
Chapter 10
Solutions of Exercises

10.1 Chapter One

1.1 Let us inspect the contribution of the contact force t . With the help of (1.67) one
has ∫

S
t dS = −

∫
S
pn dS + F , (10.1)

where F is the shearing force exerted by the plate on the fluid. Indeed the shear
contributions vanish on the vertical lines AB,CD and on BC of Fig. 10.1. On the
closed surface S, the pressure is uniform and then, − ∫

S pn dS = 0. The integral
equation (1.125) becomes

F = ρ

∫
S
(v · n)v dS . (10.2)

We need to compute F = F · e1. Therefore from (10.2) one obtains

F = ρ

∫
S
(v · n)v1 dS . (10.3)

With the control volume of thickness Z in x3 direction exhibited in Fig. 10.1, it is
easy to proceed further

ρ

∫
S
(v · n) v1 dS = ρ

i=6∑
i=1

∫
Si

(v · n)iv1 dSi . (10.4)

In section S2 the velocity profile is

v1(x2) = Ux2/h, for 0 ≤ x2 ≤ h,

v1 = U, for h ≤ x2 ≤ H . (10.5)
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Fig. 10.1 Control volume for the flat plate problem

We have successively

ρ

∫
S1

(v · n)1v1 dS1 = −ρU 2HZ n = (−1, 0, 0) v = (U, 0, 0)

ρ

∫
S2

(v · n)2v1 dS2 = ρU 2

(
(H − h)Z + hZ

3

)
n = (1, 0, 0) v = (v1(x2), 0, 0)

ρ

∫
S3

(v · n)3v1 dS3 = 0 as (v · n)3 = 0

ρ

∫
S4

(v · n)4v1 dS4 = ρ

∫ L

0
Uv2Z dx1 n = (0, 1, 0) v = (0, v2, 0) .

It is forbidden to impose v2 to be zero on S4. The fluid flows in the vertical direction
through S4 as the flow rate in the exit S2 is less than in the entry section S1. The two
last integrals yield ρ

∫
S5

(v · n)5v1 dS5 = ρ
∫
S6

(v · n)6v1 dS6 = 0 as the velocity has
no component in x3 direction.

One deduces that

F = ρ

∫ L

0
Uv2Z dx1 − 2

3
ρU 2hZ . (10.6)

To evaluate the integral in (10.6) the control volume method is applied to the mass
conservation law (1.120)
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ρ

∫
S
v · n dS = ρ

i=6∑
i=1

(v · n)i dSi . (10.7)

We obtain

ρ

∫
S5

(v · n)5 dS5 = ρ

∫
S6

(v · n)6 dS6 = ρ

∫
S3

(v · n)3 dS3 = 0

ρ

∫
S1

(v · n)1 dS1 = −ρUHZ

ρ

∫
S2

(v · n)2 dS2 = ρU

(
(H − h)Z + hZ

2

)

ρ

∫
S4

(v · n)4 dS4 = ρ

∫ L

0
v2Zdx1 .

Therefore one has

ρ

∫ L

0
v2Zdx1 = ρU

hZ

2
(10.8)

Combining (10.6) and (10.8), the force F acting by the plate on the fluid is

F = −1

6
ρU 2hZ . (10.9)

1.2 Incompressibility requires ∇ · v = 0. Applying ∂/∂xi to the velocity field, one
has

∂vi

∂xi
= Ar3δi i − 3Ar2xi ∂r

∂xi

r6

= Ar3δi i − 3Ar2xi
xi
r

r6
= 0

since xi xi = r2.
It is also possible to solve the problem by computing

div v = ∂vi

∂xi
= A

∂

∂xi

(
xi (x j x j )

−3/2
)

= A

(
δi i (x j x j )

−3/2 − 3

2
xi · 2(x j x j )

−5/2x jδ j i

)

= A

(
δi i (x j x j )

−3/2 − 3

2
x j · 2(x j x j )

−5/2x j

)
= 0 ,

as δi i = 3.
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1.3 The incompressibility equation in cylindrical coordinates (A.2) is written as

1

r

∂(rvr )

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0 .

It is easily deduced that the given velocity field is incompressible.

1.4 Natural Convection between two parallel planes
The 2D velocity field is such that v = (v1(x1, x2), v2(x1, x2), 0). However the

flow is invariant with respect to translation in the x2 direction. Therefore it depends
only on the x1 coordinate. With the incompressibility condition (1.115),

∂v1

∂x1
= 0 . (10.10)

As v1 = 0 at the walls, v1 = 0 and v = (0, v2, 0). The temperature gradient is ori-
ented in the horizontal direction, so that the temperature field is such that T = T (x1).
The temperature Eq. (1.117) becomes

d2T

dx21
= 0 . (10.11)

Integrating with the boundary conditions T = T2 at x1 = −h and T = T1 at x1 = h
yields

T = −T2 − T1
2h

x1 + T1 + T2
2

:= Ax1 + T1 + T2
2

. (10.12)

The momentum equation (1.116) gives

− ∂ p

∂x2
+ μ

d2v2

dx21
− ρ0 g (1 − a(T − T0)) = 0 . (10.13)

The reference temperature is chosen as the mean temperature T0 = (T1 + T2)/2.
The flow is not driven by an exterior pressure gradient; then the pressure is purely
hydrostatic and results from the integration of

− ∂ p

∂x2
− ρ0 g = 0 , (10.14)

valid at equilibrium. Consequently the velocity field is driven by the buoyancy forces
and one solves

μ
d2v2

dx21
+ ρ0 gαAx1 = 0 . (10.15)

With the boundary conditions v2 = 0 at x1 ± h,
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v2 = −gαA

6ν
x1(x

2
1 − h2) = gα

12νh
(T1 − T2)x1(x

2
1 − h2) . (10.16)

It is a simple check to verify that this velocity profile corresponds to a vanishing flow
rate across each horizontal cross section.

1.5

• The continuity equation applied to the control volume in dashed lines (Fig. 1.14)
yields ∫ R0

0
vz(r) 2πrdr = VπR2

1 . (10.17)

Using (1.126) in (10.17) one has

2vmax

∫ R0

0

(
1 − r2

R2
0

)
r dr = V R2

1 . (10.18)

Carrying through the integration we obtain

V

vmax
= 1

2

R2
0

R2
1

. (10.19)

• The momentum equation in integral form is applied to the control volume

∫
S
ρ(v · n)vdS = 0 . (10.20)

Indeed the contact force t = 0 as there is no diffusion and the pressure is constant
and equal to the atmospheric pressure. Consequently one writes successively

∫ R0

0
(vz(r)dS)vz(r) = πV 2R2

1 ,

v2
max

∫ R0

0

(
1 − r2

R2
0

)2

2πrdr = πV 2R2
1 ,

2v2
max

R6
0

6
= V 2R2

1 ,

(
V

vmax

)2

= 1

3

R2
0

R2
1

. (10.21)

With (10.19) and (10.21) the contraction coefficient is

β = R2
1

R2
0

= 3

4
. (10.22)
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10.2 Chapter Two

2.1 In thermal convection problems there is no reference velocity to be chosen like
in aerodynamics where the upstream uniform velocity is a given data of the flow.
As it is proposed in the problem statement there are three possible choices for the
reference velocity. Note that the dimensionalmatrix of Table 2.1 is almost identical to
the one corresponding to the Boussinesq variables. It is sufficient to add the column
corresponding to α with [α∣∣0 0 0 − 1].

If ρ,μ, L , T are chosen as primary variables, then the minor is not zero. The first
and third dimensionless groups become �1 = νt/L2,�3 = vL/ν. This shows that
the reference velocity is indeed ν/L based on the viscous diffusivity. The alternate
choice ρ, k, L , cp with non zero minor generates �1 = �t/L2,�3 = vL/�.

We resort to the Boussinesq equations given by (1.118) and (1.119).

• Let us now consider the dimensionless Boussinesq equations with the viscous
diffusivity as reference velocity. The dimensionless variables are

xi = Lx ′
i , t = L2

ν
t ′ , vi = ν

L
v′
i , P ′ = p̃L2

ρν2
, T − T0 = (T1 − T0)T

′ .

Dropping the primes for ease of notation we obtain

div v = 0, (10.23)
Dv

Dt
= −∇P + � v + Gr T g, (10.24)

DT

Dt
= 1

Pr
� T . (10.25)

• Referring to the thermal diffusivity for the reference velocity, the dimensionless
variables become

xi = Lx ′
i , t = L2

κ
t ′ , vi = κ

L
v′
i , P ′ = p̃L2

ρκ2
, T − T0 = (T1 − T0)T

′ .

(10.26)
The dimensionless Boussinesq equations are now

div v = 0, (10.27)
Dv

Dt
= −∇P + Pr � v + RaPr T g, (10.28)

DT

Dt
= � T . (10.29)

• With the reference velocityU = (gα(T − T0)L)1/2 the dimensionless Boussinesq
equations are
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div v = 0, (10.30)
Dv

Dt
= −∇P + Pr

Pe
� v − Gr T g, (10.31)

DT

Dt
= 1

Pe
� T . (10.32)

2.2 Let us define the dimensionless coordinate variable and velocity as follows

η = x1
h

, v∗
2 = v2h

ν
. (10.33)

In dimensionless form, the velocity profile (10.16) reads

v∗
2 = 1

12
Gr η

(
η2 − 1

)
, (10.34)

where Gr is the Grashof number

Gr = gα(T2 − T1)h3

ν2
. (10.35)

10.3 Chapter Three

3.1 The solutions obtained in (3.7) and (3.19) for the plane Couette and Poiseuille
flows, respectively, result from linear differential equations. As the non-linear terms
of the Navier–Stokes equations do not intervene in this problem, one invokes the
principle of linear superposition and the solution of the combined plane Couette–
Poiseuille flow is written as

v1 = − h2

2μ

dP

dx1

x2
h

(1 − x2
h

) + Ux2
h

.

The shear stress is

σ12 = μ
dv1

dx2
= −h

2

dP

dx1
(1 − 2x2

h
) + μU

h
.

Finally, the flow rate is

Q =
∫ h

0
v1 dx2 = − h3

12μ

dP

dx1
+ Uh

2
.

3.2 We will refer to the spherical coordinates (r, θ,ϕ) as in Fig. B.1. The rotation
axis of the sphere with the angular velocity � = �ex3 is axis x3. As a consequence
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of the problem’s symmetries, the velocity field has only one single component such
that

v = vϕ(r, θ)eϕ . (10.36)

We solve the Stokes equations with the boundary conditions

v = 0 in r = ∞ (10.37)

vϕ = �R sin θ in r = R . (10.38)

The form of the boundary conditions (10.38) suggests to search the solution under
the form

vϕ = �R f (r) sin θ , p = p∞ . (10.39)

One verifies that themass conservation equation (B.20) is trivially verified by (10.39).
The pressure gradient does not intervene in (B.23) because of axial symmetry
(∂/∂ϕ = 0). One has

�vϕ − vϕ

r2 sin2 θ
= �R sin θ

(
f ′′ + 2 f ′

r
− 2 f

r2

)
= 0 . (10.40)

The f solution written as f (r) = ∑+∞
n=−∞ Cnrn gives

f (r) = C1r + C2

r2
. (10.41)

The boundary conditions (10.37) and (10.38) impose C1 = 0 and C2 = R2, respec-
tively. The velocity field around the rotating sphere is

vϕ = �
R3

r2
sin θ eϕ .

3.3 Spherical Couette flow
The boundary conditions are

vϕ = �1R1 sin θ in r = R1 (10.42)

vϕ = �2R2 sin θ in r = R2 . (10.43)

The considerations of the previous exercise remain valid for the velocity profile
search under the form (10.39)

vϕ = f (r) sin θ , p = p∞ . (10.44)

We will note that we do not use anymore the factor �R, as now we have two radii
and two angular velocities to take care of. The equation to solve is thus
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Fig. 10.2 Flow between two
concentric cylinders, one
fixed and the other moving
with velocity U in the z
direction

UO
R2

R1

r

O z

�vϕ − vϕ

r2 sin2 θ
= sin θ

(
f ′′ + 2 f ′

r
− 2 f

r2

)
= 0 , (10.45)

whose solution is

f (r) = C1r + C2

r2
. (10.46)

The imposition of the boundary conditions (10.42) and (10.43) yields

C1 = �2R3
2 − �1R3

1

R3
2 − R3

1

, C2 = �1 − �2

R3
2 − R3

1

R3
1R

3
2 . (10.47)

3.4 We work in cylindrical coordinates with the z axis in the direction of the axes of
both cylinders (cf. Fig. 10.2). The only non zero velocity component is clearly vz .
Moreover vz = vz(r).

The flow is kinematically forced by the displacement of the inner cylinder. No
pressure gradient is involved in the fluid motion.

Equation (A.23) gives
1

r

d

dr

(
r
dvz

dr

)
= 0 . (10.48)

Integrating (10.48), one finds

vz = C1 ln r + C2 . (10.49)

The boundary conditions are

vz(r = R1) = U (10.50)

vz(r = R2) = 0 . (10.51)

Imposing (10.50) and (10.51) to (10.49), one obtains the velocity field

vz = U

ln R1
R2

ln
r

R2
. (10.52)
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With the help of (A.4), the only non zero component of the stress tensor is σr z equal
to

σr z = μ

(
∂vz

∂r
+ ∂vr

∂z

)
= μ

U

ln R1
R2

1

r
. (10.53)

The friction force per unit length acting on the moving cylinder is given by the
integral ∫ 1

0
σr z|r=R12πR1dz = 2πμ

U

ln R1
R2

. (10.54)

3.5 Couette flow with a free surface

• It is simple to obtain B = 0 and A = ω2 in the Couette solution (3.41).
• The Navier–Stokes equations involving the pressure contributions are

∂ p

∂r
= ρ

v2
θ

r
, (10.55)

∂ p

∂z
= −ρg . (10.56)

Therefore we conclude that p = p(r, z) and dp = ∂ p
∂r dr + ∂ p

∂z dz. As at the free
surface p = pa = cst , one has dp = 0. Then we obtain

dz

dr
= −

∂ p
∂r
∂ p
∂z

= − ρ
v2θ
r

−ρg

= 1

g
ω2
2r . (10.57)

Integrating (10.57) one gets

z = 1

2g
ω2
2r

2 + C , (10.58)

with C a constant. Imposing z(R1) = z1 we find

z = 1

2g
ω2
2(r

2 − R2
1) + z1 . (10.59)

The free surface has a parabolic shape.

3.6 Plane Couette flow with two layers
The flow is two-dimensional and v3 = 0. Furthermorewe have ∂/∂x1 = ∂/∂x3 =

0. The two components v1 and v2 are only dependent on x2. The incompressibility
constraint imposes that v2 = 0 and v1 = v1(x2). The hypothesis on the pressure
gradient implies ∂ p/∂x1 = 0. The Navier–Stokes equations yield
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μ
∂2v1

∂x22
= 0

− ∂ p

∂x2
− ρg = 0 (10.60)

− ∂ p

∂x3
= 0 .

In the two layers labeled 1 and 2 by upper indices we have

∂2v1

∂x22
= 0

dp

dx2
+ ρg = 0 . (10.61)

Integrating we obtain

v1
1 = A1x2 + B1, p1 = −ρ1gx2 + C1

v2
1 = A2x2 + B2, p2 = −ρ2gx2 + C2 . (10.62)

The boundary conditions are v1
1(h1) = U and v2

1(−h2) = 0. We have

A1h1 + B1 = U (10.63)

−A2h2 + B2 = 0 . (10.64)

As the two fluids do not slip at the interface, one gets

B1 = B2 . (10.65)

The interface is in equilibrium and the contact forces satisfy Eq. (1.76).With nI = e2,
the unit vector in direction x2, we have

σ1e2 = σ2e2 . (10.66)

In terms of stress components, relation (10.66) yields

σ1
12 = σ2

12, σ1
22 = σ2

22, σ1
32 = σ2

32 . (10.67)

With the definition of the constitutive equation (1.67), the stress components in
(10.67) are
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σ1
12 = 2μ1d

1
12 = μ1

dv1
1

dx2
= μ1A1 (10.68)

σ2
12 = 2μ2d

2
12 = μ2

dv2
1

dx2
= μ2A2 (10.69)

σ1
22 = −p1 + 2μ1d

1
22 = −p1 (10.70)

σ2
22 = −p2 (10.71)

σ1
32 = σ2

32 = 0 . (10.72)

The first condition on the stress components (10.67) imposes

μ1A1 = μ2A2 . (10.73)

The second condition produces −p1 = −p2 at x2 = 0 and then C1 = C2 = p0 the
pressure at the interface. Using (10.63)–(10.65) and (10.73) we obtain

A1 = μ2U

μ2h1 + μ1h2
(10.74)

A2 = μ1A1

μ2
= μ1U

μ2h1 + μ1h2
(10.75)

B2 = B1 = μ1h2U

μ2h1 + μ1h2
. (10.76)

The velocity components and pressures are

v1
1 = (μ2x2 + μ1h2)U

μ2h1 + μ1h2
, p1 = −ρ1gx2 + p0 (10.77)

v2
1 = (μ1x2 + μ1h2)U

μ2h1 + μ1h2
, p2 = −ρ2gx2 + p0 . (10.78)

Note that if h2 = 0, we recover the velocity profile of the standard plane Couette
flow.

The vorticity is orthogonal to the plane of flow and ω3 = −dv1/dx2. We have

ω1
3 = − μ2U

μ2h1 + μ1h2
= cst (10.79)

ω2
3 = − μ1U

μ2h1 + μ1h2
. (10.80)

3.7 Bubble dynamics
The spherical symmetry of the physical situation makes it convenient to work

with a spherical coordinate system with origin at the center of the bubble as is shown
in Fig. 10.3. All derivatives with respect to θ and ϕ vanish. It is obvious that the only
velocity component relevant to the problem is vr and vr = vr (r, t). The continuity
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Fig. 10.3 Bubble geometry
and associated spherical
coordinates

equation and the Navier–Stokes equation for vr give with the help of relations (B.20)
and (B.21)

1

r2
∂

∂r
(r2 vr ) = 0 (10.81)

ρ

(
∂vr

∂t
+ vr

∂vr

∂r

)
= −∂ p

∂r
+ μ

(
1

r2
∂

∂r
(r2

∂vr

∂r
) − 2vr

r2

)
. (10.82)

The integration of (10.81) gives vr = A/r2. With the boundary condition vr = Ṙ at
the bubble wall, Ṙ denoting the wall velocity, we obtain A = R2 Ṙ. The dot denotes
the time derivative. Then we have

vr = ṘR2

r2
. (10.83)

Inserting (10.83) in (10.82) we have

− ∂ p

∂r
= ρ

(
2
RṘ2

r2
+ R2 R̈

r2
− 2

R4 Ṙ2

r5

)
. (10.84)

Notice that the viscous term disappears by cancellation. We will integrate (10.84)
from the bubble boundary r = R to infinity r → ∞. We obtain

− 1

ρ

∫ p(∞)

p(R)

dp =
∫ ∞

R

(
1

r2
[
2RṘ2 + R2 R̈

] − 2
R4 Ṙ2

r5

)
dr . (10.85)
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Carrying the algebra further we get

p(R) − p∞
ρ

=
[
−1

r

[
2RṘ2 + R2 R̈

] + R4 Ṙ2

2r4

]∞

R

= RR̈ + 3

2
Ṙ2 . (10.86)

The stress components with the help of relations (B.19)–(B.23) are given by

σrr = −p − 4μR2 Ṙ

r3
(10.87)

σθθ = σϕϕ = −p + 2μR2 Ṙ

r3
(10.88)

σθϕ = σϕr = σrθ = 0 . (10.89)

Within the bubble

σrr = σθθ = σϕϕ = −pg (10.90)

σθϕ = σϕr = σrθ = 0 . (10.91)

The stress components σφr and σrθ must be continuous across the bubble surface.
The comparison of (10.89) with (10.91) reveals that this requirement is automatically
satisfied. The stress component σrr must experience a jump of magnitude 2γ/R,
where γ is the coefficient of interfacial tension (cf. Eq. (1.82)); the stress value
inside the bubble is lower. Comparing Eq. (10.87) with (10.90), we find that the
pressure just outside the bubble wall is given by

p(R + ε, t) = pg(t) − (2γ + 4μṘ)

R
, ε � 1 . (10.92)

Setting r = (R + ε) in Eq. (10.86), we obtain an ordinary differential equation for
the bubble radius as a function of time:

RR̈ + 3

2
Ṙ2 + 4μṘ

ρR
+ 2γ

ρR
= p∞(t) − pb

ρ
, (10.93)

with pg the pressure inside the bubble. Since (10.93) is a second-order equation,
two initial conditions must be specified. Most simply, R(0) and Ṙ(0) will be given.
Equation (10.93) is the Rayleigh–Plesset equation.

The treatment given here has been restricted to spherical bubbles. In practice,
the presence of a unidirectional gravitational field tends to destroy the spherical
symmetry. It also causes the bubble to rise in the liquid, and our analysis does not
account for streaming past the bubble.
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However in certain physical problems the bubble is small enough so that interfacial
tension causes it to remain essentially spherical. When streaming past the bubble is
negligible, Eq. (10.93) can still be applied. Cavitation bubbles can be treated, but in
the literature on cavitation in liquids, viscosity is usually neglected, so that the term
4μṘ/ρR is dropped from Eq. (10.93).

10.4 Chapter Four

4.1 The solution of the circular Couette flow is given by Eq. (3.41). Then v =
(0, vθ(r), 0). The vorticity has the components

ω = (0, 0,
1

r

∂

∂r
(rvθ)) . (10.94)

Therefore ωz = 2A. The vorticity in the circular Couette flow is constant. It is inter-
esting to note that if B = 0, i.e. ω1 = ω2, the fluid is in solid rotation and the vorticity
value is twice the angular velocity.

Using Stokes theorem (4.4), the surface integral is easily computed asω · n = ωz

and the surface S = π(R2
2 − R2

1). Therefore
∫
S ω · n dS = 2π(R2

2ω2 − R2
1ω1). For

the line integral,we define a contourmade of a straight line orthogonal to the cylinders
reaching the two boundary circumferencesC1 (inner) andC2 (outer) at points L1 and
L2. The contour is swept from the L1 to L2, goes counterclockwise around C2 till
L2, crosses the annulus from L2 to L1 and then circumnavigates clockwise around
C1 until reaching L1. It is obvious that both integrals on the line segment L1L2 do
not contribute to the integral as the velocity is orthogonal to the integration path. For
the integrals around C1 and C2 we have

∮
C1

vθ(R1)rdθ =
∫ 2π

0
vθ(R1)R1dθ = −2πR1vθ(R1) = −2πR2

1ω1

∮
C2

vθ(R2)rdθ = 2πR2
2ω2 (10.95)

We conclude that the Stokes theorem is satisfied.

4.2 We consider the streamline SA from the free surface S toward the orifice Or of
the enclosure (cf. Fig. 10.4) and we apply to it the Bernoulli theorem (4.41) to obtain

pS + ρv2
S

2
+ ρχS = pA + ρv2

A

2
+ ρχA .

By (4.13), one obtains

−g = − ∂χ

∂x3
,
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Fig. 10.4 Enclosure with
free surface and orifice

and thus χ = gx3 + C . At the free surface the pressure is that of ambiant air; it is
the same situation at the orifice. Therefore pS = pA = pair . If we set the origin of
the x3 axis at the level of the orifice, the contribution of ρχ is equal to C . For the
sake of simplicity, we set C = 0, while at the free surface x3 = h, ρχS = ρgh. On
the free surface, the velocity vS is zero (this is especially true when the enclosure is
large) and setting vA = v one has

ρgh = ρ

2
v2 . (10.96)

This gives the sought relation, which is known as Torricelli formula.

4.3 Hill’s Vortex
We follow the solution described by Rieutord [79]. Another way of presenting

and solving Hill’s vortex leading to the same relationships is to be found in the book
by Shivamoggi [91].

• Referring to the equations for the curl and div in spherical coordinates (Appendix
B), the equations curl = 0 and div v = 0 yield

1

r

∂

∂r
(rvθ) − 1

r

∂vr

∂θ
= ωr

R
sin θ (10.97)

1

r2
∂

∂r
(r2vr ) + 1

r sin θ

∂(sin θ vθ)

∂θ
= 0 . (10.98)

Using the suggested form of vr and vθ given in the statement, one gets from (10.98)

g(r) = − 1

2r

d

dr
(r2 f ) . (10.99)

Equation (10.97) with the help of Eq. (10.99) leads to relation

d2

dr2
(r2 f ) − 2 f = −2ωr2

R
. (10.100)

The particular solution f p of (10.100) is sought as f p = Cr2 with C a constant.
Inserting f p in (10.100), one obtains C = −ω/5R. The homogeneous solution
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fh gives f = A/r3 + B. The boundary conditions allow the determination of the
integration constants. First the velocity must be finite when r → 0. This imposes
A = 0. Secondly the radial component vr vanishes for r = R. Eventually

vr = ω

5R
(R2 − r2) cos θ and vθ = ω

5R
(2r2 − R2) sin θ . (10.101)

Note that on the sphere the velocity is such that vθ = ωR sin θ/5.
• Outside the sphere, the flow is irrotational and the velocity comes the velocity
potential (4.36), solution of the Laplace equation

�� = 0 . (10.102)

We obtain

�(r, θ) = (Ar + B

r2
) cos θ . (10.103)

The boundary conditions are

vr (r = R) = 0, and vθ(r = R) = ωR sin θ/5 . (10.104)

Imposing (10.104) to (10.103) yields

vr = 2ωR

15

(
−1 + (

R

r
)3

)
cos θ, and vθ = 2ωR

15

(
1 + 1

2
(
R

r
)3

)
sin θ .

(10.105)
• Introducing the streamfunction ψ such as

vr = 1

r2 sin θ

∂ψ

∂θ
and vθ = − 1

r sin θ

∂ψ

∂r
, (10.106)

from the velocity components (10.105), the streamfunctions for the full flow are

ψ = ωr2

10R
(R2 − r2) sin2 θ for r ≤ R (10.107)

ψ = ωRr2

15

(
−1 + (

R

r
)3

)
sin2 θ for r > R (10.108)

Figure 10.5 shows the streamlines associated to Hill’s vortex in the meridian plane
(r, z) of the cylindrical coordinates.

4.4 Drain of a container

• With Eqs. (4.100) and (A.20), it is obvious that div v = 0.
• With Eqs. (4.100) and (A.6), we have curlω = 0.
• Using the unperturbed velocity component and the steady state vorticity Eq. (4.24)
for ωz , we obtain
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Fig. 10.5 Hill’s vortex
streamlines

Dωz

Dt
= (v · ∇)ωz = vr

∂ωz

∂r
= ωz

∂vz

∂z
+ ν

r

∂

∂r

(
r
∂ωz

∂r

)
. (10.109)

This relationship yields

− ar

2

dωz

dr
= aωz + ν

r

d

dr

(
r
dωz

dr

)
. (10.110)

Consequently
d

dr

[
ν r

dωz

dr
+ a

2
ωzr

2

]
= 0 . (10.111)

Integration of (10.111) produces (4.101).
• The integration constant must be zero. If this were not the case, the vorticity ωz

would diverge logarithmically at small values of r as the viscous term would
dominate the other terms. On the contrary, for large values of r , the viscous term is
less influent and the vorticity decays as 1/r2. Therefore the total vorticity integrated
over the flow volume is blowing up; nonetheless the vorticity must remain finite
and constant as there exists no mechanism to create vorticity in this problem.

• With C = 0, the integration of (4.101) gives

ωz = ωz

∣∣
r=0 exp

(
−ar2

4ν

)
. (10.112)

• The result (10.112) shows the presence of a characteristic length δ = √
ν/a.

• Over the distance δ there is an equilibrium between the stretching effects of the
elongational velocity field v and the sprawl by viscous diffusion. If the flow occurs
through an orifice of diameter d with a reference velocity U , then we have
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a 
 U

d
,

δ

d



√
ν

Ud
= Re− 1

2 (10.113)

The higher the value of the Reynolds number, the more concentrated the vorticity
in a small diameter core.

4.5 Vortex sheet

• From the problem statement, we have v2 = v3 = 0 and v1 = v1(x2, t). The non
zero vorticity component isω3(x2, t) = −∂v1/∂x2.As theflow is two-dimensional
and the vorticity is orthogonal to the plane flow, the term (ω · ∇)v vanishes. The
vorticity governing equation (4.24) reduces to

∂ω3

∂t
= ν

∂2ω3

∂x22
. (10.114)

• This equation is of diffusion type as was (3.71). We introduce the dimensionless
variables

η = x2√
νt

and υ = U 2t

ν
. (10.115)

The vorticity is decomposed by separation of variables

ω3 = f (η)g(υ) . (10.116)

We have

∂ω3

∂t
= ∂η

∂t
f ′(η)g(υ) + f (η)

∂υ

∂t
g′(υ)

= − η

2t
f ′(η)g(υ) + U 2

ν
f (η)g′(υ)

∂ω3

∂x2
= 1√

νt
f ′(η)g(υ) ⇒ ∂2ω3

∂x22
= 1

νt
f ′′(η)g(υ) . (10.117)

Equation (10.114) reads now

− η

2
f ′(η)g(υ) + υ f (η)g′(υ) = f ′′(η)g(υ) . (10.118)

Dividing through by (10.116) we get

η

2

f ′(η)

f (η)
+ f ′′(η)

f (η)
= υ

g′(υ)

g(υ)
= C . (10.119)
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If g(0) �= 0 and g′(0) is finite, then C = 0. This implies that g′(υ) = 0 and thus
g(υ) is constant.

• The f equation reads

f ′′(η) = −η

2
f ′(η) . (10.120)

Integrating one obtains

f ′ = f ′(0)e
−η2

4 . (10.121)

Integrating again

f (η) = f (0) + f ′(0)
∫ η

0
e

−ζ2

4 dζ . (10.122)

With the change of variable σ = ζ
2 , (10.122) becomes

f (η) = f (0) + 2 f ′(0)
∫ η

0
e−σ2

dσ . (10.123)

Using the error function (3.79), we write

f (η) = f (0) + √
π f ′(0)erf(

η

2
) . (10.124)

• The thickness of the vortex sheet, i.e. the regionwhere the vorticity does not vanish,
increases like

√
νt .

10.5 Chapter Five

5.1 Hele-Shaw flow

• Inspection of (1.73) gives

∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

 v1

L
+ v2

L
+ v3

h
⇒ |v3| ≈ εv1 
 εv2 � |v1| 
 |v2| .

(10.125)
• As the length scales in the directions parallel and orthogonal to the plates are quite
different, we write

∣∣∣∣∂
2v1

∂x21

∣∣∣∣ ≈ v1

L2
�

∣∣∣∣∂
2v1

∂x23

∣∣∣∣ ≈ v1

ε2L2
,

∣∣∣∣∂
2v2

∂x21

∣∣∣∣ ≈ v2

L2
�

∣∣∣∣∂
2v2

∂x23

∣∣∣∣ ≈ v2

ε2L2
.

(10.126)
• The steady Stokes equations (1.73) and (2.54) reduce to the set
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∂vi

∂xi
= 0 , (10.127)

∂ p

∂xi
= μ∇2vi , (10.128)

with p = p(x1, x2) and vi = vi (x1, x2), i = 1, 2. Since v3 is of order ε, the i = 3
component of (2.54) indicates that the pressure is essentially constant across the
gap and does not depend on x3 as ∂ p/∂x3 = 0, i.e., p = p(x1, x2).

• This set of equations is meaningful in the symmetry plane parallel to the plates
containing the origin of the coordinate axes. It is possible with the help of Eqs.
(5.116) and (10.125)–(10.126) to write

vi (x1, x2, x3) = vi (x1, x2, 0) f (x3) , (10.129)

as the variation of vi with respect to x1, x2 is slower than that of f with respect to
x3.

• The Poiseuille flow solution (3.27) provides the relationship

f (x3) =
(
1 − x23

h2

)
. (10.130)

The momentum equations (10.128) become

μ
∂2v1

∂x23
= ∂ p

∂x1
, (10.131)

μ
∂2v2

∂x23
= ∂ p

∂x2
. (10.132)

• Taking Eqs. (10.129) and (10.130) into account, one obtains

vi (x1, x2, 0) = − h2

2μ

∂ p

∂xi
, i = 1, 2 . (10.133)

From (10.133) it is obvious that the velocity field is a gradient, is irrotational and
hence, can be derived from a velocity potential. Introducing

vi = ∂ϕ

∂xi
, (10.134)

Equation (10.133) yields

ϕ = −h2 p

2μ
. (10.135)
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The streamline configuration will be the same in planes x3 = cst . Furthermore they
will be similar to those of a two-dimensional potential flow of an inviscid fluid around
obstacles of the same shape. However near the obstacles the viscous fluid sticks to
the walls, but this influence will be limited to a zone of thickness h. This discussion
explains why the Hele-Shaw cell is used inmany experiments to provide the observer
with the geometrical pattern resulting from the presence of bodies inside an internal
flow.

5.2 Flow between parallel discs

• With the velocity field given in Eq. (5.119), the continuity relation (A.20) gives

∂vθ

∂θ
= 0 , (10.136)

showing that vθ does not depend on θ.
The Navier–Stokes equations (A.21)–(A.23) reduce to

− ρ
v2

θ

r
= −∂ p

∂r
(10.137)

0 = −1

r

∂ p

∂θ
+ μ

[
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+ ∂2vθ

∂z2

]
(10.138)

0 = −∂ p

∂z
+ ρbz . (10.139)

Because of the symmetry, the pressure term in (10.138) vanishes. Taking the par-
ticular form of (5.119) into account, Eq. (10.138) gives

f ′′(z) = 0 . (10.140)

Integrating, we have f (z) = C1z + C2. Imposing the boundary conditions

vθ(z = 0) = 0 and vθ(z = h) = ωr , (10.141)

we obtain C1 = ω/h and C2 = 0. Therefore the velocity field is

vθ = ω

h
r z . (10.142)

• With (10.137), (10.139), (10.142) and bz = −g, the pressure is

p(r, z) = −ρgz + q(r) . (10.143)

Setting q(r) = 0, Eq. (10.137) is satisfied provided ω � 1 and ∂ p/∂r = 0.
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• Throughout the fluid, the shear stress is

σθz = 2μdθz = μ
∂vθ

∂z
= μω

r

h
. (10.144)

Consequently the moment M required to rotate the top disc, or to hold the bottom
one still, is given by

M =
∫ R

0
(2πr)(rσθz)dr = 2πμω

h

∫ R

0
r3dr = πμωR4

2h
. (10.145)

Since the quantities M,ω, a, h can presumably be measured, (10.145) can be used to
determine the viscosity of the fluid, provided the underlying assumptions of creeping
flow and idealized geometry are sufficiently well approximated.

10.6 Chapter Six

6.1

• The complex potential of the flow is

f (z) = m (ln(z + 1) + ln(z − 1) − ln z) (10.146)

corresponding to two sources located in z = ±1 and one sink in z = 0.
• The complex potential is expressed as

f (z) = m ln

(
z2 − 1

z

)
= m

(
ln

∣∣ z2 − 1

z

∣∣ + i arg(
z2 − 1

z
)

)
= ϕ + iψ .

(10.147)
• With z = reiθ, we obtain

ϕ = m ln

(
1

r

√
r4 − 2r2 cos(2θ) + 1

)
(10.148)

and

ψ = m arctan

(
r2 + 1

r2 − 1
tan θ

)
. (10.149)

Therefore the streamlines are

ψ = cst, with
r2 + 1

r2 − 1
tan θ = α (10.150)

with α constant. Let us notice that the Eq. (10.150) is invariant by the transforma-
tion r → 1/r . Replacing r2 by x2 + y2 and tan θ by y/x , Eq. (10.150) becomes
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(x2 + y2 + 1)y = α(x2 + y2 − 1)x (10.151)

which is invariant by the following symmetry (x, y) → (−x,−y). Consequently
we can inspect the flow in the positive half-disk r < 1.

• The flow rate across the line joining the points z1 = 1
2 (1 + i) and z2 = 1/2 is given

with (6.12)

Q = ψ(z2) − ψ(z1)

= m arctan

(
r22 + 1

r22 − 1
tan θ2

)
− m arctan

(
r21 + 1

r21 − 1
tan θ1

)

= m arctan(3) (10.152)

as r2 = 1/2, θ2 = 0, r1 = √
2/2 and θ1 = π/4.

6.2

• The singularities are located in

z1,1′ = ±1 (10.153)

z2,2′ = ±2i (10.154)

z3 = 0 . (10.155)

• They are all inside the circle C : x2 + y2 = 9. The complex circulation � defined
by (6.22) allows for the computation of the flow rate across C and the circulation
around the circle

� =
∫
C
d f, z = 3eiθ

=
∫ 2π

0
d f = f (3ei2π) − f (3)

= (1 + i)
(
ln 8ei4π − ln 8

) + (2 − 3i)
(
ln 13ei4π − ln 13

)

+ e−i2π

3
− 1

3
= 4πi ((1 + i) + (2 − 3i)) = 8π + 12πi . (10.156)

Then Q = 12π and � = 8π.

6.3

• With the relation (6.156) we calculate

z = cosh f = e f + e− f

2
= 1

2

(
eϕ+iψ + e−(ϕ+iψ)

)
2x + 2iy = eϕ(cosψ + i sinψ) + e−ϕ(cosψ − i sinψ) . (10.157)



10.6 Chapter Six 281

Separating the real and imaginary contributions, we have

2x = eϕ cosψ + e−ϕ cosψ = cosψ(eϕ + e−ϕ)

2y = eϕ sinψ + e−ϕ sinψ = sinψ(eϕ − e−ϕ) ,

and
x = coshϕ cosψ, y = sinhϕ sinψ . (10.158)

Therefore one has

(
x

coshϕ

)2

+
(

y

sinhϕ

)2

= 1 (10.159)

(
x

cosψ

)2

−
(

y

sinψ

)2

= 1 . (10.160)

Equations (10.159) and (10.160) show that the equipotentials are ellipses and
streamlines hyperbolas that are drawn in Fig. 10.6. Note that for y = 0, there is
no solution for |x | > 1.

• Let us evaluate the velocity for y = 0 and −1 ≤ x ≤ 1. Obviously by symmetry,
u = 0. From (6.14) we have

dz

d f
= 1

w
= 1

u − iv
= sinh f =

√
cosh2 f − 1 =

√
z2 − 1 . (10.161)

Therefore

u − iv = 1√
z2 − 1

= 1√
x2 − 1

= −i√
1 − x2

. (10.162)

Consequently v = −i/
√
1 − x2. Note the |v| = ∞ for x = ±1 and |v| = 1 for

x = 0.

6.4 Flow in front of a circular obstacle

• The complex potential g(ζ) may be decomposed as a sum of noteworthy terms

g(ζ) = Q

2π
(ln(ζ − a) + ln(ζ + a) − ln(ζ − 1) − ln(ζ + 1)) . (10.163)

The flow is thus created by two sources situated in ζ = ±a and by two sinks in
ζ = ±1. The two images are the images of the singularities with respect to the
wall, namely the η axis.
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Fig. 10.6 Streamlines and equipotentials for z = cosh f

• The complex velocity reads

wζ = dg(ζ)

dζ
= Q

2π

(
1

ζ − a
+ 1

ζ + a
− 1

ζ − 1
− 1

ζ + 1

)

= Q

2π

(
2ζ(a2 − 1)

(ζ2 − a2)(ζ2 − 1)

)
. (10.164)

• With the conformal mapping (6.158), the wall ξ = 0 in the ζ plane is transformed
in a circle of unit radius in the z plane as we have

x + iy = 1 + iη

1 − iη
⇒ x2 + y2 = 1 . (10.165)

• Introducing successively in g(ζ) the positions of the two sources and the two sinks,
ζ = ±a and ζ = ±1 respectively, with the definition of b, we obtain that the source
in ζ = a becomes a source in x = b, the image source in ζ = −a yields a source
in x = 1/b, the sink in ζ = 1 gives a sink at infinity, and eventually, the image
sink in ζ = −1 generates the sink in z = 0.

• Therefore the image of the half plane ξ ≥ 0 in the z plane is the exterior of the
unit circle centered at the origin as shown in Fig. 10.7.

• The complex velocity w(z) in the z plane is

w = wζ

(
z − 1

z + 1

)
(10.166)

• The complex potential in the z plane is made of two sources and one sink
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Fig. 10.7 Source in front of a circular obstacle with a < 1. Red dots are sinks and black dots
sources

f (z) = Q

2π

(
ln(z − b) + ln(z − 1

b
) − ln z

)
(10.167)

which is exactly Eq. (6.159).

6.5 Flow over a forward facing step

• For the half line ξ ≥ 0 and η = 0 we have arg dz − arg dζ = (arg ξ − arg(ξ +
a))/2 = 0.

• For the AO segment, one has arg dz − arg dζ = (arg ξ − arg(ξ + a))/2 = π/2
and for ξ < −a, arg dz − arg dζ = (arg ξ − arg(ξ + a))/2 = 0. The geometry of
the transformed domain is a forward facing step as shown in Fig. 10.8.

• The velocity in the physical plane is

w = g′(ζ)
dζ

dz
= U

(
ζ + a

ζ

)1/2

. (10.168)

x

y

O

A

Fig. 10.8 Sketch of the flow over a forward facing step
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In the limit η → 0, we have

w = U

(
ξ + a

ξ

)1/2

. (10.169)

We notice that for ξ = −a, the velocity vanishes and this point is indeed a stag-
nation point; in ξ = 0, the velocity goes to infinity.

More details for this problem may be found in Sect. 10.6 of Milne-Thompson [59].

10.7 Chapter Seven

7.1 The boundary conditions are given by

x2 = 0 : v1 = v2 = 0 (10.170)

x2 = δ∞ : v1 = Ue(x1),
∂v1

∂x2
= ∂2v1

∂x22
= 0 . (10.171)

From the Navier–Stokes equations, we get

ν
∂2v1

∂x22
= 1

ρ

dpe
dx1

= −Ue
dUe

dx1
. (10.172)

With the help of Eqs. (10.171) and (10.172), we calculate the coefficients a, b, c and
d. With the substitution

λ = δ2∞
ν

dUe

dx1
, (10.173)

we find

a = λ
6 + 2, (10.174)

b = −λ
2 , (10.175)

c = λ
2 − 2, (10.176)

d = 1 − λ
6 . (10.177)

The velocity profile is then written

v1/Ue = 2s − 2s3 + s4 + λ

6
s(1 − s)3. (10.178)

In the present case, the outer velocity is constant (Ue = cst). Therefore λ = 0 and
the velocity profile is simplified
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u

Ue
= 2s − 2s3 + s4. (10.179)

The displacement thickness δ∗ is

δ∗ =
∫ δ

0
dx2

(
1 − v1

Ue

)
= 3

10
δ∞. (10.180)

For the momentum thickness θ, we have the definition

θ =
∫ δ

0
dx2

[
v1

Ue

(
1 − v1

Ue

)]
= 37

315
δ∞. (10.181)

The wall shear stress τw is given by

τw = −
∫ δ∞

0
dx2

∂

∂x2

(
∂v1

∂x2

)
= 2μ

Ue

δ∞
. (10.182)

Finally, through the von Kármán equation (7.89), we have a relation between τw and
θ

dθ

dx1
= τw

ρU 2
e

. (10.183)

Substituting the above expressions for θ and τw, one finds

37

315

dδ

dx1
= 2ν

δUe
⇒ δ∞ = 2

√
315

37

√
νx1
Ue

= 5.83

√
νx1
Ue

. (10.184)

7.2 Referring to Fig. 7.5, the problem solution is performed through the next steps.

• The boundary conditions for the boundary layer developing over the flat plate are

1. No slip wall
v1(0) = 0 for x2 = 0 . (10.185)

2. Matching condition with the outer flow field at x2 = δ0

v1(δ0) = U for x2 = δ0 . (10.186)

3. Stress condition at x2 = δ0

∂v1

∂x2
= 0 for x2 = δ0 . (10.187)

• Evaluation of A, B,C .
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1. Equation (10.185) implies C = 0.
2. Condition (10.187) imposes

AB cos(Bx2)
∣∣
x2=δ0

= 0 ⇒ B = π

2δ0
. (10.188)

3. Condition (10.186) gives A = U . The velocity profile is therefore

v1(x2) = U sin

(
πx2
2δ0

)
. (10.189)

• Computation of θ

1. Introducing the variable s = x2/δ0, the momentum thickness becomes

θ = δ0

∫ 1

0
sin(

π

2
s)

(
1 − sin(

π

2
s)

)
ds

= δ0(
2

π
− 1

2
) = 0.1366 δ0 . (10.190)

2. Continuity over the control volume

−
∫ δ0

0
ρUdx2 +

∫ δ0

0
ρv1dx2 +

∫ x

0
ρv′

2 dx
′ = 0 . (10.191)

Note that the third integral on the left-hand side of (10.191) takes care of the
mass flow rate �ṁ across the upper boundary of the control volume.
Equation (10.191) leads to the relation

∫ x

o
ρv′

2dx
′ =

∫ δ0

0
ρ(U − v1)dx2 . (10.192)

3. Integral momentum equation over the control volume

−
∫ δ0

0
ρU 2dx2 +

∫ δ0

0
ρv2

1dx2 +
∫ x

0
ρv′

2Udx ′ = −
∫ x

0
τw(x ′)dx ′ . (10.193)

Combining (10.193) with (10.192), one gets

−
∫ δ0

0
ρ(U 2 − v2

1)dx2 +
∫ δ0

0
ρU (U − v1)dx2 = −

∫ x

0
τw(x ′)dx ′ . (10.194)

Then ∫ δ0

0
ρv1(v1 −U )dx2 = −

∫ x

0
τw(x ′)dx ′ . (10.195)
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From (10.195) we obtain

τw = − d

dx

∫ δ0

0
ρv1(v1 −U )dx2 = dθ

dx
ρU 2 . (10.196)

Consequently
dθ

dx1
= τw

ρU 2
. (10.197)

4. Computation of τw

τw = μ
∂v1

∂x2

∣∣
x2=0 = μUπ

2δ0
cos(

πx2
2δ0

)
∣∣
x2=0 = μUπ

2δ0
. (10.198)

5. Computation of δ0.
Using (10.197), (10.198) and (10.190) we have

dθ

dx1
= μπ

2ρUδ0

0.1366
dδ0

dx1
= μπ

2ρUδ0
. (10.199)

Integrating (10.199) one has

δ0 = 4.795

√
νx1
U

, (10.200)

result that should be compared with (7.58).

7.3

• At some distance from the leading edge, the boundary layer is constant in shape
and thickness. As a consequence, we have

∂v1

∂x1
= 0 . (10.201)

From the continuity equation and (10.201), one gets

∂v2

∂x2
= 0 ⇒ v2 = cst = V . (10.202)

Prandlt’s equation (7.40) with (10.202) becomes

V
∂v1

∂x2
= ν

∂2v1

∂x22
. (10.203)
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This second-order differential equation has for solution

v1 = Ae
V
ν x2 + B . (10.204)

The boundary condition at the plate imposes v1 = 0 at x2 = 0, giving B = −A.
At x2 = ∞, we have v1 = U∞. Recalling that V < 0 one has A = U∞. Therefore
the velocity profile reads

v1

U∞
= 1 − e

V
ν x2 . (10.205)

• The wall shear stress is

τw = μ
∂v1

∂x2

∣∣
x2=0 = −μ(

V

ν
U ) = −ρVU∞ . (10.206)

Observe that τw does not depend on the viscosity.
• The displacement thickness (7.59) with (10.204) gives

δ∗ = − ν

V
. (10.207)

while the momentum thickness (7.63) becomes

θ = − ν

2V
. (10.208)

Finally the shape factor H is

H = δ∗

θ
= 2 . (10.209)

to be compared to H = 8/3 for the non-porous plate.

10.8 Chapter Eight

8.1 The spiral flow is the same as the helical flow solved in Sect. 3.2.3. The Couette
solution (3.41) will be denoted by V (r)while the axial solution (3.64) corresponding
to the Poiseuille flow in the annular section is referred to asW (r). The axisymmetric
Navier–Stokes equations are given by (8.27)–(8.30). The stability analysis rests upon
a base flow and three-dimensional axisymmetric perturbations. We have

v = (u, V + v,W + w) and p = P + pp . (10.210)

We carry out a linearization of the governing equations discarding the second-order
terms of the perturbations. We get



10.8 Chapter Eight 289

ρ

(
∂u

∂t
+ (W + w)

∂u

∂z
− (V + v)2

r

)
= −∂(P + pp)

∂r
+ μ(�u − u

r2
) (10.211)

ρ

(
∂v

∂t
+ u

dV

dr
+ (W + w)

∂v

∂z
+ u

r
(V + v)

)
= μ(�v − v

r2
) (10.212)

ρ

(
∂w

∂t
+ u

∂(W + w)

∂r
+ W

∂w

∂z

)
= −∂(P + pp)

∂z
+ μ�w (10.213)

∂u

∂r
+ u

r
+ ∂w

∂z
= 0 . (10.214)

As the base flow satisfies the Navier–Stokes equations, a further step in the lineariza-
tion brings the equations

ρ

(
∂u

∂t
+ W

∂u

∂z
− 2V v

r

)
= −∂ pp

∂r
+ μ(�u − u

r2
) (10.215)

ρ

(
∂v

∂t
+ u(

V

r
+ dV

dr
) + W

∂v

∂z

)
= μ(�v − v

r2
) (10.216)

ρ

(
∂w

∂t
+ u

dW

dr
+ W

∂w

∂z

)
= −∂ pp

∂z
+ μ�w (10.217)

∂u

∂r
+ u

r
+ ∂w

∂z
= 0 . (10.218)

Using the normal modes (8.40) and the notation (8.41), the stability equations are

σû + ikW û − 2V v̂

r
= −1

ρ
D p̂p + ν(DD∗ − k2)û (10.219)

σv̂ + ûD∗V + ikW v̂ = ν(DD∗ − k2)v̂ (10.220)

σŵ + û
dW

dr
+ ikW ŵ = −ik

p̂p

ρ
+ ν(D∗D − k2)ŵ (10.221)

D∗û + ikŵ = 0 . (10.222)

Extracting ŵ from Eq. (10.222) and inserting this expression in (10.221), we obtain

p̂p

ρ
= 1

k2
[
ν(D∗D − k2) − σ − ikW

]
D∗û + i û

k

dW

dr
. (10.223)

Taking the derivative D of (10.223) and using it in (10.219) we are left with the
relations

ν
(
DD∗ − k2

)2
û − 2k2

V

r
v̂ + ik3ûW + i ûr

k

(
W ′

r

)′
= σ(DD∗ − k2)û (10.224)

ν
(
DD∗ − k2

)
v̂ − (D∗V )û − ikv̂W = σv̂ (10.225)

û = v̂ = Dû = 0 for r = R1, R2 . (10.226)
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The interested reader may find in Ng and Turner [62] the numerical results
obtained by the compound matrix method for the stability of the spiral flow under
axisymmetric disturbances for the small gap approximation. This analysis sheds light
on the interaction of centrifugal and shear instabilities.

8.2 Rayleigh–Bénard instability
The solution follows the development proposed byChandrasekhar [18] andDrazin

[26].

• The velocity of the base flow is zero v = 0. The temperature profile is linear as
it is solution of d2TC/dx22 = 0, with the boundary conditions TC = T0 for x2 = 0
and TC = T1 for x2 = d. The lower index C indicates the conductive nature of the
solution. Hence

TC = T0 − T0 − T1
d

x2 . (10.227)

The hydrostatic pressure phyd is obtained from theNavier–Stokes equation (1.116)
that yields

0 = −∇p + +ρ0((1 − α(T − T0))g , (10.228)

and consequently using (10.227)

phyd = p0 − ρg(x2 + α
T0 − T1

d

x22
2

) . (10.229)

• For the sake of facility, the dimensionless quantities are denoted without primes
in the sequel. The velocity perturbations are v = (u, v, w). Using (8.67), the lin-
earized equations are

div v = 0, (10.230)
∂v

∂t
= −∇pp + Pr � v + RaPr T g′, (10.231)

∂T

∂t
− v = � T . (10.232)

• The curl of the velocity generates the vorticity (1.40). The dimensionless gravity
vector of unit length acts in the vectorial k direction. Then we have taking (1.41)
into account

curl(T k) = εi jk
∂T

∂x j
ek = ∇T × k . (10.233)

The resulting equation reads

∂ω

∂t
= Ra Pr∇T × ek + Pr�ω . (10.234)
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• The application of curl to Eq. (10.234) leads to the relationship

∂�v

∂t
= Ra Pr

(
�T ei − ∇(e j

∂T

∂x j
)

)
+ Pr��v . (10.235)

To obtain (10.235) the following computation is needed

curl(∇T × ek)i = εi jkεklm
∂2T

∂xl∂x j
em

= (δilδ jm − δimδ jl)
∂2T

∂xl∂x j
em

= e j
∂2T

∂x j∂xi
− ei�T . (10.236)

• The x2 component of (10.235) is

∂�v

∂t
= Ra Pr

(
�T − ∂2T

∂x22

)
+ Pr��v

= Ra Pr�HT + Pr��v , (10.237)

where �H = ∂2/∂x21 + ∂2/∂x23 is the horizontal Laplacian.
• Let us eliminate T between (10.232) and (10.237). From (10.232) we compute

T =
(

∂

∂t
− �

)−1

v . (10.238)

Plugging (10.238) in (10.237) one gets

(
∂

∂t
− �

)(
1

Pr

∂

∂t
− �

)
�v = Ra�Hv . (10.239)

The boundary conditions are

v = ∂v

∂x2
= T = 0 for x2 = 0 and x2 = d. (10.240)

• We choose the normal modes in horizontal Fourier space

T = Θ(x2)e
σt+i(k1x1+k3x3) (10.241)

v = V (x2)e
σt+i(k1x1+k3x3) . (10.242)

Substitution of (10.241)–(10.242) in (10.232) and (10.237) produces
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(D2 − k2 − σ)T = −W (10.243)

(D2 − k2)(D2 − k2 − σ

Pr
)W = k2RaT , (10.244)

with D = d/dx2 and k2 = k21 + k23 .
Elimination of T between (10.243) and (10.244) yields a sixth-order differential
equation

(D2 − k2)(D2 − k2 − σ)(D2 − k2 − σ

Pr
)W = −k2RaW , (10.245)

with the boundary conditions W = DW = T = 0 at x2/d = 0, 1.

The problem is solved numerically by a spectral method, see e.g. [23]. The critical
Rayleigh number in the case of rigid conducting plates is Racrit = 1708 with kcrit =
3.117.

10.9 Chapter Nine

9.1 Taking the conjugate complex of (9.52) one has

f ∗(x) =
∑
k′

f̂ ∗(k′)eik
′ ·x . (10.246)

Setting k′ = −k, one obtains

f ∗(x) =
∑
k

f̂ ∗(−k)e−ik·x . (10.247)

As f is real, we conclude that f ∗ = f and the relation (9.53).

9.2 With the definition (9.60), we write

Qi j (−r) = v′
i (x)v′

j (x − r) . (10.248)

If we have now x = x′ + r , the former relation yields

Qi j (−r) = v′
i (x

′ + r)v′
j (x

′) = Q ji (r) . (10.249)

Symmetry is then proved.

9.3 The use of Eq. (9.241) requires the following algebraic expansions
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(Id − G)3 = Id − 3G + 3G2 − G3 (10.250)

(Id − G)4 = Id − 4G + 6G2 − 4G3 + G4 (10.251)

(Id − G)5 = Id − 5G + 10G2 − 10G3 + 5G4 − G5 . (10.252)

Then

Q3 =
3∑

n=0

(Id − G)n = 4Id − 6G + 4G2 − G3 (10.253)

Q5 =
5∑

n=0

(Id − G)n = 6Id − 15(G + G3) + 20G2 + 6G4 − G5. (10.254)

From (10.253) and (10.254), we recover easily the relations (9.243) and (9.244).
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