
Chapter 2
Dimensional Analysis

2.1 Principles and General Concepts

For a deep and thorough presentation of dimensional analysis we refer the reader
to the monograph by Barenblatt [9] that covers amply the noticeable properties
produced by adequately chosen scalings. Fluid mechanics is very much based on
experiments to ascertain the relevant physical phenomena, to watch them and to give
them a quantitative approach. The goal of dimensional analysis consists in providing
the similarity conditions between the observed phenomena in the physical reality or
on a prototype and those yielded on a reduced model or a mock-up.

Let us start by noticing that in dimensional analysis, there is no basic or natural
measurement unit for the physical variables. Several universal physical constants are
available like the charge of the electron, Planck’s constant, the speed of light, etc.
But these constants are not characteristic of all physical phenomena. The electron
charge is not a fundamental unit to measure the current intensity in an electrical
engine. Likewise the flow velocity around an airfoil or the ocean wave velocity are
not measured with the light speed as the basic unit. Therefore we may conclude that
the measurement scales are arbitrary conventions that are playing no essential role in
the physical processes. If we change the size of the length unit, all variables implying
a length are rescaled in an appropriate manner.

When considering the dimensional aspect of a problem, it can always be simpli-
fied and highlight interesting informations. This is all the more true as dimensional
analysis rests on the principle of dimensional invariance that states “the structure
of the equations remains unchanged if one performs a modification in size of the
system’s units”.

The aim of dimensional analysis consists in searching the relevant dimensionless
numbers that characterize the fluid flow phenomenon. In some cases the values
of these numbers offer the possibility of simplifying the mathematical model of
the problem at hand. Another benefit of dimensional analysis is the collapse of all
experimental data on a single curve that alleviates the burden of various sources of
observations, like the drag curve versus the Reynolds number for the flow around
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34 2 Dimensional Analysis

a circular cylinder. Please see different vortex shedding for the same Re = 53 in
the same wind tunnel with two different diameters circular cylinder experimented at
different free stream speed in [89].

Suppose the physical problemdepends onn variablesv1, v2, . . . , vn . Eachvariable
vi has a dimension denoted by [vi ] such that one writes

vi = u [vi ] . (2.1)

Here u expresses the size of the variable in the chosen system of units. For example
if it is the length of a rope, we will write l = 5[l]. Defining the dimension of length
as [l] = L , one has l = 5L . Referring to the International System of Units (SI)
the dimension L is given in meters (m) and thus l = 5[l] = 5m. Besides L , the
dimensions M and T are introduced for mass and time, respectively.

The SI system is composed of the meter (m), kilogram (kg), second (s), ampere
(A), kelvin (K), candela (cd) and mole (mol). These are the primary units. All other
units are secondary and derived from the primary units. As an example of a secondary
unit, the definition of the newton (N) reads “The newton is that force which gives to
a mass of 1 kg an acceleration of 1 meter per second per second”.

2.2 The Vaschy–Buckingham Theorem

From the viewpoint of dimensions, the force F in rational mechanics is defined by
the product of the mass m and the acceleration ẍ and leads to the relation

[F] = MLT−2 , (2.2)

whereM, L , T are the fundamental dimensions ofmass, length and time, respectively
and [F] is the dimension of F . We notice that in order to express the dimension of
a variable, one writes a monomial of powers of the basic quantities. More generally,
a physical problem will deal with a model that is the representation of intrinsic
relationships between the various variables. We will have

f (v1, v2, . . . , vN ) = 0 , (2.3)

or
v = g(v1, v2, . . . , vN−1) . (2.4)

As an example, let us consider the stationary flow of a viscous incompressible
fluid in a Couette apparatus with the exterior cylinder of radius R2 fixed and the
interior cylinder of radius R1 rotating with the angular velocity ω. The pressure p
in every point of the flow with position x is a dependent variable that involves other
quantities describing the problem. One writes
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f (p, R1, R2, ω, ρ, μ, x) = 0 . (2.5)

The aim of dimensional analysis is to collect several variables to elaborate a reduced
or dimensionless variable. Here we have the group

� = p

ρ(ωR1)2
. (2.6)

In this case, the dynamic pressure ρ(ωR1)
2 is considered as a natural measuring

scale for the pressure p. Using this information, one obtains by (2.5)

� = p

ρ(ωR1)2
= 1

ρ(ωR1)2
g(R1, R2, ω, ρ, μ, x) . (2.7)

The relation (2.4) is independent of the chosen units’ system as a result of the
principle of dimensional invariance. This implies that the relation be homogeneous
from the dimensional point of view. In other words, the dimension of each variable
can be written as

[vi ] = Pai
1 Pbi

2 Pci
3 . . . , (2.8)

with Pi denoting a fundamental (primary) quantity (M, L , T ).
Let us introduce the concept of dimensional matrix. This matrix is composed by

the list of the exponents ai , bi , ci , . . . of the fundamental quantities of each variable
or parameter of the problem. It allows to control the linear independence of the
variables in terms of the chosen primary quantities. For the Couette problem, the
dimensional matrix is the following

p x R1 R2 μ ρ ω

M 1 0 0 0 1 1 0
L −1 1 1 1 −1 −3 0
T −2 0 0 0 −1 0 −1

Via the principle of dimensional homogeneity and since each dimension can be
written as a monomial of powers, one can demonstrate the following theorem

Theorem 2.1 (Vaschy–Buckingham) If a physical problem is described by N vari-
ables and parameters in r dimensions, i.e. in r independent variables, then it is
possible to organise the original variables in dimensionless groups such that

� = v
α1
1 v

α2
2 . . . v

αN
N . (2.9)

The function (2.3) may be written in a simpler manner because it does contain only
M = N − r variables

�(�1,�2, . . . , �M) = 0 , (2.10)

with r the rank of the dimensional matrix.
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We will not prove the theorem and for this purpose the reader is referred to
Barenblatt [9] or to Panton [71]. In the field of isothermal fluid mechanics, we will
suppose that r = 3, which corresponds to the choice P1 = M, P2 = L , P3 = T .

2.3 Application of Vaschy–Buckingham Theorem

2.3.1 Circular Couette Flow

Let us choose three independent primary variables R1, ρ, ω, whose minor of order
three in the previous dimensional matrix is different from zero. Let us examine the
pressure p and let us construct the first group that is denoted by �1. We have with
α1 = α, α2 = β, α3 = γ , etc.,

�1 = pRα
1 ρβωγ , (2.11)

or
[�1] = M0L0T 0 = ML−1T−2Lα(ML−3)β(T−1)γ . (2.12)

Equating the exponents of the fundamental quantities M, L , T of the two sides of
Eq. (2.12), one has

1 + β = 0

−1 + α − 3β = 0 (2.13)

−2 − γ = 0

Solving system (2.13) one obtains α = −2, β = −1, γ = −2 and the group
�1 is such that �1 = p/(ρ ω2R2

1). Afterwards we compute �2 = x/R1,�3 =
R2/R1,�4 = μ/(ρωR2

1). Therefore

�1 = p

ρ(ωR1)2
= 1

ρ(ωR1)2
h(

x
R1

,
R2

R1
,

μ

ρωR2
1

) . (2.14)

The group �4 is the inverse of the Reynolds number that in this case reads

(�4)
−1 = Re = ωR2

1

ν
, (2.15)

where one finds ωR1 the characteristic velocity, R1 the geometrical reference
length, ν = μ/ρ.

Choosing now R1, μ, ω as basic variables, one generates the � groups: �1 =
p

μω
,�2 = x

R1
,�3 = R2

R1
,�4 = ωR2

1
ν
.



2.3 Application of Vaschy–Buckingham Theorem 37

We observe that there is no unique way to set up a problem in reduced form,
since the rank of the dimensional matrix allows selecting the basic variables very
differently.

2.3.2 Flow in a Pump

We consider the flow of an incompressible fluidwith density ρ and dynamic viscosity
μ in a pump whose rotor rotates at constant angular velocity ω. The respective
pressures at suction and discharge sections of the pump are denoted by p1 and
p2. A choice must be made between several homothetic pumps. According to this
homothety, it suffices to fix a characteristic dimension D of the pump, inasmuch that
the other dimensions are proportional to it, including the diameters of the input and
output sections where the pressure are measured as p1 and p2. It is obvious that the
flow rate Q is a function of the quantities already introduced ρ, D, μ, ω as well as
the pressure increase created by the pump. We have the relationship

Q = f (p2 − p1, ρ, μ, D, ω) . (2.16)

It is asked to write a dimensionless relation for the cases when the fluid is perfect
(without viscosity) and a real viscous fluid.

For the perfect fluid, the dimensional matrix is

p2 − p1 Q D ρ ω

M 1 0 0 1 0
L −1 3 1 −3 0
T −2 −1 0 0 −1

Choosing ρ, D, ω as basic variables, one obtains

Q

D3ω
= f

(
p2 − p1
ρD2ω2

)
. (2.17)

This is nothing else than the characteristic curve of the pump, Fig. 2.1.
For the Newtonian viscous fluid, one has

Q

D3ω
= f

(
p2 − p1
ρD2ω2

, Re

)
. (2.18)
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p 2− p 1

ρD 2ω 2

Q
D 3ω

Fig. 2.1 Characteristic of a hydraulic pump

2.4 Dynamic Similarity

Two physical phenomena are said similar if the variables describing them can be
matched. Let us suppose that the physical phenomenon of interest is described by
the relation

�1 = f (�2, . . . , �n) . (2.19)

If two flows are such that the dimensionless groups �2, . . . , �n are given the same
values, the dependent variables are also identical. If the first flow is the one of the
reduced scale model and the second one of reality (the prototype), we have

(�i )m = (�i )p, i = 1, . . . , n . (2.20)

This amounts to imposing the equality of the Reynolds numbers if we want to study
the flow around an airfoil on a mock-up to draw operational conclusions for the real
profile. However the geometrical similarity resting on the � theorem is sometimes
not feasible. Indeed the boundary conditions of an experimental set-up may also
affect the similarity rules.

In certain cases, it is impossible to apply strictly the similarity laws because
dimensional constants such as gravity step in. As an example, let us study the drag
on a boat that is given by the force in direction x1 of the main flow with velocityU∞.
Building up the dimensional matrix and generating the variables Fx1 , ρ, μ,U∞, g, d,
with d the boat length overall, one obtains
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Cx1 = Fx1

ρd2U 2∞
= Cx1(Re, Fr) , (2.21)

with the Froude number defined by the relationship

Fr =
(
U 2∞
gd

)
. (2.22)

To fix the ideas, let us work with a ratio of scales between mock-up and prototype
equal to 1/20. The similarity rules impose the equality of the Reynolds and Froude
numbers. The equality of the Froude numbers leads to

(
U 2∞
gd

)
m

=
(
U 2∞
gd

)
p

(2.23)

or dropping the ∞ subscript

(
Um

Up

)2

= dm
dp

= Sd , (2.24)

with Sd the ratio of the dimensions scales (S). We deduce the ratio of the velocity
scales SU

SU = Um

Up
= S1/2d . (2.25)

The equality of the Reynolds numbers produces the relation

(
Ud

ν

)
m

=
(
Ud

ν

)
p

, (2.26)

and consequently

Sν = νm

νp
= Um

Up

dm
dp

= SU Sd = S3/2d . (2.27)

As Sd = 1/20, one obtains

Sν = (
1

20
)3/2 = 0.011 . (2.28)

This last equation means that the model should use a fluid of kinematic viscosity
a hundred times less than that of water. Such a fluid is impossible to find. In this
case, we will have to use approximate methods in which we have different Reynolds
numbers for the model and the prototype, with the hope that the change in Reynolds
number will have little effect on the drag measured with the model.
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2.5 Self-similarity

Consider the flow generated by the instantaneous motion of a wall in its own plane.
As we will note in Sect. 3.3.1, the governing equation reads

∂v1

∂t
= ν

∂2v1

∂x22
. (2.29)

The boundary conditions are

t < 0, v1 = 0, ∀x1 , (2.30)

t ≥ 0, v1 = U, for x2 = 0, (2.31)

v1 = 0, for x2 → ∞. (2.32)

The dimensional matrix is as follows

v1 U x2 t ν

M 0 0 0 0 0
L 1 1 1 0 2
T −1 −1 0 1 −1

As the first line of the matrix is zero, its rank is equal to two. Let us choose as
basic variables U and ν. One compute the next three dimensionless groups

�1 = v1

U
, �2 = x2U

ν
= ξ, �3 = tU 2

ν
= ζ . (2.33)

Therefore we write
v1

U
= f (ξ, ζ ) . (2.34)

However, this relation is too general. We simplify it by noting that the Eqs. (2.29)
and (2.31) are always satisfied if we apply a scaling factor α to x2 and a factor α2 to
time t . As we desire to obtain self-similar solutions by enforcing the condition

v1(t1,
x2

g(t1)
) = v1(t2,

x2
g(t2)

) , (2.35)

where the function g constitutes a scaling factor for the space, we replace the dimen-
sionless group �2 by

�∗
2 = �2√

�3
= x2√

νt
= η . (2.36)

The relation (2.34) becomes
v1

U
= f ∗(η, ζ ) . (2.37)
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Eq. (2.29) is now written

2
∂2 f ∗

∂η2
+ η

∂ f ∗

∂η
= 0 , (2.38)

while the conditions (2.30)–(2.32) are

v1

U
= 0 for η → ∞ , (2.39)

v1

U
= 1 for η = 0 . (2.40)

Inspecting (2.38)–(2.40), one observes that the function f ∗ depends only on η and
thus eventually

v1

U
= f ∗(η) . (2.41)

Thanks to (2.41), the partial derivatives problem is reduced to an ordinary differential
equation. Relation (2.38) is a self-similar relation.

2.6 Dimensionless Form of the Navier–Stokes Equations

The dimensionless presentation of the Navier–Stokes equations for the incompress-
ible fluid is essential for the understanding of the flow physics. Indeed, by this anal-
ysis, we may distinguish the dominating phenomenon and simplify the equations to
be tackled that will be more amenable to closed-form solutions.

The dimensional matrix reads

t x v p μ ρ L U b
M 0 0 0 1 1 1 0 0 0
L 0 1 1 −1 −1 −3 1 1 1
T 1 0 −1 −2 −1 0 0 −1 −2

Choosing as basic variables L , ρ,U , with a minor equal to −1, we generate the
dimensionless groups

�1 = tU

L
, �2 = x

L
, �3 = v

U
, �4 = p

ρU 2
, �5 = μ

ρUL
, �6 = bL

U 2
.

(2.42)
These � groups allow the introduction of dimensionless variables and functions
(denoted with primes) by the relations:

xi = Lx ′
i , t = L

U
t ′ , vi = Uv′

i , p′ = p − p0
ρU 2

, bi = U 2 b
′
i

L
.
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We rewrite Eqs. (1.73) and (1.74) with dimensionless quantities

∂v′
i

∂t ′
+ v′

k

∂v′
i

∂x ′
k

= −∂ p′

∂x ′
i

+ μ

ULρ

∂2v′
i

∂x ′
j
2 + b′

i , (2.43)

∂v′
j

∂x ′
j

= 0 . (2.44)

In Eq. (2.43) appears the dimensionless Reynolds number,

Re = ρUL

μ
= UL

ν
.

The symbol ν represents the kinematic viscosity defined by the relation

ν = μ

ρ
. (2.45)

It is expressed in m2s−1. Its value for water at ambiant temperature is νwater =
1.138 10−6 m2 s−1. The Reynolds number expresses the relative importance of the
inertia forces with respect to the viscous forces. It takes values close to 0 for creeping
flows dominated by viscous effects up to values of the order of 106 . . . 108 where
inertia is the main driving force. In this last case, the flow is turbulent. An example
of creeping flow is that of thermal convection in the earth’s mantle or the convective
currents in a bath of molten glass. The turbulent flows are widespread in nature or in
technological applications: the water flow on a boat hull, the aerodynamics design
of a car, meteorology, etc.

The Reynolds number can still be interpreted as the ratio of the characteristic time
of viscous fluid flows. If we introduce the inertial time tinert = L/U and the viscous
time tvis = L2/ν, the Reynolds number becomes

Re = tvis
tinert

. (2.46)

We note that for high values of the Reynolds number, the time scale significant for
the fluid inertia is much shorter than the time scale for the action of the viscous
effects. This situation explains the stiff character of the numerical integration of the
Navier–Stokes equations at high values of the Reynolds number, given the disparity
of inertial and viscous time scales. Indeed the numerical integration will march in
time with a time step imposed by the inertial dynamical behavior over time ranges
long enough to take the viscous effects into account.
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The Navier–Stokes equations in dimensionless form read:

Dv′

Dt ′
= −∇ p′ + 1

Re
�v′ + b′. (2.47)

∇ · v′ = 0 , (2.48)

If we fix the coordinates xi and time t and we let the Reynolds number go to infinity,
Re → ∞, the system (2.47)–(2.48) leads to the Euler equation for perfect fluids.
Note that if Re → 0, we face an inconsistency for (2.47).

When the body force is gravity, with b′ = g′ = g/g and g =‖ g ‖ is the gravity
acceleration, Eq. (2.47) becomes

Dv′

Dt ′
= −∇ p′ + 1

Re
�v′ + 1

Fr
g′ . (2.49)

Here we have the Froude number (2.22)

Fr = U 2

Lg
.

This number compares inertia forces to gravity forces.
The limit form of the Navier–Stokes equations is obtained by (2.49) when Re →

∞,
Dv′

Dt ′
= −∇ p′ + 1

Fr
g′ . (2.50)

These are the Euler equations. If we come back to dimensional variables, we have

ρ
Dv

Dt
= −∇ p + ρg . (2.51)

Let us consider again Eq. (1.74) and normalize the reduced form of time and
pressure by the viscous effects (this is the viewpoint adopted by rheologists):

t ′ = νt

L2
and p′ = (p − p0)

(
μU
L )

,

the dimensionless form of the Navier–Stokes equations for an incompressible fluid
reads

∂v′
i

∂t ′
+ Re

(
v′
k

∂v′
i

∂x ′
k

)
= −∂ p′

∂x ′
i

+ �v′
i + Re

Fr
g′
i . (2.52)

Equations (2.49) and (2.52) are different because the time normalization is made on
the one hand by the time linked to advection (inertial term) tinert , and on the other
hand by the characteristic time of molecular diffusion tvis .
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If we now let Re → 0, Eq. (2.52) is simplified and yields:

∂v′

∂t ′
= −∇ p′ + �v′. (2.53)

These are the linear Stokes equations. In dimensional variables, they read

ρ
∂v

∂t
= −∇ p + μ�v. (2.54)

2.7 Dimensional Analysis of the Compressible
Navier–Stokes Equations

The set of the Navier–Stokes equations for the compressible fluid reads

Dρ

Dt
+ ρ div v = 0 , (2.55)

ρ
Dv

Dt
= −∇ p + ∇ (λ trd) + div (2μ d) + ρb , (2.56)

ρcp
DT

Dt
= Dp

Dt
+ λ(tr d)2 + 2μ d : d + div(k∇T) + r , (2.57)

p = ρRT . (2.58)

Wewill simplify these relations with the assumptions r = 0 and λ,μ, k constants.
In addition, we use Stokes’ hypothesis

3λ + 2μ = 0 . (2.59)

The Stokes relation has been established based on reasoning from the kinetic the-
ory of gases. Although this hypothesis is valid for monatomic gases, it is not valid
for polyatomic gases. Nonetheless it is widely used in aerodynamics applications.
From the monograph by Langlois and Deville [49] we quote “Neither the theoretical
foundation nor the experimental verification of the Stokes relation is especially con-
vincing. Also, Truesdell [109] remarked on p. 229 that “The Stokes relation implies
the anomalous result that a spherical mass of fluid may perform symmetrical oscil-
lations in perpetuity, without frictional loss”. Stokes himself never took the relation
very seriously, and it is now generally conceded to be invalid, except for monatomic
gases, with the hard-to-obtain experimental data leniently interpreted.”
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Table 2.1 Dimensional matrix of the compressible Navier–Stokes variables

t x v p μ ρ L U b cp k T

M 0 0 0 1 1 1 0 0 0 0 1 0

L 0 1 1 −1 −1 −3 1 1 1 2 1 0

T 1 0 −1 −2 −1 0 0 −1 −2 −2 −3 0

� 0 0 0 0 0 0 0 0 0 −1 −1 1

Equations (2.56) and (2.57) become

ρ
Dvi

Dt
= − ∂p

∂xi
+ μ

∂2vi

∂x j∂x j
+ μ

3

∂

∂xi
(dkk) + ρbi (2.60)

ρcp
DT

Dt
= Dp

Dt
+ k

∂2T

∂x j∂x j
− 2

3
μ(dkk)

2 + 2μ di j di j . (2.61)

The fundamental variables to build the dimensional matrix are as usual M, L, T
plus the thermodynamic temperature �. Recall that the SI units for cp and k are
J kg−1 K−1 and W m−1 k−1 respectively, where J is kg m2 s−2. The dimensional
matrix reads (Table 2.1).

Choosing as primary variables ρ,U, L , T , the associated minor is different from
zero. The dimensional matrix has rank 4 and we are left with eight dimensionless
groups

�1 = tU

L
, �2 = x

L
, �3 = v

U
, �4 = p

ρU 2
(2.62)

�5 = μ

ρUL
, �6 = bL

U 2
, �7 = cpT

U 2
, �8 = kT

ρLU 3
. (2.63)

In �5 we recognize the inverse of the Reynolds number and �6 is the inverse of
the Froude number. The combination �5�7/�8 yields Pr = μcp/k which is the
definition of the Prandtl number.

The careful aerodynamicist is still puzzled by the absence of the Mach number.
In fact this number is hidden in �4. Using (1.98) we have

p

ρU 2
= RT

U 2
= a2

γU 2
= 1

γ M2
(2.64)

with the definition of the Mach number

M = U

a
. (2.65)
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Let us now investigate the set of dimensionless Navier–Stokes equations for the
ideal gas with constant heat capacity. Denote the reference values of length, speed,
pressure, density, and temperature that characterize the flow under consideration
by L , U , p0, ρ0, and T0. The variables p0, ρ0, and T0 designate a thermodynamic
reference state. The time scale is L/U and the scale for inertial forces isU 2/L . Now
we introduce non-dimensional variables and functions (denoted with primes) with
relations

xi = Lx ′
i t = L

U
t ′ vi = Uv′

i p = p0 p
′

ρ = ρ0ρ
′ T = T0T

′ bi = U 2 b
′
i

L
.

We reformulate Eqs. (2.55), (2.56), (2.60), and (2.61) with non-dimensional val-
ues, including constant characteristic values μ0 and k0 estimated at the temperature
T0, as well as cp, γ , and R:

∂ρ ′

∂t ′
+ v′

j

∂ρ ′

∂x ′
j

+ ρ ′ ∂v′
j

∂x ′
j

= 0 (2.66)

∂v′
i

∂t ′
+ v′

k

∂v′
i

∂x ′
k

= − p0
ρ0U 2

1

ρ ′
∂ p′

∂x ′
i

+ μ0

ULρ0

1

ρ ′

(
∂2v′

i

∂x ′
j
2 + 1

3

∂

∂x ′
i

(d ′
kk)

)
+ b′

i (2.67)

ρ ′ DT ′

Dt ′
= Dp′

Dt ′
+ k0

μ0cp

μ0

ρ0UL

∂2T ′

∂x ′
j
2

− μ0

ρ0UL

U 2

cpT0

⎛
⎝2

3
(d ′

kk)
2 − 1

2

(
∂v′

i

∂x ′
j

+ ∂v′
j

∂x ′
i

)2
⎞
⎠ (2.68)

p′ = ρ ′ T ′ , (2.69)

if we set p0 = ρ0 R T0.
In relations (2.66)–(2.68) three non-dimensional numbers appear:

• the Reynolds number

Re = ρ0
UL

μ0
= UL

ν0
;

• the Prandtl number
Pr = cpμ0

k0
= ν0

�
;

• the Mach number

M = U

a0
,
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which appear also in the group

p0
ρ0U 2

= RT0
U 2

= a20
γU 2

= 1

γ M2
.

The denominator of the Mach number a0 is the characteristic speed of sound
(1.98). The coefficient � defined by relation

� = k0
ρ0cp

(2.70)

appearing in the Prandtl number is called the thermal diffusivity. The product of the
Reynolds and Prandtl numbers yields the Péclet number

Pe = UL

�
, (2.71)

which is for the heat transfer equation, the counterpart of the Reynolds number for
the Navier–Stokes equation.

The Reynolds number expresses the relative importance of the inertial forces
with respect to the viscous forces. It takes values from zero up to several million. For
Re = 0, the Navier–Stokes equations reduce to the Stokes equation. They govern
the dynamics of slow or creeping laminar flows. For Re ≥ 106, the flow is turbulent.
The Prandtl number estimates the relative importance of the viscous and thermal
diffusion phenomena (Pr = 0.71 for room temperature air).

The Mach number characterizes the compressibility effects. Its value is M = 0
for incompressible fluids. It is between zero and one, 0 < M < 1 for subsonic flows
and M > 1 for supersonic flows.

The Navier–Stokes equations take the non-dimensional form

Dρ ′

Dt ′
+ ρ ′ divv′ = 0 (2.72)

ρ ′ Dv′

Dt ′
= − 1

γ M2
∇p′ + 1

Re

(
∇2v′ + 1

3
∇ (divv′)

)
+ ρ ′b′ (2.73)

ρ ′ DT ′

Dt ′
= Dp′

Dt ′
+ 1

Pr Re
∇2T ′

− (γ − 1)
M2

Re

⎛
⎝2

3

(
divv′)2 − 1

2

(
∂v′

i

∂xj
+ ∂v′

j

∂xi

)2
⎞
⎠ (2.74)

p′ = ρ ′ T ′ . (2.75)

If we fix the coordinates xi , time t , and all the parameters M , Pr , γ , and take
Re → ∞, then the system (2.72)–(2.75) leads to the Euler system of equations for
perfect (inviscid) fluids. Taking the limit where the Mach number goes to zero, with
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all the other parameters fixed, should lead to the Navier–Stokes equations for an
incompressible fluid.

However, examination of the system (2.72)–(2.75) shows that this is not so, and
that the term−(1/γ M2)∇p becomes dominant. This behavior is due to the choice of
the non-dimensional pressure p′ = p/p0, which was made by considering pressure
to be a thermodynamic variable. The momentum equation reveals that pressure is
also a dynamic variable. It is more natural to choose

p∗ = p − p0
ρ0U 2

for the non-dimensional pressure.
In this case, Eq. (2.73) becomes

ρ ′ Dv′

Dt ′
= −∇p∗ + 1

Re

(
∇2v′ + 1

3
∇(

divv′)) + ρ ′b′ . (2.76)

The limiting case of Eqs. (2.66), (2.76), (2.68), and (2.69) when the Mach number
goes to zero, yields the relations

Dρ ′

Dt ′
+ ρ ′divv′ = 0 (2.77)

ρ ′ Dv′

Dt ′
= −∇p∗ + 1

Re

(
∇2v′ + 1

3
∇(divv′)

)
+ ρ ′b′ (2.78)

ρ ′ DT ′

Dt ′
= 1

Pr Re
∇2T ′ (2.79)

ρ ′T ′ = 1 , (2.80)

valid for an incompressible fluid, but which still may experience thermal expansion.
To obtain (2.79), we calculate

Dp′

Dt ′
= 1

p0

Dp

Dt ′
= ρ0U 2

p0

Dp∗

Dt ′
= U 2

RT0

Dp∗

Dt ′
= γ M2 Dp∗

Dt ′
.

Equation (2.80) comes from the following evaluation:

p′ = ρ ′T ′ = p

p0
= 1 + p∗ U 2

RT0
= 1 + γ M2 p∗ .

If, in addition, we assume that at the domain wall T ′ = 1, then Eqs. (2.79) and
(2.80) as well as the boundary conditions on T ′ are satisfied by

ρ ′ = 1 (2.81)

T ′ = 1 . (2.82)
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Consequently, in this case, Eqs. (2.77) and (2.78) reduce to the equations of an
isothermal, incompressible flow.

In this section we may notice the different nature of pressure for compressible
versus incompressible fluids. In the compressible case pressure is a thermodynamic
variable that is computed through the equation of state as soon as we know ρ from
mass conservation and T from energy governing equation. For the incompressible
fluid there is no equation of state and the pressure scalar field is the variable that
ensures a divergence free velocity field. In finite element theory for incompressible
flows, pressure is the Lagrange variable associated with the constraint div v = 0 in
the weak formulation of the Navier–Stokes equation. A possible way to compute the
pressure consists in generating a Poisson pressure equation by taking the divergence
of the momentum equation. The difficulty is then to set up the correct boundary con-
dition for the normal component of the pressure gradient at the wall. The reader is
referred to the paper by Orszag et al. [69] that proposes several methods to solve this
difficulty. A possible solution of the pressure Poisson equation can be obtained with
Neumann boundary condition from wall-normal component of Navier–Stokes equa-
tion along with no-slip boundary condition. This is routinely done in aerodynamics
to calculate lift and drag.

Exercises

2.1 Write the dimensionless Navier–Stokes equations in the framework of the
Boussinesq approximation. To obtain a tractable heat equation we neglect in (1.112)
the power dissipation and the volume heat production.

We defined the coefficient of thermal diffusivity expressed in m2 s−1 by the
relation (2.70). It is possible to obtain three different sets of dimensionless equa-
tions according to the choice of the reference velocity: U = ν/L;U = �/L;U =
(gα(T − T0)L)1/2. This produces the following dimensionless numbers : Prandtl,
Rayleigh, Péclet, Grashof, denoted Pr, Ra, Pe,Gr , respectively, such that

Pr = ν

�
, Ra = αg(T − T0)L3

ν�
, Pe = UL

�
,Gr = αg(T − T0)L3

ν2
. (2.83)

2.2 Write the velocity profile of Exercise 1.4 in dimensionless form. Which dimen-
sionless number is involved in the solution?
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