identically zero solution. We know from the study of
heat flow, that any non-uniform distribution of temperature at the wall or non-zero
heat flux will generate a variable temperature field in the material. Thus the analogy
leads us to conclude that, in the case of a viscous fluid, the vorticity that is generated
at the walls will diffuse out by shear and then be carried away by the flow. The
creation of vorticity at the wall is the result of the shear stress on the wall. To obtain
the value of vorticity at the wall, we can resort to the classical method of Green’s
functions [101].
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4.4 Circulation Equation

In the context of the hypotheses introduced in the previous section, we prove that for
a material curve C(t), along which the circulation of the velocity vector is �(t), we
can write the following:

d�

dt
= −

∮
C(t)

ν(curl curl v) · dx . (4.26)

This relation expresses the fact that the variation of the circulation along the material
curve is due to the viscosity which dampens the motion.

To obtain (4.26), we must first prove that for a material curve C(t), we have the
following identity:

d�

dt
=

∮
C(t)

a · dx . (4.27)

For that purpose, we can write the equation

d�

dt
= d

dt

∮
C(t)

vi dxi = d

dt

∮
C0

Vi
∂xi
∂X j

dX j ,

inwhichC0 denotes thematerial curveC(t) at the instant t = t0 and Xi are the associ-
ated Lagrangian coordinates. Denoting by Ai and Vi the Lagrangian representations
of acceleration (1.22) and velocity (1.9), we have:

d

dt

∮
C0

Vi
∂xi
∂X j

dX j =
∮
C0

(
Ai

∂xi
∂X j

+ Vi
∂Vi

∂X j

)
dX j

=
∮
C(t)

aidxi +
∮
C0

∂

∂X j

(
ViVi

2

)
dX j .

The last term of the right-hand side of this equality is zero on a closed curve.
With relation (1.67), which we use in the motion equation (4.21), taking into

account the vector identity (4.20) and Eq. (1.74), we can write

a = −grad χ − 1

ρ
grad p + 2ν grad (div v) − ν curl curl v .

By the conservation of mass, it leads to

a = −grad
(
p

ρ
+ χ

)
− ν curl curl v . (4.28)

Inserting (4.28) in (4.27), we obtain (4.26).
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4.5 Vorticity Equation for a Perfect Fluid

For an incompressible, perfect (ν = 0) fluid, the vorticity dynamics equation (4.24)
becomes

Dω

Dt
= ω · grad v . (4.29)

In the two-dimensional case, ω is orthogonal to grad v and this relation reduces
to

Dω

Dt
= 0 . (4.30)

From Eq. (4.29), we deduce that, for a perfect incompressible fluid, if the flow is
irrotational at an instant, it remains so. In particular, an initially uniform flow will
remain irrotational afterwards.

In the case of a perfect fluid, Eq. (4.26) yields Kelvin’s theorem (cf. [71], Sect.
13.10)

Theorem 4.3 (Kelvin theorem) The circulation of the velocity along a closed mate-
rial line does not change, for an incompressible perfect fluid

d�

dt
= 0 . (4.31)

4.6 Bernoulli’s Equation

Bernoulli’s equation is obtained from the Navier–Stokes equation (1.74) written for
perfect fluids (μ = 0). Assume that the volume forces can be derived from a potential
(4.13), then

Dv

Dt
= − 1

ρ
∇ p − ∇χ . (4.32)

Using the vector identity

v · ∇v = ω × v + ∇
(v · v

2

)
, (4.33)

in the material derivative of the velocity, we obtain

∂v

∂t
= −ω × v − 1

ρ
∇ p − ∇

(
v2

2
+ χ

)
. (4.34)

Wealso assume that theflow is irrotational,ω = 0. This assumption is strong, because
real fluids produce rotational flows, such as those produced, for example, by the
viscous effects near a wall. Thus, Eq. (4.34) can now be written as
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∂v

∂t
= − 1

ρ
∇ p − ∇

(
v2

2
+ χ

)
. (4.35)

Since the flow is irrotational, the velocity field can be derived from a potential, �,
such that

v = ∇� . (4.36)

Applying the divergence to (4.36) shows that the potential satisfies aLaplace equation

�� = 0 . (4.37)

The Euler equation (4.35) yields

∇
(

∂�

∂t
+ v2

2
+ χ

)
= − 1

ρ
∇ p. (4.38)

As the left-hand side of (4.38) corresponds to the gradient of a scalar function, the
same must be the case for the right-hand side. Consequently, Eq. (4.38) becomes
with the assumption ρ = cnst

∇
(

∂�

∂t
+ v2

2
+ χ + p

ρ

)
= 0 . (4.39)

We integrate this equation to obtain the general form of Bernoulli’s equation:

∂�

∂t
+ p

ρ
+ v2

2
+ χ = C(t) . (4.40)

If theflow is stationary, then (4.40) yields the steady state formofBernoulli’s equation

p

ρ
+ v2

2
+ χ = C, (4.41)

which, as is suggested by the second term, is an integral of the energy. Therefore,
Bernoulli’s equation is a first integral of the Euler equation for the case of a stationary,
irrotational, perfect fluid.

4.7 Vorticity Production on a Solid Wall

The presence of a solid wall in a flow generates vorticity. An important fact to report
is the direct link between the viscous wall shear stress and the produced vorticity.
It is proposed in this section to establish certain properties of the effort exercised
by a viscous fluid on a fixed wall. To this end, we can show that for a viscous
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Fig. 4.3 Vorticity generated on a plane wall

incompressible fluid, considered in a point of the fixed wall, we have the following
properties:

• the normal component of the contact force is the pressure;
• the tangential component of the contact force is equal to the product of the dynamic
viscosity by the vorticity vector ω rotated by 90◦ in the plane tangent to the wall,
in the positive direction around the normal to this plane.

Let S be a plane wall, n the unit normal vector to S pointing to the outside of the
fluid. The system of Cartesian rectangular axes is chosen such that the axes x1, x2
are located in S and the normal n is oriented in the negative direction of the axis x3,
cf. Fig. 4.3.

The continuity equation expressed at the origin of the axes reads

∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
= 0 . (4.42)

As the components v1, v2 vanish on the wall, we obtain

∂v1

∂x1
= ∂v2

∂x2
= 0 . (4.43)

The relations (4.42) and (4.43) imply consequently
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∂v3

∂x3
= 0 . (4.44)

Taking these relations into account, we develop the velocity components in Taylor
series with respect to the normal direction to the wall. The dominating terms are

v1 = 0 + ∂v1

∂x3
|0 x3 + · · · , (4.45)

v2 = 0 + ∂v2

∂x3
|0 x3 + · · · (4.46)

v3 = 0 + 0 + ∂2v3

∂x23
|0 x23

2
+ · · · . (4.47)

It is then possible to evaluate the slope of the wall streamline (w.s.), i.e. the streamline
obtained when the distance to the wall goes to zero

dx2
dx1

|w.s.= tan θ = lim
x3→0

v2

v1
=

∂v2
∂x3

|0
∂v1
∂x3

|0
. (4.48)

In this relation θ is the angle at the origin of the axes between the wall streamline
and the x2 axis. This particular streamline is indeed in the wall as the angle that it
makes with the planes (x3, x1) and (x3, x2), that is the limits of the respective ratios
v3/v1 and v3/v2, vanish altogether.

Let us consider now the vorticity lines. On the wall at the origin of the axes, the
vorticity components are

ω1 |0 = ∂v3

∂x2
− ∂v2

∂x3
= −∂v2

∂x3
|0 ,

ω2 |0 = ∂v1

∂x3
− ∂v3

∂x1
= ∂v1

∂x3
|0 , (4.49)

ω3 |0 = ∂v2

∂x1
− ∂v1

∂x2
= 0 .

The normal component of the wall vorticity is zero. It results that the vorticity vector
is entirely located in the plane of thewall, where it is generated.We can also show that
the wall vorticity lines (v.l.) are always orthogonal to the wall streamlines. Indeed,
we have the relationship

dx2
dx1

|v.l.= ω2

ω1
=

∂v1
∂x3

|0
− ∂v2

∂x3
|0

= − 1
dx2
dx1

|w.s.
(4.50)

When moving away from the wall, vorticity lines and streamlines do not necessarily
remain orthogonal, especially in a three-dimensional flow.



104 4 Vorticity and Vortex Kinematics

Let us rotate the system of axes around the x3 axis in such a way that the angle θ

be zero. By (4.48), one has
∂v2

∂x3
|0= 0 . (4.51)

The viscous component of the contact force exerted on the wall by the fluid will
be denoted tv . We evaluate its value by the relations (4.43), (4.44), (4.51) and the
Cauchy theorem (1.53)

tv1 = n3σ13 = −μ
∂v1

∂x3
= −μω2 . (4.52)

The wall contact viscous force is thus tangential and directly proportional to the wall
vorticity. It is possible to generalize (4.52) for an arbitrary system of axes for a wall
that is not a plane, cf. Berker [14]. One obtains the relation

t = p n + μ(n × ω) . (4.53)

In the same way that the temperature of a wall gives no indication of the amount
of energy leaving it, the wall vorticity does not give information on the vorticity
intensity which goes in or out the flow. For the sake of comparison, the theory of
heat flow establishes that the heat flux through a plane of normal n is given by the
product n · q where q denotes the heat flux vector. By analogy,we define the diffusive
vorticity flux for a viscous incompressible fluid by the equation

ζ = − (∇ω) n

ζi = −n j
∂ωi

∂x j
. (4.54)

The wall value of ζi is computed from Eq. (4.6) and the momentum equation (1.74)
with no body force term

∂v

∂t
+ ∇(

v · v

2
+ p

ρ
) = −ω × v − ν curl ω . (4.55)

On a fixed wall the velocity v is zero and (4.55) yields

∇p = −μ curl ω . (4.56)

By (4.49), (4.54) and (4.56), one obtains

∂p

∂x1
= μ

∂ω2

∂x3
= μζ2, (4.57)

∂p

∂x2
= −μ

∂ω1

∂x3
= −μζ1. (4.58)
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We notice that it is necessary to have a pressure gradient along the wall to maintain
vorticity production inside the fluid.

The third component of the diffusive vorticity flux is computed by the property
∇ · ω = 0. One has

ζ3 = −n3
∂ω3

∂x3
= −(

∂ω1

∂x1
+ ∂ω2

∂x2
) . (4.59)

The necessary pressure gradient for the wall vorticity generation is produced at the
flow start-up as the term ρ ∂v/∂t is the only one during the first instants that can
be compensated by −∇ p, because the viscous part of the Navier–Stokes operator
comes into play on longer time scales, especially when the Reynolds number is large,
cf. Morton [61].

4.8 Flow Behind a Grid

Kovasznay [45] examines the steady state two-dimensional exact solution of the
Navier–Stokes equation for the laminar flow behind a periodic array of cylinders or
rods. The velocity field is assumed to be such that v1 = U + u1, v2 = u2, where U
is the mean velocity in the x1 direction. The vorticity equation (4.25) yields

∂ω3

∂t
+ (U + u1)

∂ω3

∂x1
+ u2

∂ω3

∂x2
= ν�ω3 . (4.60)

Denoting the grid spacing by δ, we define the Reynolds number as Re = δU/ν. The
dimensionless vorticity becomesω = ω3 δ/U . The other dimensionless variables are
x = x1/δ, y = x2/δ, τ = tU/δ, 1 + u = v1/U, v = v2/U . The governing equation
(4.60) becomes

∂ω

∂τ
+ (1 + u)

∂ω

∂x
+ v

∂ω

∂y
= 1

Re
�ω . (4.61)

As steady state solutions are sought, the term ∂ω/∂τ vanishes. We are left with

�ω − Re
∂ω

∂x
− Re

(
u

∂ω

∂x
+ v

∂ω

∂y

)
= 0 . (4.62)

To build up the analytical solution, the trick consists in finding an expression that
cancels the nonlinear term. The streamfunction is introduced to satisfy the continuity
equation

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (4.63)

and therefore the vorticity is
ω = −�ψ . (4.64)
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Taking the y periodicity into account, the streamfunction is set up such that

ψ = f (x) sin 2πy . (4.65)

With (4.65), the nonlinear term of (4.62) gives

f ′ f ′′ − f f ′′′ = 0 . (4.66)

Assuming that none of the derivatives vanish, we write

f ′′′

f ′′ = f ′

f
. (4.67)

Integrating (4.67) we obtain
f ′′ = k2 f , (4.68)

where k is a real or complex arbitrary constant. A further integration yields

f = Cekx . (4.69)

With the stream function
ψ = Cekx sin 2πy (4.70)

canceling the nonlinear term in (4.62), we have to seek a solution of the equation

�ω − Re
∂ω

∂x
= 0 . (4.71)

Setting
ω = g(x) sin 2πy , (4.72)

we have
g′′ − Re g′ − 4π2g = 0 , (4.73)

the solution of which is
g(x) = Aeλ1x + Beλ2x , (4.74)

where

λ1,2 = Re

2
±

√
Re2

4
+ 4π2 . (4.75)

Combining (4.72) and (4.74), the vorticity is

ω = (
Aeλ1x + Beλ2x

)
sin 2πy , (4.76)
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Fig. 4.4 Streamlines of the
Kovasznay flow for Re = 40
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while Eqs. (4.64) and (4.70) give

ω = C(4π2 − k2)ekx sin 2πy . (4.77)

Comparison of (4.76) and (4.77) shows that two solutions are possible

k = λ1, A = −Reλ1C, B = 0, (4.78)

k = λ2, A = 0, B = −Reλ2C . (4.79)

The constant C is obtained by fixing the stagnation point at x = 0 and therefore
C = −1/2π . The corresponding streamfunction is

ψ = y − 1

2π
eλ2x sin 2πy . (4.80)

With Re = 40 and the corresponding λ2, the streamlines are shown in Fig. 4.4,
with pairs of eddies generated behind the cylinders. The flow recovers uniformity
downstream through the exponential term of the solution.

As the Kovasznay flow incorporates the nonlinear term, it is a good benchmark
to test the numerical accuracy and space convergence of computational methods
integrating the Navier–Stokes equation.

4.9 Taylor–Green Vortex

Taylor and Green [104] proposed an idealized model of a three-dimensional vortex
field in order to test the dynamics of turbulence.

Orszag [66, 68] modified this model by shifting the origin of axis x3 by a factor
of 1

2π to obtain a two-dimensional initial velocity field that was simpler to handle
by spectral Fourier methods in a cubic box of period 2π . The velocity is given as
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v1 = cos x1 sin x2 cos x3
v2 = − sin x1 cos x2 cos x3 (4.81)

v3 = 0 .

The corresponding vorticity components are

ω1 = − sin x1 cos x2 sin x3
ω2 = − cos x1 sin x2 sin x3 (4.82)

ω3 = −2 cos x1 cos x2 cos x3 .

The initial streamlines are planar curves given by cos x1 cos x2 = const in planes
x3 = const . Nonetheless, the velocity that will develop at later times is fully three-
dimensional. The initial vortex lines are the curves

sin x1/ sin x2 = const, sin2 x1 cos x3 = const, (4.83)

so they are twisted and induce a velocity field able to stretch them. The Taylor–
Green vortex is perhaps the simplest example of self-induced vortex stretching by a
three-dimensional velocity field.

Orszag did not give any detail to obtain (4.83). Therefore, to compute the vorticity
lines, we will rely on a paper by Nore et al. [63], especially the appendix “Taylor–
Green Clebsch potentials”.

The Clebsch potentials allow to decompose the velocity field as follows

v = ∇ϕ + λ∇μ , (4.84)

i.e. in a potential part (first term of the r.h.s.) and a rotational part (second term of
r.h.s.). The rotational part is chosen to be a complex-lamellar field, that is a flow
where the velocity field is orthogonal to its own curl. Call it v(ω). The complex-
lamellar field may be considered as a potential if it is divided by an integration factor
λ such that

v(ω) = λ∇μ . (4.85)

The potential ϕ(x), λ(x), μ(x) are named Clebsch variables. Note that the decom-
position (4.84) is not unique.

Taking into account the identity∇ × (λ∇μ) = λ(∇ × ∇μ) + ∇λ × ∇μ, the vor-
ticity of the field (4.84) yields

ω = curl v(ω) = ∇λ × ∇μ . (4.86)

Geometrically speaking, the relation (4.86) shows that the surfaces of constant λ

and μ are material vorticity surfaces. As λ and μ both contain vortex lines, their
intersection describes the vortex lines. The potentials λ and μ must be invariants
under vorticity flow dynamics.
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Looking for a general invariant I, one must satisfy the transport equation

ω · ∇I = 0 or ω j
∂I
∂x j

= 0 . (4.87)

Carrying through the algebra and dividing by cos x1 cos x2 sin x3, one writes

tan x1
∂I
∂x1

+ tan x2
∂I
∂x2

+ 2
∂I
∂x3

tan x3
= 0 . (4.88)

This equation is solved by separation of variables. We divide (4.88) by I =
u(x1)v(x2)w(x3) to obtain the relation

tan x1
∂[ln u(x1)]

∂x1
+ tan x2

∂[ln v(x2)]
∂x2

+ 2
∂[lnw(x3)]/∂x3

tan x3
= 0 . (4.89)

Each term in (4.89) must be equal to a constant c1, c2, c3 such that

c1 + c2 + 2c3 = 0 . (4.90)

The first two terms of (4.89) are of the form

tan x1
∂[ln u(x1)]

∂x1
= c1 , (4.91)

with a general solution given by u(x1) = const (sin x1)c1 . The last term yields the
equation

∂[lnw(x3)]/∂x3
tan x3

= c3 , (4.92)

with the solution given by w(x3) = const (cos x3)−c3 .
Two independent solutions of (4.90) are c1 = 1, c2 = 0, c3 = −1/2 and c1 =

0, c2 = 1, c3 = −1/2. The Clebsch potentials are

λ = sin(x1)
√
cos(x3) (4.93)

μ = sin(x2)
√
cos(x3) , (4.94)

that give the vorticity lines (4.83).
Unlike the three-dimensional case that has no closed form solution, the two-

dimensional Taylor–Green vortex is amenable to an analytical solution

v1 = e−2νt sin x1 cos x2 ,

v2 = −e−2νt cos x1 sin x2 , (4.95)

p = −1

4
e−4νt (cos(2x1) + cos(2x2)) . (4.96)
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This solution is used in numerical fluid mechanics to check the accuracy and stability
of Navier–Stokes solvers.

Exercises

4.1 Compute the vorticity in the circular Couette flow and verify the Stokes theorem
(4.5).

4.2 By applying Bernoulli’s theorem for perfect fluids (4.41), show that the velocity
of a jet exiting an orifice in a wall at a distance h from the free surface of the fluid in
a container is

v = √
2gh . (4.97)

4.3 Hill’s Vortex
Hill’s vortex [38] in an incompressible fluid represents the limit case where the

vorticity is distributed in the volume inside a sphere of radius R. Outside the sphere
the flow is considered irrotational. For example this situation concerns the constant
velocity fall of a water drop in oil. The other limit case corresponds to filament
vorticity distribution.

The problem in spherical coordinates has the ω vorticity components

ωϕ = ωr sin θ

R
, ωr = ωθ = 0, ∀r ≤ R (4.98)

ω = 0 ∀r > R , (4.99)

with C a constant.
We assume the problem is axisymmetric with vϕ = 0.

• Evaluate the velocity components vr = f (r) cos θ and vθ = g(r) sin θ inside the
vortex.

• Obtain with the velocity potential the velocity components outside the spherical
vortex.

• Compute the streamfunction.

4.4 Simplified Vortex Study of the Draining of a Container
The physical situation concerns the draining of a container whose free surface

is located at the altitude z = 0 in a cylindrical coordinate system, with the z axis
oriented downwards. The fluid flow is axisymmetric, irrotational, incompressible
with radial and axial velocity components given respectively by

vr = −ar

2
, vz = az , (4.100)
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Fig. 4.5 Initial velocity
distribution of the vortex
sheet

x1

x2
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−U

with a a positive constant. We suppose that the flow is perturbed by the introduction
of a low amplitude vortex (draining vortex) of vorticity ω = ωz(r)ez .

• Verify that the unperturbed flow is incompressible.
• Show that the unperturbed flow is irrotational.
• Show that ωz verifies the steady state equation

a

2
ωzr

2 + νr
dωz

dr
= C , (4.101)

with C a constant.
• Show that the constant C in (4.101) vanishes by inspection of the ωz behavior on
short and long distances.

• Compute the solution for ωz(r).
• Highlight the existence of a characteristic distance δ which will be expressed with
the problem data.

• What is the physical meaning of δ?

4.5 Diffusion of a vortex sheet
At the initial time t = 0, a vortex sheet coinciding with the plane x2 = 0 of the

Cartesian coordinate system is given. This vortex sheet is a singularity that we will
ignore. On each side of the sheet, the velocity distribution is uniform and such that
(cf. Fig. 4.5)

v1(x2, 0) = U ∀x2 > 0

v1(x2, 0) = −U ∀x2 < 0 . (4.102)

The fluid is incompressible. The body forces are neglected. The pressure is uniform.
The flow is one-dimensional in the plane Ox1x2.
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Compute the time evolution of the vorticity resulting from the effects of viscous
diffusion. To this end, follow the next steps.

• Show that the dynamic vorticity equation reduces to

∂ω3

∂t
= ν

∂2ω3

∂x22
. (4.103)

• Introduce the dimensionless variables η = x2√
νt

, υ = U 2t
ν
. Assuming that the vor-

ticity may be written as ω3(x2, t) = f (η)g(υ), show that ω3 depends only on
η.

• Solve the f equation with the hypotheses that f (0) and f ′(0) have finite non zero
values.

• Describe qualitatively the time evolution of ω3.
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