
Chapter 3
Exact Solutions of the Navier–Stokes
Equations

In this chapter, we solve a few simple problems of fluid mechanics in order to
illustrate the fundamental concepts related to the flow of viscous incompressible
fluids. All solutions presented in this chapter are exact solutions of the full Navier
Stokes equations. The review article byRatipBerker [14] constitutes an inexhaustible
source of these solutions that cover awide spectrumof incompressible flows.Another
compilation of exact solutions is provided in the book by Drazin and Riley [28].

We first consider steady state plane flows: Couette, Poiseuille and the free sur-
face flow over an inclined plane. Further we treat steady state flows in cylindrical
geometry: Couette, Poiseuille and their combination in the helical flow between two
circular cylinders in relative rotation. Finally we solve unsteady plane and axisym-
metric problems, plane periodic flows and various pipe flows.

3.1 Plane Stationary Flows

Here, we examine some exact solutions of the Navier–Stokes equations for plane
stationary flows.

3.1.1 Plane Couette Flow

We consider the two-dimensional stationary flow of an incompressible viscous fluid
between parallel plates.

Figure 3.1 shows the flow domain. The lower boundary is fixed while the upper
boundary moves in its own plane at a given constant velocity U in the x1 direction.
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Fig. 3.1 Plane Couette flow

Since the flow is two-dimensional, the vector v reduces to two components, v =
(v1, v2, 0). We assume that the flow is developed, that is, the transient effects and
those from the upstream edges of the plates are negligible. This is a very strong
assumption and the subsequent solution is only due to this simplification. In reality
a uniform flow impinging on the plates will generate boundary layers where the
viscous effects are dominant and after some distance, the layers will merge into the
fully viscous solution.

With the previous hypotheses, we can have v1 as a function only of x2. The
incompressibility condition (1.73) becomes

∂v2

∂x2
= 0 (3.1)

indicating that v2 is not a function of x2; it is thus a function of x1. However, since
at the two boundaries v2 is zero for all x1, we conclude that v2 = 0 everywhere. We
write the two-dimensional Navier–Stokes equation (1.74) for the velocity component
v1 as

ρ(
∂v1

∂t
+ v1

∂v1

∂x1
+ v2

∂v1

∂x2
) = − ∂p

∂x1
+ μ�v1 + ρb1. (3.2)

As the gravitational force is oriented along the negative direction of the axis x2,
b1 = 0. In addition, the problem is stationary, thus ∂v1/∂t = 0. The term v1∂v1/∂x1
is zero as v1 = v1(x2). Finally v2∂v1/∂x2 is also zero since v2 = 0. We can assume
that the horizontal component of the pressure gradient is zero as the flow is forced
kinematically by the motion of the upper plate. We are left with

μ
d2v1

dx22
= 0 . (3.3)

Integrating (3.3) once, we obtain
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μ
dv1

dx2
= C . (3.4)

This relation shows that the shear stress is constant across the height of the channel.
Integrating again leads to

v1 = Ax2 + B. (3.5)

The adherence boundary conditions

v1(x2 = 0) = 0, v1(x2 = h) = U (3.6)

permit us to determine the integration constants; we obtain a linear velocity profile

v1 = Ux2
h

. (3.7)

The shear stress component (1.67) obtained with (3.7) is a constant

σ12 = μ
dv1

dx2
= μ

U

h
. (3.8)

If we examine the second Navier–Stokes equation, in direction x2, we have

0 = − ∂p

∂x2
− ρg, (3.9)

with g the gravitational acceleration. Integrating this relation and taking into account
the independence of p with respect to x1, leads to

p = −ρgx2 + C. (3.10)

As the pressure in an incompressible fluid is only known to an arbitrary constant,
we choose it by imposing p(x2 = h) = 0 which yields C = ρgh. The pressure is in
hydrostatic equilibrium

p = ρg(h − x2) . (3.11)

3.1.2 Plane Poiseuille Flow

Consider the two-dimensional stationary flow of a viscous incompressible fluid in
a channel formed by two fixed walls. Figure 3.2 shows the geometric configuration
of the domain. In this case, a longitudinal pressure gradient, along direction x1,
is established. We assume that the flow is developed and that the fluid particles
move on paths parallel to the walls. Reasoning as for Couette flow, we can write
v1 = v1(x2), v2 = 0.
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Fig. 3.2 Plane Poiseuille flow

The dynamic equation for velocity v1 is relation (1.74), which for Poiseuille flow
reduces to

0 = − ∂p

∂x1
+ μ

∂2v1

∂x22
. (3.12)

As for Couette flow, the pressure in the vertical direction is in hydrostatic equilibrium

0 = − ∂p

∂x2
− ρg . (3.13)

Integrating this relation, we obtain

p = −ρgx2 + P(x1) . (3.14)

The integration factor, P(x1), is the pressure on the lower wall, for x2 = 0. The
pressure gradient in direction x1 can be written as

∂p

∂x1
= dP

dx1
, (3.15)

as it is a function only of x1. Equation (3.12) yields

d2v1

dx22
= 1

μ

dP

dx1
= C. (3.16)

We note that the first term is a function of x2 while the second is a function of x1. It
follows that these two terms must be equal to the same constant C . The integration
of (3.16) gives us

v1 = 1

μ

dP

dx1

x22
2

+ Ax2 + B. (3.17)
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Imposing the boundary conditions

v1(x2 = 0) = v1(x2 = h) = 0, (3.18)

yields the parabolic Poiseuille velocity profile

v1 = − h2

2μ

dP

dx1

x2
h

(1 − x2
h

). (3.19)

As the pressure in the channel diminishes linearly with distance x1, dP/dx1 < 0,
and the flow is in the positive x1 direction.

The shear stress component obtained from (3.19) is

σ12 = μ
dv1

dx2
= −h

2

dP

dx1
(1 − 2x2

h
) . (3.20)

We note that the shear (3.20) is zero on the symmetry axis of the channel, x2 = h/2,
and the absolute value is at a maximum on both walls.

We can calculate the volume flux or flow rate through the section S of the channel.
The general definition of the volume flux is given by the relation

Q =
∫
S
v · n dS . (3.21)

Considering a unit surface in direction x3, the flow rate in the two-dimensional
channel is written

Q =
∫ h

0
v1 dx2 = − h3

12μ

dP

dx1
= h3

12μ

�p

L
, (3.22)

with �P the pressure difference observed at two points with the same ordinate,
x2, separated by a distance L in direction x1. We define the average velocity by
Q = vavg h, from which we have

vavg = h2

12μ

�P

L
. (3.23)

As the maximum velocity, vmax , is attained on the axis of symmetry of the channel,
at x2/h = 1/2, it follows that

vmax = h2

8μ

�P

L
(3.24)

and, consequently

vavg = 2

3
vmax . (3.25)
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In the case where the two-dimensional channel is replaced by a pipe with circular
section (see Sect. 3.2.2), we obtain the average velocity equal to half the maximum
velocity. This shows that the zone of high velocity constitutes a smaller fraction of
the section.

Another way of solving the plane Poiseuille flow consists in moving the origin
of the coordinate axes to mid-channel height and locate the two channel planes at
x2 = ±h. The governing equation is still (3.12) with the solution given by (3.17).
Now the boundary conditions are

v1(x2 = ±h) = 0 . (3.26)

It is left as an exercise to the reader to perform the algebra. Setting −dP/dx1 = G,
one gets the parabolic profile

v1 = G

2μ

(
h2 − x22

) = Gh2

2μ

(
1 − x22

h2

)
, (3.27)

which will be useful in the pipe flow section.

3.1.3 Flow of an Incompressible Fluid on an Inclined Plane

We have a stationary, two-dimensional flow of a viscous Newtonian fluid on a plane
inclined at angle α to the vertical (Fig. 3.3). The thickness of the fluid layer is
uniform and equal to h. At the free surface, the fluid is in contact with ambient air
which we consider to be a perfect fluid at atmospheric pressure pa . We assume that
the flow in the air does not affect the flow of the viscous fluid. The flow is parallel
because the trajectories of the fluid particles are parallel to the inclined plane. Then,
v = (v1, 0, 0). From incompressibility we obtain

∂v1

∂x1
= 0, (3.28)

therefore we deduce that v1 = v1(x2). The only components of the stress tensor are
σ12 or σ21. As the pressure is uniform at the free surface, the pressure in the viscous
fluid can not depend on direction x1, but only on x2.

From the motion equation (1.58), written in direction x1, it follows that

∂σ12

∂x2
+ ρb1 = ∂σ12

∂x2
+ ρg cosα = 0 . (3.29)

Integrating this relation, we have

σ12 = −ρg x2 cosα + C . (3.30)
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Fig. 3.3 Flow on an inclined
plane
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At the free surface, x2 = h, the shear stress should be zero. We obtain

σ12 = ρg cosα(h − x2) . (3.31)

As σ12 = μ dv1/dx2, we can evaluate the component v1 by integratingwith respect to
x2, taking into account the boundary condition v1(x2 = 0) = 0. The velocity profile
is given by the relation

v1 = ρg cosα

2μ
x2(2h − x2) . (3.32)

The Navier–Stokes equation for direction x2 yields the relation

− ∂p

∂x2
+ ρb2 = − ∂p

∂x2
− ρg sin α = 0 . (3.33)

Integratingwith respect to x2 and taking into account the condition on the free surface
p(x2 = h) = pa , we can write

p = pa − (ρ g sin α)(x2 − h) . (3.34)

The flow rate per unit length in direction x3 is obtained from

Q =
∫ h

0
v1 dx2 = ρg cosα h3

2μ
. (3.35)
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3.2 Axisymmetric Stationary Flows

In this section, we consider exact solutions of the Navier–Stokes equations for sta-
tionary flows in axisymmetric geometries of revolution. We integrate the Navier–
Stokes equations expressed in a cylindrical coordinate system. The vector velocity
has components vr , vθ , and vz which we call the radial, azimuthal, and axial veloci-
ties, respectively.

3.2.1 Circular Couette Flow

Consider the stationary flow of an incompressible viscous Newtonian fluid between
two concentric cylinders supposed to be of infinite axial length.We denote by R1 and
R2 the radii of the internal and external cylinders, respectively, and ω1 and ω2 their
respective rates of angular rotation, as shown in Fig. 3.4. We want to calculate the
azimuthal velocity vθ . This flow is known by the name of circular Couette flow. We
neglect the effects of the volume forces. The flow has no axial velocity since there is
no pressure gradient in that direction. In addition, due to the symmetry of revolution, it
also does not dependon the azimuthal coordinate, thus ∂(•)/∂θ = 0.The twovelocity
components vr and vθ , stationary, thus independent of time, are functions uniquely
of the radial coordinate, r , so vr = vr (r) and vθ = vθ (r). Applying adherence to the
wall, the boundary conditions are

vr (R1) = vr (R2) = 0, vθ (R1) = ω1R1, vθ (R2) = ω2R2 . (3.36)

With these assumptions about the velocity profile, the continuity Eq. (A.20) becomes

1

r

d

dr
(r vr ) = 0 . (3.37)

Taking into account the condition (3.36) that vr is zero at the boundaries, the
solution is

vr = 0 . (3.38)

In this case the Navier–Stokes equations (A.21)–(A.22) reduce to

∂p

∂r
= ρ

v2
θ

r
, (3.39)

1

r

∂

∂r

(
r
∂vθ

∂r

)
− vθ

r2
= 0 . (3.40)
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Fig. 3.4 Circular Couette
flow
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The solution for the component vθ is in the form

vθ =
n=+∞∑
n=−∞

anr
n .

Plugging this series into (3.40), we easily find that n = ±1. Imposing the boundary
conditions leads to

vθ = Ar + B

r
= ω2R2

2 − ω1R2
1

R2
2 − R2

1

r − (ω2 − ω1)R2
1R

2
2

R2
2 − R2

1

1

r
(3.41)

after solving for the constants A and B. The first term on the right-hand side corre-
sponds to rotation of all the fluid around the central axis. Ifω1 = ω2 = ω, the velocity
becomes vθ = ωr , which shows that the fluid rotates as a rigid body around the axis.
The second term on the right-hand side corresponds to a deformation of the particles
over time. If R2 → ∞ and ω2 = 0, then we have the case of a cylinder in an infinite
fluid. The velocity vθ = ω1R2

1/r gives circular streamlines around the cylinder, and
the velocity distribution is irrotational, that is, curl v = 0.

The pressure in the Couette flow is computed from Eq. (3.39). After integration,
we obtain

p(r)

ρ
= p(R1)

ρ
+ (R2

2ω2 − R2
1ω1)

2

(R2
2 − R2

1)
2

r2 − R2
1

2
− R4

1R
4
2(ω2 − ω1)

2

2(R2
2 − R2

1)
2

(
1

r2
− 1

R2
1

)

+ 2(R2
2ω2 − R2

1ω1)R2
1R

2
2(ω1 − ω2)

(R2
2 − R2

1)
2

ln

(
r

R1

)
. (3.42)
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A tangential shear stress σθr acts on a surface element with a radial normal, which
is expressed by (A.5)

σθr = μ

(
∂vθ

∂r
− vθ

r
+ 1

r

∂vr

∂θ

)
= μ

(
∂vθ

∂r
− vθ

r

)
= μ r

∂

∂r

(vθ

r

)
. (3.43)

Combining (3.41) and (3.43), we obtain

σθr = −2Bμ

r2
. (3.44)

Next we calculate the viscous moment, M , that acts on the interior cylinder per unit
axial length. This moment is equal to the component σθr evaluated at r = R1 and the
area, 2πR1, on which this stress acts, multiplied by the lever arm, R1, the distance
between the axis and the point where the force acts. We have

M = −2πR2
1
2Bμ

R2
1

= 4πμ
(ω2 − ω1)R2

1R
2
2

R2
2 − R2

1

. (3.45)

This last relation indicates that we can measure the viscosityμ of a fluid in a Couette
viscometer where the drive motor imposes a torque on one of the cylinders and we
measure the resulting rotation speed of the other one.

3.2.2 Circular Poiseuille Flow in a Cylindrical Pipe

Poiseuille flow in a circular pipe with radius R is subject to the action of an imposed
pressure gradient in direction z (Fig. 3.5). The flow is stationary. From the Navier–
Stokes equations in cylindrical coordinates, we show first that the only non-zero
component of the velocity is vz .

L

R

z

Fig. 3.5 Circular Poiseuille flow in a cylindrical pipe
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Given the hypotheses of axial symmetry and stationary flow, vθ = 0 and the only
two components of velocity, vr and vz , are functions only of r . The continuity Eq.
(A.20) is then

1

r

∂

∂r
(r vr ) = 0 . (3.46)

Integration yields

rvr = f (z) .

But, since vr = 0 at the wall, r = R, we conclude that f (z) = 0 and thus that vr is
zero everywhere in the flow. The Navier–Stokes equation for the radial component
of velocity (A.21) reduces to ∂p/∂r = 0. The pressure depends only on z and not on
r . The equation for the velocity component vz (A.23) yields

−dp

dz
+ μ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r

)
= 0

or

dp

dz
= μ

r

d

dr

(
r
dvz

dr

)
.

The left-hand side term only depends on z; on the right-hand side there is only
dependence on r . Thus the two terms must be equal to a constant. Integrating, we
obtain

vz =
(
dp

dz

)
1

μ

(
r2

4
+ A ln r + B

)
.

The velocitymust be finite on the axis r = 0. This leads to A ≡ 0. Taking into account
the condition vz(R) = 0, we have

vz = −
(
dp

dz

)
R2

4μ

(
1 −

( r

R

)2
)

= GR2

4μ

(
1 − r2

R2

)
, (3.47)

with the definition dp/dz = −G. In Poiseuille flow, the velocity profile is parabolic.
The maximum velocity at the center is

vmax = −
(
dp

dz

)
R2

4μ
. (3.48)

Therefore the parabolic profile may be written
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vz = vmax

(
1 − r2

R2

)
. (3.49)

The flow rate is obtained by integration over the section of the pipe. We have

Q = 2π
∫ R

0
vz(r) r dr = −

(
dp

dz

)
πR4

8μ
= πR2vmax

2
. (3.50)

The average, or flux, velocity obtained from the flux divided by the area of the section
S is

vavg = Q

S
= vmax

2
. (3.51)

The maximum velocity is thus equal to twice the average velocity. The shear stress
at the cylinder wall, which we denote τw, is given by the component σzr evaluated
at r = R

τw = −μ
dvz

dr
|r=R= −

(
dp

dz

)
R

2
= 2μvmax

R
= 4μvavg

R
. (3.52)

The sign change between τw and σzr comes from the fact that τw represents the shear
force exercised on the wall by the fluid. The friction coefficient is defined by the ratio
of the stress at the wall to the average dynamic pressure

C f = τw

ρv2avg

2

= 8μ

ρRvavg
= 8ν

Rvavg
= 16

ReD
, (3.53)

with ReD being the Reynolds number based on the average velocity and the diameter
of the section. It is common to define the head loss coefficient λ by the relation

−
(
dp

dz

)
= ρv2

avg

2

λ

D
. (3.54)

Thus it follows that

λ = 4C f = 64

ReD
. (3.55)

3.2.3 Helical Flow Between Two Circular Cylinders in
Relative Motion

From the geometry point of view, this flow occurs in a configuration similar to the
circular Couette flow in Fig. 3.4, with the same notation R1 and R2 for the radii
and ω1, ω2 for the angular rates of rotation. Furthermore the viscous fluid between
the cylinders is subjected to an axial pressure gradient. As the flow is steady-state,
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∂/∂t = 0, and axisymmetric, ∂/∂θ = 0, the velocity profile is a function of r only.
One has

vr = vr (r), vθ = vθ (r), vz = vz(r), p = p(r, z) . (3.56)

With the fluid adherence to the wall, the boundary conditions are

vr (R1) = vr (R2) = 0, vθ (R1) = ω1R1, vθ (R2) = ω2R2,

vz(R1) = vz(R2) = 0 . (3.57)

Similarly to the Couette flow solution, it is easy to show that the vr component is
zero everywhere. The Navier–Stokes equations (A.21)–(A.23) become

1

ρ

∂p

∂r
= v2

θ

r
, (3.58)

1

r

∂

∂r

(
r
∂vθ

∂r

)
− v2

θ

r
= 0 , (3.59)

−∂p

∂z
+ μ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r

)
= 0. (3.60)

The Couette solution (3.41) remains valid. Equation (3.58) yields

p = ρ

∫ r

R1

v2
θ

r ′ dr
′ + f (z) , (3.61)

where vθ is the Couette profile and f (z) is an indeterminate function of z. Introducing
(3.61) in (3.60), one gets

− d f

dz
+ μ

1

r

d

dr

(
r
dvz

dr

)
= 0 . (3.62)

The solutions are obtained taking the boundary conditions (3.57) into account

f (z) = −Az + B , (3.63)

vz(r) = A

4μ

[
−r2 + R2

2 − R2
1

ln(R2/R1)
ln r + R2

1 ln R2 − R2
2 ln R1

ln(R2/R1)

]
. (3.64)

The pressure field is given by

p(r, z) = ρ

∫ r

R1

v2
θ

r ′ dr
′ − Az + B. (3.65)

The pressure is known up to a constant B, which will give the reference pressure;
the pressure gradient −A acts in the direction of the axis and finally, the first term
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of the right hand side member of (3.65) equilibrates the centrifugal forces of the
rotating fluid. Note that the axial velocity is independent of the rotation speed of the
cylinders, while the azimuthal velocity vθ is independent of the pressure gradient.

3.3 Plane Transient Flows

Let us now turn our attention to plane flows that depend on time. This situation
leads to partial differential equations with independent variables of space and time.
In order to arrive at an analytic solution of the problem, we use a change of variables
to obtain an ordinary differential equation that is easier to solve.

3.3.1 Transient Flow in a Semi-infinite Space

An incompressible Newtonian viscous fluid occupies a half space (x2 ≥ 0), and is at
rest for t < 0 (Fig. 3.6). At time t = 0, the rigid plane which limits the half space is
instantaneously set into motion at the constant velocity U in the positive direction
of axis x1. The motion is two-dimensional such that v3 = 0.

The boundary and initial conditions are given by

t < 0, v1 = v2 = 0, ∀x1, x2 (3.66)

t ≥ 0, v1 = U, v2 = 0, for x2 = 0, (3.67)

v1 = v2 = 0, for x2 → ∞. (3.68)

We assume that v1 and v2 are functions of x2 and t

v1 = v1(x2, t), v2 = v2(x2, t) , (3.69)

and that the pressure p is a functiononlyof x2 (there is nohorizontal pressure gradient;
the flow is generated entirely by the motion of the moving wall). The conservation
of mass becomes

∂v2(x2, t)

∂x2
= 0 . (3.70)

Fig. 3.6 Unsteady flow in
an infinite half space

U(t≥0) x1

x2
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The component v2 only depends on time, and with conditions (3.67) and (3.68), it is
identically zero for all t . The Navier–Stokes equations become

ρ
∂v1

∂t
= μ

∂2v1

∂x22
, (3.71)

∂p

∂x2
= 0 . (3.72)

The pressure p is constant.
We can, if we wish, include the effect of gravity in the pressure calculation, by

writing
∂p

∂x2
= −ρgx2 . (3.73)

Integration of this relation leads to the calculation of the hydrostatic pressure, where
the pressure at a point is equal to the weight of the column of fluid located above
that position. The hydrostatic pressure, as its name suggests, does not participate in
the dynamics of the flow.

The motion equation (3.71) is a diffusion equation, of the same type as the “heat
equation”. We can transform this partial differential equation into an ordinary dif-
ferential equation with a variable change that we obtain from dimensional analysis
(cf. Sect. 2.5). Since the problem has no spatial scale other than the variable x2 nor
time scale other than that of t itself, we combine them to form the non-dimensional
group (compare with Eq. (2.36))

η = x2
2
√

νt
. (3.74)

This permits us to obtain an ordinary differential equation for which the solution is
a function of η. It is called a self-similar solution because the velocity profile with
respect to the variable x2 is similar for all times t .

Setting
v1 = U f (η) , (3.75)

relation (3.71) becomes
f ′′ + 2η f ′ = 0 , (3.76)

with conditions
η = 0, f = 1; η → ∞, f = 0 . (3.77)

Integrating (3.76), we obtain

f = A
∫ η

0
e−η′2

dη′ + B . (3.78)
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Taking into account conditions (3.77), we have for η = 0, B = 1 and for η = ∞,
A = −2/

√
π where we introduced the error function erf(x) defined by Abramowitz

and Stegun [1]

erf (x) = 2√
π

∫ x

0
e−τ 2

dτ , (3.79)

such that erf(∞) = 1. Then
f = 1 − erf η , (3.80)

and from (3.75) the velocity of the fluid for t > 0 is

v1 = U [1 − erf(
x2

2
√

νt
)] . (3.81)

The velocity profile v1/U as a function of η is shown in Fig. 3.7. For a fixed value
of t , the variable η is proportional to x2. Then, we can deduce the velocity profile
at every instant as a function of the distance from the wall. An interesting question
is to know the depth of penetration of the wall motion into the semi-infinite space.
More precisely, for a given t , what is the distance at which the velocity attains, for
example, one per cent of the value ofU? Examining the function erf, 1 − erf has the
value 0.01 for η ∼ 2. Defined as such, the penetration depth δ is given by

ηδ = δ

2
√

νt
� 2, δ � 4

√
νt , (3.82)

which is proportional to the square root of the kinematic viscosity and time. If the
viscosity is very small, the fluid “sticks” less to the wall and it has a weak effect. If
t tends to infinity, the velocity at every point in the half space goes to U .

3.3.2 Flow on an Oscillating Plane

Consider the flow produced by the periodic horizontal oscillation of a plate in its
own plane (Fig. 3.8).

Equation (3.71) still applies, and we must solve it with the boundary conditions

v1 = U cosωt for x2 = 0 . (3.83)

After the initial transient phenomena, the fluid velocity gradually becomes a periodic
function of time at the same frequency as the plate oscillation. Here we examine this
periodic regime. Assume that solution v1 is of the form

v1 = � (
eiωt f (x2)

)
, (3.84)
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Fig. 3.7 Transient flow in an infinite half space
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Fig. 3.8 Unsteady flow on an oscillating plane

where�means the real part of a complex expression. The combination of (3.71) and
(3.84) yields

iω f = ν
d2 f

dx22
.

Recall that i1/2 = eiπ/4; then the only solution that remains finite as x2 → ∞ is

f = A exp
(−(1 + i)(ω/2ν)1/2x2

)
.

The imposition of the boundary condition (3.83) leads to A = U and the solution
becomes

v1 = U exp
(−(ω/2ν)1/2x2

)
cos

(
ωt − (ω/2ν)1/2x2

)
. (3.85)

The velocity profile is a damped harmonic oscillation of amplitude Ue−x2
√

ω/2ν in
a fluid where a layer at distance x2 has a phase lag of x2

√
ω/2ν with respect to

the motion at the wall. Two layers of fluid separated by the distance 2π(2ν/ω)1/2
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oscillate in phase. This distance constitutes an estimation of the length of the motion
and is called the viscous wave penetration depth. That it increases with viscosity
and decreases with frequency is not surprising: if we slowly oscillate a flat plate in
a sticky fluid, we expect to drag large masses of fluid along with the plate; on the
other hand, if we move the plate rapidly in a fluid of low viscosity, we expect the
fluid essentially to ignore the plate, except in a thin boundary layer.

3.3.3 Channel Flow with a Pulsatile Pressure Gradient

Blood flow in the vascular tree is driven by the pulsating pressure gradient produced
by the heart that is acting as a pump. In order to avoid (temporarily) the geometrical
complexity of cylindrical coordinates of blood flow in the arteries, we will tackle a
simplified version of the problem, namely the plane channel flow under an oscillating
pressure gradient.

Recall that the standard plane Poiseuille flow as shown in Fig. 3.2 with a steady
constant pressure gradient denoted by G gives rise to a parabolic velocity profile.
Let us add now an oscillating component characterized by the pulsation ω such that

− 1

ρ

∂p

∂x1
= −G − C cosωt , (3.86)

withC a constant obtained from experimental data, for example. For the sake of sim-
plicity in the analytical treatment, it is customary to resort to Fourier representation
and use the relation

− 1

ρ

∂p

∂x1
= −G − �(Ceiωt ) . (3.87)

As the steady state oscillating solution is sought for the velocity field, the solution is
written as a complex function

v1 = vP + � (
u(ω, x2)e

iωt
)

. (3.88)

where the Poiseuille solution vP given by Eq. (3.27) corresponds to the constant
pressure gradient.

The Navier–Stokes equations lead to the relation

∂v1

∂t
= − 1

ρ

∂p

∂x1
+ ν

∂2v1

∂x22
. (3.89)

With Eqs. (3.87) and (3.88), Eq. (3.89) gives

iω u = −C + ν
∂2u

∂x22
. (3.90)
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The boundary conditions are

u(h) = 0,
∂u

∂x2
(0) = 0 . (3.91)

The solution of (3.90) is

u = �
⎡
⎣ iC

ω

⎛
⎝1 −

cosh
√

iω
ν
x2

cosh
√

iω
ν
h

⎞
⎠

⎤
⎦ . (3.92)

Taking the relation i1/2 = (1 + i)/
√
2 into account, the real part of (3.92) yields the

velocity field

v1 = vP − C

ω

[(
1 − f1(ω, x2)

f3(kh)

)
sinωt − f2(ω, x2)

f3(kh)
cosωt

]
, (3.93)

where the various notations are defined as follows

k =
√

ω

2ν
,

cc(x) = cos(x) cosh(x) ,

ss(x) = sin(x) sinh(x) ,

f1(ω, x2) = cc(kx2)cc(kh) + ss(kx2)ss(kh) , (3.94)

f2(ω, x2) = cc(kx2)ss(kh) − ss(kx2)cc(kh) ,

f3(ω) = cc2(x) + ss2(x) .

With ω = 1, in Fig. 3.9, the left part represents the flow for a low frequency case or
when the viscous forces are important, i.e. hk 
 1,whereas the right part corresponds
to high frequency forcing or to a fluid with very low viscosity. The low frequency
solution may be obtained by taking the limit of Eq. (3.93) when k → 0. In that limit,
cc(x) → 1, ss(x) → x2 and therefore, one has

v1 = vP + Ch2

2ν
cosωt

(
1 − (

x2
h

)2
)

, (3.95)

such that the pulsating term is still a parabola with a modified amplitude. The high
frequency case or the equivalent inviscid fluid may be treated with the limit hk � 1.
Then cc(x) → 1

2e
x cos x and ss(x) → 1

2e
x sin x . The limit solution reads

v1 = vP − C

ω

(
sinωt − sin(ωt − η)e−η

)
, (3.96)

where the new variable η is defined as
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Fig. 3.9 Pulsating velocity field with ω = 1; left: k = 1/
√
2; right: k = 5/

√
2

η = k(h − x2) = h − x2√
2ν/ω

. (3.97)

Note that the first term of the oscillating part is the response of the inviscid fluid
(ν = 0) to the pressure gradient.

3.4 Axisymmetric Transient Flows

This section treats time dependent flows. The first case is the starting process from
rest in a circular Poiseuille flow when the pressure gradient is applied at the initial
time. The second example is the pulsating flow in a circular rigid pipe which is
somehow connected to blood flow simulation.

3.4.1 Starting Transient Poiseuille Flow

We examine the transient flow in a circular pipe where the fluid starts from rest to
reach the Poiseuille steady parabolic profile (3.47). The only non vanishing velocity
component is vz and the pressure gradient goes instantaneously at t = 0 from zero
to the value −G everywhere. The dynamic equation is from (A.23)

G + μ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r

)
= ρ

∂vz

∂t
, (3.98)

with the initial condition

vz(r, 0) = 0, 0 ≤ r ≤ R , (3.99)

and the boundary condition
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vz(R, t) = 0,∀t . (3.100)

In order to render (3.98) homogeneous, let us change variables

w(r, t) = G

4μ

(
R2 − r2

) − vz(r, t) . (3.101)

The new variable will be solution of the equation

∂2w

∂r2
+ 1

r

∂w

∂r
= 1

ν

∂w

∂t
, (3.102)

with the initial condition

w(r, 0) = G

4μ

(
R2 − r2

)
, (3.103)

and the boundary condition
w(R, t) = 0, ∀t . (3.104)

Through the transient phase, the velocity vz will increase till the steady state (3.47)
is reached, whereas the transient perturbation w(r, t) will decay to zero. To solve
(3.102), we proceed by separation of variables

w(r, t) = f (r)g(t) . (3.105)

Substituting in (3.102), one gets

dg(t)

dt
+ Cν g(t) = 0 , (3.106)

d2 f

dr2
+ 1

r

d f

dr
+ C f = 0 , (3.107)

where C is an arbitrary constant. The solution of (3.106) reads

g(t) = B exp(−Cνt) . (3.108)

Asw(r, t) decreases with respect to time, we assume thatC will involve only positive
values so thatC can be written λ2/R2. This notation will ease the next computations,
as we will observe. Equation (3.107) then becomes

d2 f

dr2
+ 1

r

d f

dr
+ λ2

R2
f = 0 . (3.109)

The change of variable λr/R = z leads (3.109) to the canonical form of the Bessel
equation (C.1) whose general solution is given by Eq. (C.2) with the Bessel functions
Jk and Yk . Consequently, the solution of (3.109) is
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f = C1 J0(
λr

R
) + C2Y0(

λr

R
) . (3.110)

As Y0 goes to −∞ when r → 0, one concludes that C2 ≡ 0 for w to remain finite
on the axis. The general solution of (3.102) becomes

w(r, t) = C3 J0(
λr

R
) exp(− λ2

R2
νt) . (3.111)

The solution (3.111) verifies condition (3.104) for λ values, denoted λn , given by the
zeroes of the Bessel function J0

J0(λn) = 0 . (3.112)

The solution is obtained as

w(r, t) = G

4μ

∞∑
n=1

cn J0(
λnr

R
) exp(− λ2

n

R2
νt), (3.113)

and the coefficients cn are determined by (3.103):

R2 − r2 =
∞∑
n=1

cn J0(
λnr

R
) . (3.114)

To solve Eq. (3.114), let us recall the orthogonality properties of Bessel functions as
expressed by Lommel integrals

∫ 1

0
z Jn(λi z)Jn(λ j z)dz = 0, λi �= λ j , (3.115)

∫ 1

0
z J 2

n (λi z)dz = 1

2
[J ′

n(λi )]2 . (3.116)

Solution of (3.114) is obtained with z = r/R as

cn = 2R2

[J ′
0(λn)]2

∫ 1

0
(1 − z2)z J0(λnz)dz . (3.117)

The evaluation of the two integrals in (3.117) is carried out using successively the
recurrence relationships (C.4) and then (C.3) with � = 2,m = 0. This yields
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Fig. 3.10 Transient
Poiseuille flow in a circular
pipe
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∫ 1

0
z J0(λnz)dz = 1

λn
J1(λn) , (3.118)

∫ 1

0
z3 J0(λnz)dz = 1

λ4
n

[
λ3
n J1(λn) + 2λ2

n J0(λn) − 4λn J1(λn)
]

, (3.119)

= 1

λn
J1(λn) − 4

λ3
n

J1(λn) .

One finds with the help of the relation [J ′
0(λn)]2 = [J1(λn)]2: (cf. (C.5) for m = 0)

cn = 8R2

λ3
n J1(λn)

. (3.120)

Taking Eqs. (3.101), (3.113) and (3.120) into account, the velocity profile is

vz(r, t) = G

4μ

(
R2 − r2

) − 2GR2

μ

∞∑
n=1

J0(
λnr
R )

λ3
n J1(λn)

exp(− λ2
n

R2
νt) . (3.121)

Figure 3.10 shows the velocity variation with respect to time.

3.4.2 Pulsating Flow in a Circular Pipe

Let us consider the Poiseuille flow in a circular pipe subject to the action of an
oscillating pressure gradient. This problem has been analyzed by Uchida [112] and
Womersley [122] and constitutes a modeling of the blood flow in a rigid artery, an
assumption far from physiological phenomena as arterial walls deform and move
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under pressure waves [6, 127]. As the cardiac cycle is time-periodic, the pressure
gradient can be represented by a Fourier series (a dozen of modes are sufficient)

∂p

∂z
=

∞∑
k=0

cke
ikωt . (3.122)

The continuous component c0 corresponds to the time average of the pressure gra-
dient and produces the Poiseuille profile (3.47). In (3.122), ω is the signal frequency
such that ω = 2π/T , with T the period of the phenomenon. The pressure gradi-
ent corresponds to the real part of the complex representation. The flow governing
equation is obtained from (A.23)

− ∂p

∂z
+ μ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r

)
= ρ

∂vz

∂t ,
(3.123)

and the solution is sought in terms of the Fourier series

vz(r, t) =
∞∑
k=0

ŵk(r) e
ikωt . (3.124)

Inserting (3.124) in (3.123), one gets

d2ŵk

dr2
+ 1

r

dŵk

dr
− iωk

ν
ŵk = ck

μ
. (3.125)

The boundary conditions are

dŵk

dr
|r=0= 0, ŵk |r=R= 0 . (3.126)

The particular solution of (3.125) is quickly found as − iωk
ν

ŵk = ck
μ
.

Introducing the dimensionless variable z = r/R, the homogeneous equation
becomes

d2ŵk

dz2
+ 1

z

dŵk

dz
− i R2ωk

ν
ŵk = 0 , (3.127)

whose solution is given by

ŵkh = C1 J0(α
√
kz i3/2) + C2Y0(α

√
kz i3/2) , (3.128)

where the quantity α is the dimensionless Womersley number

α = R

√
ω

ν
. (3.129)
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The Womersley number is the ratio of the radius to the penetration depth and
is a characteristic feature of pulsatile blood flow. Typical values of α in the aorta
range from 20 for a human in good health to 8 for a cat. Another way of interpreting
the Womersley number consists in estimating the distance from the rigid wall, say
δ, where the viscous forces and the inertia are of equal magnitude. Near the wall,
viscosity is dominant and a rough estimate of the viscous forces is μU/δ2. Near the
symmetry axis, inertia dominates and yields the estimate ρωU . Equating the two
forces leads to the definition

δ2 = ν

ω
. (3.130)

Therefore

α = R

δ
. (3.131)

If α is large, the viscous effects are confined to a region very close to the wall.
In the centre of the flow, the dynamics will be driven by the equilibrium of inertia
and pressure forces, resulting in a velocity profile that will be more blunt than the
parabolic profile that comes from the balance of viscous and pressure forces.

The functions J0 and K0 with the complex argument are Kelvin functions of order
zero [1]. As the boundary conditions impose a finite velocity on the axis, it follows
that C2 ≡ 0 because Y0 and Y ′

0 → ∞ when r → 0. The velocity profile is

vz(r, t) = − c0
4μ

R2
(
1 − (

r

R
)2

)

+ R2

μ

∞∑
k=1

�
(
ick
α2
k

[
1 − J0(αk

r
R i

3/2)

J0(αki3/2)

]
eikωt

)
. (3.132)

In this last relation, we have set αk = α
√
k. The complex function J0(z i3/2) with

z real ≥ 0 is decomposed in a real part Ber(z) (real Bessel) and an imaginary part
Bei(z) (imaginary Bessel) such that

J0(z i
3/2) = Ber(z) + i Bei(z) , (3.133)

and the final velocity profile reads

vz(r, t) = − c0
4μ

R2
(
1 − (

r

R
)2

)

+ R2

μ

∞∑
k=1

�
(
ick
α2
k

[
1 − Ber(αk

r
R ) + i Bei(αk

r
R )

Ber(αk) + i Bei(αk)

]
eikωt

)
. (3.134)

The velocity profile for mode k = 1 is shown in Fig. 3.11 for Womersley numbers
between 3.34 and 6.67.
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Fig. 3.11 Pulsatile velocity profile for various values of the Womersley number

The flow rate across the pipe section is given by

Q = 2π
∫ R

0
vz(r, t) r dr

= − c0
8μ

πR4 + πR4

μ

∞∑
n=1

�
(
ick
α2
k

F(αk)e
ikωt

)
, (3.135)

F(αk) = 1 − 2J1(αk i
3/2)/

[
αk i

3/2 J0(αk i
3/2)

]
. (3.136)

The cases of slow and rapid pulsation are interesting limit cases.

3.4.2.1 Slow Pulsation

In this case, α is supposed to be small. The Taylor series of (3.133) (cf. [1]) is

J0(z i
3/2) = 1 − (z/2)4

(2!)2 + (z/2)8

(4!)2 − (z/2)12

(6!)2 · · ·

+ i

(
(z/2)2

(1!)2 − (z/2)6

(3!)2 − (z/2)10

(5!)2 − · · ·
)

. (3.137)
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Taking the dominant terms into account, one obtains successively

J0(αk
r
R i

3/2)

J0(αki3/2)
= 1 + i

(αk
r
R )2

4 − (αk
r
R )4

64 + · · ·
1 + i α2

k
4 − α4

k
64

. (3.138)

Developing the inverse of the denominator, one has

(1 + i
α2
k

4
− α4

k

64
)−1 = 1 − i

α2
k

4
− α4

k

16
+ α4

k

64
+ · · ·

� 1 − iα2
k

4
− 3α4

k

64
. (3.139)

Eventually we write

J0(αk
r
R i

3/2)

J0(αki3/2)
= 1 − i

α2
k

4

(
1 − (

r

R
)2

)
− α4

k

64

(
(
r

R
)4 − 4(

r

R
)2 + 3

)
+ O(α6

k ) .

(3.140)
The velocity is now

vz(r, t) = − c0
4μ

R2
(
1 − (

r

R
)2

)
− R2

μ

∞∑
k=1

ck
4

(
1 − (

r

R
)2

)
cos(kωt)

+ ckα2
k

64

(
(
r

R
)4 − 4(

r

R
)2 + 3

)
sin(kωt) . (3.141)

If the continuous Poiseuille component of the velocity is neglected and if we set
vz,c = −c1R2/(4μ) and α1 = α, the first mode k = 1 becomes

vz

vz,c
=

(
1 − (

r

R
)2

)
cos(ωt) + α2

16

(
(
r

R
)4 − 4(

r

R
)2 + 3

)
sin(ωt) . (3.142)

The flow comprises a Poiseuille part in phase with the imposed pressure gradient
and this is perfectly logical as the pulsation is slow and therefore, the flow has
time to adjust itself to that variation. The additional term presents a phase shift
of π/2. Figure 3.12 shows the velocity profile for values of α = 1/

√
2 and ωt =

0, π/4, π/2, 3π/4. Starting from the Poiseuille flow at time ωt = 0, at mid period
(ω = π/2), the profile is still positive while the corresponding pressure gradient
vanishes. The phase difference disappears at mid cycle (ωt = π ) and the Poiseuille
flow is recovered.
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Fig. 3.12 Slow pulsatile flow with α2 = 1/2

3.4.2.2 Rapid Pulsation

The parameter αr/R takes large values and the axis (r = 0) is excluded from the
analysis. For high values of its argument, the asymptotic development of J0(z) (cf.
Eq. (14.144) of Arfken et al. [3]) is such that

J0(z) =
√

2

π z
cos

(
z − π

4

)
+ O(|z|−1), with |arg(z)| < 2π . (3.143)

Using the relation i3/2 = ei3π/4 and s = αkr/R, we perform the next algebraic
calculation

J0(e
i3π/4s) = e−i3π/8

√
2

πs
cos

(
ei3π/4s − π

4

)

= e−i3π/8
√

2

πs

(
cos

(
i
s√
2

)
−

(
s√
2

+ π

4

))

= e−i3π/8
√

2

πs

(
cos

(
i
s√
2

)
cos

(
s√
2

+ π

4

)
+ sin

(
i
s√
2
)

)
sin

(
s√
2

+ π

4

))

= e−i3π/8
√

2

πs

(
cosh

(
s√
2
)

)
cos

(
s√
2

+ π

4

)
+ i sinh

(
s√
2
)

)
sin

(
s√
2

+ π

4

))

= e−i3π/8
√

2

πs
cosh

(
s√
2

+ i

(
s√
2

+ π

4

))
.
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Neglecting the decaying exponential in cosh as we deal with large values of the
argument, we obtain

J0(e
i3π/4s) = e−i3π/8

√
1

2πs
e

s√
2 e

i
(

s√
2
+ π

4

)
. (3.144)

Consequently one finds

J0(αk
r
R i

3/2)

J0(αki3/2)
≈ 1√

r/R
e−(1+i) αk√

2
(1− r

R )
. (3.145)

The first mode of the velocity profile in absence of the continuous Poiseuille com-
ponent yields

vz

vz,c
= 4

α2

[
sin(ωt) − 1√

r/R
e− α√

2
(1− r

R ) sin

(
ωt − α√

2
(1 − r

R
)

)]
+ O

(
1

α4

)
.

(3.146)
We observe that the resulting flow is in complete phase shift by a factor of π/2 with
respect to the pressure gradient. We must again draw the attention of the reader to
the assumptions of this approximation which bans the presence of the axis.

3.5 Plane Periodic Solutions

Many exact solutions of theNavier–Stokes equations are obtained for spatial periodic
conditions. In this section we consider a two-dimensional (2D) solution due toWalsh
[117].

Let us first proof the following theorem.

Theorem 3.1 (Walsh) Let us consider a vector field u in the domain � that satisfies

∇2u = λ u, (3.147)

div u = 0 . (3.148)

Then the velocity v = eνλtu satisfies the Navier–Stokes equations (1.73)–(1.74) with
a pressure p such that

∇ p = −v · ∇v . (3.149)

The vector v is divergence free as is also u. Furthermore,

∂v

∂t
= νλv = ν�v . (3.150)
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It remains to prove that the nonlinear term is a gradient, i.e. that ∇ × (v · ∇v) = 0.
This amounts to showing that

∂

∂x2

(
v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
= ∂

∂x1

(
v1

∂v2

∂x1
+ v2

∂v2

∂x2

)
, (3.151)

as curl ∇ = 0. This is evident by incompressibility and relation (3.150).
In the 2D case, we resort to the streamfunctionψ , assuming that it is an eigenfunc-

tion of the Laplacian with eigenvalue λ. Consequently, u = (∂ψ/∂x2,−∂ψ/∂x1)
satisfies (3.147)–(3.148) with the same λ. Therefore, eνλtψ is the streamfunction of
the associated Navier–Stokes flow. If we have a periodic domain of size 2π , then the
eigenvalues λ are of the form λ = −(k2x1 + k2x2), with kx1 and kx2 positive integers.
For given kx1 , kx2 , the linearly independent eigenfunctions are

cos(kx1x1) cos(kx2x2), sin(kx1x1) sin(kx2x2) ,

cos(kx1x1) sin(kx2x2), sin(kx1x1) cos(kx2x2) .

It is possible to build up complicated geometrical patterns by combination of
the eigenfunctions named n,m eigenfunction by Walsh, with λ = −(n2 + m2). A
theorem in number theory shows that integers of the form p2i and p2i+1, where p is
an integer prime number such that p ≡ 1 (mod 4), may be written as sums of squares
in exactly i + 1 manners. For example, 625 = 54 = 252 = 242 + 72 = 202 + 152.
Figure 3.13 displays the streamlines corresponding toψ = sin(25x1) + cos(25x2) −
sin(24x1) cos(7x2) + cos(15x1) cos(20x2) − cos(7x1) sin(24x2).
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Fig. 3.13 ψ isocontours in the square (0, π/4)2
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3.6 Pipe Flow

Engineering and industrial applications require very often to move various fluids
flowing through pipes: oil, water, grain, etc. To model that situation, we will consider
a steady state laminar longitudinal flow in a pipe of arbitrary section in order to obtain
afterwards the optimal shape of the pipe. The material presented in this section is
much influenced by the book by Langlois and Deville [49].

Let x3 be the axis of theCartesian coordinate systemparallel to the pipe generatrix.
Let us assume that a mechanical device like a pump generates a constant pressure
gradient G such that −∂p/∂x3 = G. This pressure gradient gives rise to a rectilinear
laminar flow along the pipe. Therefore, the velocity profile is

v1 = v2 = 0, v3 = v3(x1, x2) . (3.152)

It is easily verified that the continuity Eq. (1.73) is satisfied and also the Navier–
Stokes equations (1.74) in directions x1 and x2. If the body force is constant, the
third Navier–Stokes equation yields

�v3 + G

μ
= 0 , (3.153)

where G = G ′ + ρb3 with the assumption that p = C − G ′x3,C = cnst and � is
the two-dimensional Laplacian, i.e.

� = ∂2

∂x21
+ ∂2

∂x22
. (3.154)

Equation (3.153) is a special case of Poisson’s equation, a linear, second-order partial
differential equation of the elliptic type. We shall look for solutions which satisfy
the boundary condition

v3(x1, x2) = 0 on Γ , (3.155)

where Γ is the periphery of the pipe cross section.
The boundary value problem represented by (3.153) and (3.155) is equivalent to

the Dirichlet problem

∇2u = 0 , (3.156)

u = f (x1, x2) on Γ . (3.157)

To show the equivalence, we need only set

v3(x1, x2) = G

2μ
[u(x1, x2) − f (x1, x2)] , (3.158)
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where f is any function satisfying

� f = 2 . (3.159)

3.6.1 Polynomial solutions

Many polynomials have constant Laplacian; some of these, when equated to zero,
yield the equation of a closed contour. Thus setting v3(x1, x2) equal to such a poly-
nomial, multiplied by an appropriate constant, will satisfy (3.153) and (3.155), with
Γ the contour on which the polynomial vanishes. We reject immediately all linear
polynomials for two reasons: they vanish only on straight lines, not on closed con-
tours; their Laplacians are not only constant, they vanish. Consideration of quadratic
polynomials, however, bears fruit.

3.6.1.1 The Elliptical Pipe

We note first that the Laplacian of any quadratic polynomial is constant. We next
recall that equating any quadratic polynomial to zero yields the equation of a conic
section. Only the ellipses are of interest to us, for circleswere treated in the Sect. 3.2.2
and none of the other conic sections are closed contours. The algebra is simplified by
placing the centroid of the ellipse on the x3-axis, and orienting the x1- and x2-axes
along the axes of the ellipse as shown in Fig. 3.14. Thus the most general ellipse can
be represented by ( x1

a

)2 +
( x2
b

)2 = 1 . (3.160)

a

b

x1

x2

Fig. 3.14 Elliptic pipe
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We find by inspection that a solution to (3.153) which vanishes on the ellipse
(3.160) is provided by

v3 = G

2μ

a2b2

a2 + b2

(
1 − x21

a2
− x22

b2

)
. (3.161)

The volume flow rate is easily calculated. We have

Q =
∫ ∫

v3 dx1dx2 , (3.162)

where the integration is carried out over the ellipse. With (3.161),

Q = πG

4μ

a3b3

a2 + b2
. (3.163)

This result may be rewritten

Q = GA2

4πμ

R

1 + R2
, (3.164)

where A = πab is the area of the ellipse and R = a/b is the ratio of the semi-axes.
We then obtain

∂Q

∂R
= GA2

4πμ

1 − R2

(1 + R2)2
. (3.165)

Hence, for μ,G, A all fixed, Q has an extremum at R = 1, which is easily shown to
be a maximum.We thus find that the circular pipe is more efficient than any elliptical
pipe, in the sense that the circular pipe produces a greater volume flow for a given
pressure gradient than does an elliptical pipe of the same cross-sectional area.

3.6.1.2 The Triangular Pipe

It seems surprising that we can express in closed form the flow through so unlikely a
cross section as an equilateral triangle, but such is the way of polynomial methods.
If we place the origin at the intersection of the medians and let the negative x1-axis
pass through one vertex as in Fig. 3.15, the equation of an equilateral triangle with
height 3a becomes

(x1 − a)(x1 − √
3 x2 + 2a)(x1 + √

3 x2 + 2a) = 0 . (3.166)

Note that the two last parentheses in (3.166) are the equations for the two slanted
sides of the triangle. Since



84 3 Exact Solutions of the Navier–Stokes Equations

Fig. 3.15 Triangular pipe

a−2a
x1

x2

�
[
(x1 − a)(x1 − √

3 x2 + 2a)(x1 + √
3 x2 + 2a)

]
= 12a , (3.167)

we have

v3 =
(

G

12aμ

)
(a − x1)(x1 − √

3 x2 + 2a)(x1 + √
3 x2 + 2a) . (3.168)

It is readily verified that the maximum velocity occurs at the origin, and that its value
there is Ga2/3μ.

3.6.2 The Rectangular Pipe

The flow in a rectangular pipe cannot be solved using the previous approach of
polynomial solutions as the equation of a rectangle does not have constant Laplacian.
Here we resort to the method of separation of variables.

The rectangular section of the pipe has sides 2a and 2b and is depicted in Fig.
3.16.

The governing equation (3.153) is subjected to the boundary condition

v3 = 0 on x1 = ±a and x2 = ±b . (3.169)

The solution of (3.153) is decomposed in a particular solution v3p taking the
constant term into account and a homogeneous periodic solution v3h of the equation

�v3h = 0 . (3.170)
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Fig. 3.16 Rectangular pipe

a−a

b

−b

x1

x2

The particular solution is provided by the plane Poiseuille problem (3.27) written as

v3p = G

2μ

(
b2 − x22

)
. (3.171)

Consequently the homogeneous solution must satisfy the boundary conditions

v3h = G

2μ
(x22 − b2) on x1 = ±a , (3.172)

v3h = 0 on x2 = ±b . (3.173)

The homogeneous solution of (3.170) is obtained by separation of variables such
that

v3h =
∞∑
n=0

Xn(x1)Yn(x2) . (3.174)

One has
X ′′
n

Xn
= −Y ′′

n

Yn
= k2n . (3.175)

The Yn solution reads
Yn(x2) = cos knx2 . (3.176)

With the boundary condition (3.173), the coefficient kn is obtained as kn = (2n +
1)π/(2b). The corresponding Xn(x1) is determined from

X ′′
n

Xn
= k2n , (3.177)
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i.e.,
Xn = An cosh knx1 + Bn sinh knx1 . (3.178)

Because of the symmetry of the problem, we have Bn = 0. Thus we let

v3h(x1, x2) =
∞∑
n=0

An cosh knx1 cos knx2 , (3.179)

and set about determining the coefficients An so as to satisfy the boundary conditions
(3.172). With the symmetry of the hyperbolic cosine, we need

∞∑
n=0

An cosh[(n + 1

2
)
πa

b
] cos knx2 = G

2μ
(x22 − b2) . (3.180)

The cosine functions are orthogonal in Fourier analysis. They satisfy the relation

1

b

∫ b

−b
cos knx2 cos kmx2 dx2 = δmn . (3.181)

Multiplying the two sides of (3.180) by cos kmx2 and integrating, we have

Am cosh[(m + 1

2
)
πa

b
] = G

2μb

∫ b

−b
(x22 − b2) cos kmx2 dx2 . (3.182)

Utilizing the relation

∫
x22 cos x2 dx2 = 2x2 cos x2 + (x22 − 2) sin x2 , (3.183)

one gets

Am cosh[(m + 1

2
)
πa

b
] = G

2μ

4(−1)m+1

bk3m
= G

2μ

32(−1)m+1b2

(2m + 1)3π3
. (3.184)

The final solution reads

v3 = G

2μ

[
b2 − x22 + 32b2

π3

∞∑
n=0

(−1)n+1 cosh(2n + 1) πx1
2b cos(2n + 1) πx2

2b

(2n + 1)3 cosh(2n + 1) πa
2b

]
.

(3.185)
Figure 3.17 shows isocontour lines for v3/vmax = cst in a channel of rectangular

section with a = 2b = 4.
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Fig. 3.17 v3/vmax = 0.2, 0.4, 0.6, 0.8, 1.0 isocontours for a rectangular section with a = 2b = 4

Exercises

3.1 Consider the two-dimensional Couette–Poiseuille flow obtained by superim-
posing Couette flow induced by the constant velocity motion U of the upper wall
and Poiseuille flow resulting from a pressure gradient in direction x1. Calculate the
velocity profile, the shear stress, and the flow rate.

3.2 A solid sphere of radius R is immersed in an incompressible viscous Newtonian
fluid that fills the space and is at rest at infinity. The sphere rotates about its diameter
at a constant angular velocity �. Assume that the Reynolds number is less than one
and neglect the volume forces. The streamlines are circles centered on the rotation
axis in planes perpendicular to this axis. Working in spherical coordinates, calculate
the velocity profile.

3.3 With the same hypotheses as in the preceding exercise, examine the flow of a
fluid between two spheres of radii R1 and R2 such that R1 < R2, which rotate at
the angular velocities �1 and �2 about a common, fixed axis. Calculate the velocity
profile. This solution is called the spherical Couette flow.

3.4 A cylinder of radius R1 moves parallel to its axis with a constant velocity U
inside a fixed, coaxial cylinder of radius R2.

Calculate the velocity field of a viscous fluid which fills the space between the
two cylinders. Find the friction force per unit length that acts on the moving cylinder.
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Fig. 3.18 Couette flow with free surface

3.5 Couette flow with a free surface
Consider the circular Couette flow between two cylinders. The viscous fluid fills

the annular space under a free surface that is in contact with the ambient air assumed
to behave as an inviscid fluid. Figure 3.18 shows the Couette device.

The outer cylinder rotates with the velocity vθ (R2) = ω2R2, while the inner cylin-
der rotates at velocity vθ (R1) = ω2R1.

• Compute the fluid velocity.
• Compute the shape of the free surface z = z(r). The free surface is an isobar where
the pressure is equal to the atmospheric pressure pa . The fluid height on the inner
cylinder is given by z(R1) = z1.

3.6 Plane Couette flow with two layers
We consider the plane Couette flow of two incompressible fluids of different

viscosities and densities as shown in Fig. 3.19. The steady flow is oriented in direction
x1 and is generated by the upperwallmovingwith constant velocityU . The two layers
of height h1 and h2, respectively, do not mix and the interface is positioned at x2 = 0.
The bottom wall is fixed. It is assumed that no pressure gradient influences the flow.

Evaluate the velocity field and the resulting vorticity.

3.7 Bubble dynamics
A spherical bubble of inviscid gas is contained in an infinite volume of viscous

fluid. We suppose that the pressure pg of the gas inside the bubble varies with time.
As a consequence the radius R of the bubble will also vary with time. The varying
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Fig. 3.19 Plane Couette
flow with two immiscible
fluids

h1

h2

O x1

x2

U

μ1, ρ 1

μ2, ρ 2

bubble generates a velocity field within the fluid which in turn generates a stress
field.

Compute the velocity vr , the pressure distribution in the fluid, the governing
equation for the bubble dynamics and investigate the treatment of the interface.
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