
Chapter 1
Incompressible Newtonian Fluid
Mechanics

We present the properties of incompressible Newtonian viscous fluids and their
modelling based on the Navier–Stokes equations. At constant ambient temperature,
incompressible fluids are characterized by their invariable density. They are present
in nature as well as in many technical applications. Incompressible flows offer very
rich and very complex physical phenomena and therefore, their study is appealing
and exciting.

Many books are devoted to incompressible fluid mechanics as well as to hydro-
dynamics. Without wishing to be exhaustive, we can cite the books of Batchelor
[10], Guyon, Hulin, Petit and Mitescu [37], Lamb [47], Landau and Lifschitz [48],
Meyer [57], Ockendon and Ockendon [64], Panton [71], Rieutord [79], Ryhming
[83], Tritton [108], Truesdell and Rajagopal [111], and Yih [125]. The review article
of synthesis by Serrin [90] is also a source of information and inspiration.

In this chapter, we will write the fundamental governing relations obtained from
the principles of ContinuumMechanics. The reader who wishes to go through all the
needed developments is referred to the monograph by Botsis and Deville [16] where
full details are provided.

1.1 Introduction

Incompressible viscous fluids are part of our daily lives without our clear conscious-
ness. The most obvious example is that of water, which accompanies our most ordi-
nary actions: coffee or tea we drink, the baths, the wetting rain, etc. Then, we under-
stand that water is ubiquitous, both in nature: oceans, rivers, lakes, waves as well as
in technical applications: hydraulic turbines, forced ducts, boat design, canals, etc.
Water, in the eyes of the fluid mechanicist, is a typical example of Newtonian viscous
incompressible fluid. The Newtonian qualification will be explained in the sequel.
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2 1 Incompressible Newtonian Fluid Mechanics

Some incompressible fluids have rheological behaviors different from that of
water, such as, for example, blood, molten polymers, mud, agro-alimentary fluids,
. . .. In the case of blood, it contains the formed elements: platelets, white and red
cells. Their presence within the flow modifies the mechanical behavior of the fluid.
As part of the microcirculation, blood is a non-Newtonian shear-thinning fluid with
a viscosity decreasing when the shear stress increases.

For polymer melts, it is the long chains of molecules that affect the rheology
which also depends on the concentration of the polymer in the solvent. Finally,
agro-alimentary fluids have a range of features, such as stress thresholds, viscosity
dependingon the local shear rate, etc.All thesefluids form the class of non-Newtonian
fluids; some of them, for example polymers, are viscoelastic and exhibit memory
effects such as creep and stress relaxation, which take into account the history of their
deformation. However, we will not examine them in this monograph. The interested
reader is referred to the book of Deville and Gatski [24] to discover the foundations
of complex fluids and flows.

Fluid constitutive models and basic equations are derived from the mechanics
of continuous media [5, 16]. We will use the Eulerian description which is the
representation where the fluids are generally studied. We place ourselves in a fixed
spatial position and observe the flow from this point.

We will use a system of rectangular Cartesian coordinates that is the set formed
by point 0 taken as the origin and three orthonormal basis vectors (e1, e2, e3) at
this origin. Therefore the Cartesian coordinates of a point P in the system is given
by the associated vector position of a fluid particle with respect to (e1, e2, e3) such
that x = (x1, x2, x3) (this particle is understood at the macroscopic scale, but being
small enough to carry out infinitesimal analysis). The position will also depend
on time t . The velocity vector has three components that in this system, we note
classically v = (v1, v2, v3). In some cases, we will use cylindrical coordinates with
v = (vr , vθ , vz) or spherical coordinates with v = (vr , vϕ, vθ ).

The flow behavior is characterized by a dimensionless number, the Reynolds
number defined by the relation

Re = UL

ν
, (1.1)

where U and L are a reference velocity and length of the problem at hand, respec-
tively, while ν is the kinematic viscosity of the fluid expressed in SI (Système Inter-
national in French; International System of Units) units, i.e. m2 s−1. Let us recall that
for water, νwater = 10−6 m2 s−1. In this last case, one concludes that the ν presence in
the denominator of Eq. (1.1) produces immediately a high Re value. In reality, Re is
comprised between values close to zero for slow or creeping flows that are laminar to
values of 106 . . . 107 for turbulent flows. For these high Re values, we are in the case
of developed turbulence whose space-time dynamics is very fluctuating. Between
these two extreme values, flows are subject to instabilities and bifurcations that are
the features of transition phenomena. Recently, chaos theory allowed to penetrate
more deeply in the concept of weak turbulence where Re presents moderate values
going from a few hundreds to a few (dozens of) thousands.
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Fig. 1.1 Symmetric Taylor
vortices. Courtesy of N.
Borhani with permission

1.1.1 Circular Couette Flow

The so-called spectral transition is well illustrated by the circular Couette flow
between two concentric vertical cylinders. Let us examine the particular case where
the inner cylinder of radius R1 is rotating with a constant angular velocity ω and the
outer cylinder of radius R2 is fixed.

The Reynolds number is now defined as

Re = ωR1(R2 − R1)

ν
, (1.2)

where (R2 − R1) is the gap dimension. For small Re values, the steady-state laminar
flow is described by the azimuthal velocity

vθ = Ar + B/r , (1.3)

with A = −ωR2
1/(R

2
2 − R2

1) and B = ωR2
1R

2
2/(R

2
2 − R2

1).
If the angular velocity of the inner cylinder is increased, the flow goes through a

first transition towards the Taylor vortices [103]. This discovery impacted deeply the
study of fluid dynamics so much so that this flow is now named the Taylor–Couette
flow. Figure 1.1 shows these vortices for an experimental set-up with R1 = 8 cm and
a gap R2 − R1 = 0.5 cm. The rotation velocity is such that the Reynolds number is
Re = 150 and the Taylor vortices are axisymmetric and steady-state. In a meridian
plane, they appear in counter rotating pairs. A fluid particle follows an helical path
placed on the surface of a torus centered on the rotation axis. Increasing the inner
cylinder rotation, a second transition occurs and the Taylor toruses are deformed in
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Fig. 1.2 Wavy Taylor vortices. Courtesy of N. Borhani with permission

the azimuthal direction. Figure 1.2 displays the steady-state wavy Taylor vortices
pattern for Re = 200.

Subsequent transitionsmodify the number of vortices pairs in the vertical direction
and the wavenumber of the azimuthal deformations in direction θ . At some value
of the Reynolds number, the flow becomes unsteady. This physical phenomenon is
a Hopf bifurcation giving in phase space a limit cycle with a clearly identified time
period. Donald Coles [20] has shown experimentally that by increasing the inner
cylinder rotation the route to turbulence is not the same as by decreasing the rotation
velocity. Typically the flow presents a hysteresis.

1.1.2 Flow Around a Cylinder

The uniform, parallel flow upstream of a horizontal circular cylinder is of paramount
importance in hydrodynamics. As we will note in the sequel, this flow can be trans-
formed in the flow around an airfoil through the Joukowski transformation. The
Reynolds number is defined byU , the uniform upstream velocity, L = D, the diam-
eter of the cylinder, and ν, the kinematic viscosity of the fluid. Figure 1.31 shows the
flow at Re � 0 for which the streamlines are symmetric with respect to the horizon-
tal, vertical, and diagonal directions. The streamlines follow closely the shape of the
obstacle.

1 Figures 1.1–1.7 are taken from text [114]. Attempts to identify the copyright owner have not as
yet succeeded, and he or she is invited to contact the publisher.
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Fig. 1.3 Flow around a cylinder at Re � 0

Fig. 1.4 Flow around a cylinder for (left) Re = 13.1 and (right) 26

As Re grows, for the values 13.1 and 26 shown in Fig. 1.4, it is seen that the
flow is stationary and symmetric with respect to the horizontal axis. However, two
counter-rotating recirculation zones appear behind the cylinder. The length of the
recirculation zone increases linearlywith Rewhile the distance separating the centers
of the vortices grows as

√
Re.

At Re = 47.5, the first critical Reynolds number is reached, at which point the
physical phenomena become unstable. Results over the last decade have shown that
this is truly not a fixed number. The associated Hopf bifurcation can be multiple
in number. Please note the experimental observations of Homann in [89]. A von
Kármán vortex street is produced behind the cylinder with vortices alternately shed
above and below. A similar vortex street is shown in Fig. 1.5 for Re = 140, taken
from [114]. The shed vortices are regularly produced at a frequency corresponding
to a limit cycle in phase space: a Hopf bifurcation. This frequency, denoted f , leads
to the definition of the Strouhal number, St

St = f D

U
. (1.4)

For values of Re around one hundred, St is 0.13.
Stability analyses are based on the Ginzburg–Landau equation [26] which deter-

mines the non-linear development of perturbations superimposed on an underlying
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Fig. 1.5 von Kármán vortex street for Re = 140

Fig. 1.6 von Kármán vortex street for Re = 2000

flow. This theory extends over a vast domain that this book cannot cover. We refer
the reader to specialized texts, for example, [18, 27, 86]. If the Reynolds number is
again increased, the flow passes through transitional regimes before finally attaining
the turbulent state. An excellent synthesis of the dynamics of the wakes of circular
cylinders is that of Williamson [121].

Figure 1.6 shows the flow pattern for weak turbulence. The boundary layer, where
viscous effects are of the same order of magnitude as inertial effects, is laminar in
front of the cylinder, develops around it, undergoes a separation, and produces a
turbulent wake. It is still possible to observe two vortices resulting from the non-
linear dynamics.

At Re = 104 as in Fig. 1.7, the flow has roughly the same form, with two identi-
fiable vortices.
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Fig. 1.7 von Kármán vortex street for Re = 104

Fig. 1.8 Representation of
the fluid deformation
configurations

1.2 Fluid Kinematics

Fluid flows in a three-dimensional Euclidean space. In order to describe its deforma-
tion, the concept ofmotion is needed. For the sake of simplicity, a system of Cartesian
rectangular orthonormal coordinates is chosen. Let X be the initial position vector of
a fluid particle P0 in a material volume ω(0) at time = 0 (cf. Fig. 1.8). At the present
time t ≥ 0, the position of this particle Pt is located by the actual position vector x
in the volume ω(t). The particle motion is described by a vector function χ defined
over time t that depends on X :

x = χ(X, t) . (1.5)
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If the initial reference position (t = 0) coincides with the current position, the func-
tion χ must satisfy the condition

X = χ(X, 0) . (1.6)

Themotion χ is a bijection ensuring a one-to-one correspondence between the initial
and current positions of the fluid particles. The existence of the function χ and its
inverse χ−1

X = χ−1(x, t) (1.7)

with
X = χ−1(X, 0) (1.8)

guarantees the integrality and the unity of the fluid body as a whole.

1.2.1 Material and Spatial Descriptions

The material description, also called the Lagrangian description, of fluid mechanics
signifies the study of physical phenomena under consideration by observing what
happens to a fluid particle or in its neighborhood.Alternatively the spatial description,
known as the Eulerian description, consists of observing the events occurring at a
fixed point in space. Uppercase letters for the material representation and lowercase
letters for the spatial representation will be used to distinguish them clearly without
any ambiguity.

Hydrodynamics problems are most of the time expressed in spatial description
as fluids undergo huge deformations (let us think about the river flowing from its
source till the sea or the ocean). The spatial description will use x, t as independent
variables.

1.2.2 Velocity, Material Derivative and Acceleration

1.2.2.1 Velocity

The velocity of a material particle at time t is the derivative of the motion function
in (1.5) with respect to time. By definition, in the material description, we have

V (X, t) = ∂χ(X, t)

∂t
(1.9)

Vi (X, t) = ∂χi (X, t)

∂t
. (1.10)
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The vector V (X, t) expresses the velocity at time t of the particle that initially was
at X . Note that (1.9) is obtained using (1.5), taking into account that X is one of the
independent variables.

The spatial description of velocity, written as v according to our convention, is
obtained by

v(x, t) = V
(
χ−1(x, t), t

) = V (X, t) . (1.11)

The vector v(x, t) expresses the velocity at an instant t of the particle that, at that
time, passes through the position x.

1.2.2.2 Material Derivative

Let us introduce the notion of material derivative. Let ϕ be a scalar field. During
a motion χ , the material derivative of ϕ(x, t), written ϕ̇ or Dϕ/Dt , is the rate of
change of ϕ(x, t) with time (the derivative with respect to time) for a single particle
in a fixed space position. In thematerial description, that is ϕ

(
χ(X, t), t

) = �(X, t),
we simply have

Dϕ(x, t)

Dt
= ϕ̇ = ∂�(X, t)

∂t

∣∣∣
∣
X=χ−1(x,t)

. (1.12)

The last equation shows that the material derivative is applied to the same particle.
For that reason, some authors call it the particle derivative. Since we can write
�(X, t) = �

(
χ−1(x, t), t

) = ϕ(x, t), we obtain

∂�(X, t)

∂t
= ∂ϕ

∂x1

∂χ1

∂t
+ ∂ϕ

∂x2

∂χ2

∂t
+ ∂ϕ

∂x3

∂χ3

∂t
+ ∂ϕ

∂t

∣∣∣∣
x=χ(X,t)

. (1.13)

Using the definition of the velocity (1.9), the preceding equation takes the following
form:

∂�(X, t)

∂t
= ∂ϕ

∂t

∣∣
∣∣
x=χ(X,t)

+ Vi (X, t)
∂ϕ

∂xi

∣∣
∣∣
x=χ(X,t)

, i = 1, 2, 3 , (1.14)

where the Einstein convention of summation on repeated indices holds. The notation
∂ϕ/∂xi designates the Cartesian components of the gradient of the scalar field ϕ,
namely ∇ϕ, which is a vector field.

Since the goal is to express the rightmost term of (1.14) in spatial coordinates, we
make the substitution X = χ−1(x, t) in the last equation which gives

∂�(X, t)

∂t

∣
∣∣∣
X=χ−1(x,t)

= ∂ϕ

∂t
+ vi (x, t)

∂ϕ

∂xi
, (1.15)
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where we used
Vi (X, t)

∣∣∣
X=χ−1(x,t)

= vi (x, t) . (1.16)

Now we can define the following derivative:

ϕ̇(x, t) = Dϕ(x, t)

Dt
≡ ∂�(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

, (1.17)

where, from (1.15),

Dϕ(x, t)

Dt
= ∂ϕ(x, t)

∂t
+ v(x, t) · ∇ϕ(x, t) , (1.18)

= ∂ϕ(x, t)

∂t
+ v j

∂ϕ(x, t)

∂x j
. (1.19)

The dot in Eq. (1.18) represents the scalar product of two vectors. The derivative
Dϕ(x, t)/Dt is called the material derivative and represents the rate of change of
the function ϕ following the same particle whose velocity is v(x, t). Alternatively,
this derivative can be considered as giving the change of ϕ over time, as seen by an
observer moving with the particle that is at x.

For a vector field w, we have a similar formula for its material derivatives:

Dw

Dt
= ẇ = ∂W(X, t)

∂t

∣∣∣
∣
X=χ−1(x,t)

(1.20)

Dwi

Dt
= ẇi = ∂Wi (X, t)

∂t

∣
∣∣∣
X=χ−1(x,t)

ẇ = ∂w(x, t)

∂t
+ (∇w(x, t)

)∂χ(X, t)

∂t

∣∣∣∣
X=χ−1(x,t)

(1.21)

ẇi = ∂wi (x, t)

∂t
+ ∂wi (x, t)

∂x j
v j .

1.2.2.3 Acceleration

The acceleration A of a material particle at time t is the derivative of its velocity V
with respect to time, that is, the material derivative of V . In the material description,
we have

A(X, t) = ∂ V (X, t)

∂t
= ∂2χ(X, t)

∂t2
(1.22)

Ai = V̇i = ∂2χi (X, t)

∂t2
,
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and in the spatial description, we have

a = v̇ = ∂v(x, t)

∂t
+ (∇v(x, t)

)
v(x, t) (1.23)

ai = v̇i = ∂vi (x, t)

∂t
+ ∂vi (x, t)

∂x j
v j (x, t) .

The notation ∇v represents the velocity gradient, a second-order tensor that has the
components ∂vi/∂x j . The first termon the right-hand side of (1.23) can be considered
as the acceleration due to the time dependence of the velocity at a fixed point in
space. The second term can be interpreted as the contribution to the acceleration
of the material particle due to the heterogeneity of the velocity field. These terms
are sometimes called the local and convective (or advective) parts, respectively, of
the acceleration. The advection corresponds to the transport of the velocity field by
itself.

1.2.3 Jacobian

The Jacobian of the transformation (1.5), i.e.

J = det

(
∂χi

∂X j

)
(1.24)

represents the dilatation of an infinitesimal volume during themotion. For the inverse
function χ−1 to be differentiable, we have the condition

0 < J < ∞ . (1.25)

An elegant relationship due to L. Euler reads

J̇ = J div v . (1.26)

1.2.4 Reynolds Transport Theorem

Theorem 1.1 (Reynolds theorem) If the current time t value of the integral I (t) of
property f (x, t) over a fluid volume ω(t) is defined by the equation

I (t) =
∫

ω(t)
f (x, t) dV , (1.27)

the time derivative of I is given by
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dI (t) =
∫

ω(t)

[
Df

Dt
+ f div v

]
dV , (1.28)

where D
Dt is the material derivative defined by (1.18) such that

D f

Dt
= ∂ f

∂t
+ v j

∂ f

∂x j
= ∂ f

∂t
+ v · ∇ f . (1.29)

We can consider that Reynolds theorem is somehow the generalization to a fluid
material of the one-dimensional Leibnitz’ integral whose integration limits are also
function of the integration variable. In (1.27), the function f may be a scalar, vector
or tensor function.

1.3 Velocity Gradient and Associated Tensors

In numerous problems of fluid mechanics, an interesting kinematic quantity is not
the change in the shape of the material volume, but the rate at which this change is
produced.

Let V be the neighborhood of the point P with coordinates xi , and Q an arbitrary
point belonging to V with coordinates xi + dxi . The spatial velocity of Q is given
by

vi (x j + dx j , t) = vi (x j , t) + ∂vi (x j , t)

∂x j
dx j + · · · . (1.30)

The tensor L whose components are

Li j = ∂vi

∂x j
= (∇v

)
i j

(1.31)

is the velocity gradient that already appeared in Eq. (1.23). The symmetric part of
L, that is,

di j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
(1.32)

d = 1

2

(∇v + (∇v)T
)

(1.33)

is called the rate of deformation tensor, and the antisymmetric part of L, that is,

ω̇i j = 1

2

(
∂vi

∂x j
− ∂v j

∂xi

)
(1.34)

ω̇ = 1

2

(∇v − (∇v)T
)

(1.35)
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is called the rotation rate tensor or vorticity tensor. The upper index T in (1.33) and
(1.35) denotes the transpose. Thus we can write

L = d + ω̇ . (1.36)

As an antisymmetric tensor has only three independent components, they can form
the dual or axial vector 	̇i associated with the rotation rate tensor, that is,

	̇i = 1

2
εik j ω̇ jk = −1

2
εi jkω̇ jk = 1

2
εi jkω̇k j , (1.37)

is called the rotation rate vector. The permutation symbol εi jk is a third order tensor
defined as follows

εi jk =
⎧
⎨

⎩

1 if i jk is an even permutation of 123
−1 if i jkis an odd permutation of 123
0 all other cases,

(1.38)

or as

εi jk = 1

2
(i − j)( j − k)(k − i) . (1.39)

Note that in fluid mechanics, one typically introduces the vorticity vector ω with the
definition as the curl of the velocity. Then

ω = curl v = ∇ × v (1.40)

or

ωi = εi jk
∂vk

∂x j
. (1.41)

And we easily deduce that
ω = 2�̇. (1.42)

Tobetter understand the vorticity vector, consider the decomposition of a localmotion
of a fluid. Let P be a point at position x and P′ a neighboring point as shown in Fig. 1.9.

The vector position of P′ relative to P is dx. After an infinitesimal lapse of time,
P and P′ occupy new positions. P moves with the local velocity v and P′ with the
velocity v + dv. We consider P to be the principal fluid particle and, subtracting its
translational velocity, we describe the motion of P′ as observed from this principal
particle. This reasoning is valid only when the distance dx is very small. We can
decompose the motion of P and P′ into three distinct parts: a translation, a rigid body
rotation, and a strain. The translational motion is given by the velocity v of P. All
the other motions, taken together, are given by dv, the velocity of P′ with respect to
P. We then have

dv = ∂v

∂x
dx = L dx . (1.43)
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P

Pꞌ

v

v

v+ dv

x

dx

O

e2

e3
e1

x3

x1

x2

dv

Fig. 1.9 Relative motion of two fluid particles

By (1.36), the strain motions (stretching, shortening, ...) of P′ with respect to P are
described by d. Consequently the rotational motion of P′ with respect to P is taken
into account by ω̇. We can write

dv(r) = ω̇ dx , (1.44)

where the superscript r refers to rotation.
The rigid body rotational motion of P′ with respect to P must have the form of the

equation v = � × x, where� is the rate of angular rotation (a vector). By (1.37) and
(1.42), we have −ω̇i j = 1

2εi jkωk = ω̇ j i . Thus the rotational component of motion is
given by

dv
(r)
j = ω̇ j i dxi = 1

2
εi jkωk dxi

= 1

2
ε jki (ωk) dxi . (1.45)

This last equation is of the form dv = � × dx. The vorticity vector ω corresponds
to an angular velocity such that the vorticity ω is equal to 2�, that is two times the
vector rate of rigid body rotation of P′ with respect to P.

Note that in the case of rotation of a rigid body, one can show that d = 0 and
L = ω̇. The rotation rate tensor is thus entirely determined by the instantaneous
rotation of the body.
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1.4 Mass Conservation

The principle of mass conservation reads as follows: For the same material volume
ω(t), the mass M(t) remains constant in time.

One has:
dM(t) = 0 . (1.46)

In order to write the local form of the principle of mass conservation, the Reynolds
transport theorem is needed. Indeed, themassM(t) can be expressed by the definition

M(t) =
∫

ω(t)
ρ dV , (1.47)

whereρ is themass density of the fluid. It has for SI2 units kg/m3 or dimensionsML−3

where M is the mass and L a length. For water, at standard sea level temperature,
ρ is 1,000kg/m3. Fluid mechanicists name incorrectly ρ density. Strictly speaking,
density is defined as the ratio of the volumic mass of the fluid (or the material) at
hand to that of water. Therefore water density (specific gravity) is equal to 1.

As ρ can in general depend on position and time, the Eqs. (1.28) and (1.47) yield
in local form:

Dρ

Dt
+ ρ div v = 0 , (1.48)

or
∂ρ

∂t
+ div (ρ v) = 0 . (1.49)

A fluid is considered as incompressible when the density ρ(x, t) is constant and
Dρ(x, t)/Dt = 0. It also follows from (1.49) that the incompressibility condition
can be expressed by the following relationship:

div v = ∂vi

∂xi
= 0 . (1.50)

Note that the velocity field that satisfies (1.50) is solenoidal. As div v = 0, it follows
from (1.26) that J̇ = 0, so J remains constant over time. Since J (X, 0) = 1, the
motion of an incompressible material takes place with constant volume and is often
called isochoric.

The incompressibility condition (1.50) can be satisfied by the vector potential �
such that

v = curl� , (1.51)

as this verifies the vector identity div curl = 0.

2 International System of Units, Système International d’Unités, designated SI in all languages.
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1.5 Equation of Motion

In a fluid, the applied forces on the volume ω(t) are of two types

1. volume or body forces (acting at a distance) by unit volume such as gravity g or
electromagnetic forces, including the Lorentz force, defined by ρb(x, t)

2. contact forces by unit surface t(x, t, n).

In the contact forces, appears n the unit normal vector to the surface ∂ω(t) where
the force is exerted.

The principle of conservation of momentum which is the generalization of New-
ton’s law, reads: The rate of change of the momentum of an arbitrary volume of a
fluid at time t is equal to the sum of the forces applied to ω(t) at that instant.

The principle states

d

dt

∫

ω(t)
ρ(x, t)v(x, t) dV =

∫

ω(t)
ρ(x, t)b(x, t) dV +

∫

∂ω(t)
t(x, t, n) dS .

(1.52)

Theorem 1.2 (Cauchy theorem) The stress vector t is linked to the outward unit
normal n of the closed material surface ∂ω(t) via the stress tensor σ .

t(x, t, n) = σ (x, t) n or ti (x, t, n) = σi j (x, t)n j . (1.53)

The symbol σi j is the stress component in direction i of the Cartesian rectangular
coordinate system acting on a surface element with a unit normal oriented in the
direction of the basis vector e j . Taking mass conservation into account, the left hand
side of (1.52) becomes

d

dt

∫

ω(t)
ρ v dV =

∫

ω(t)
ρ
Dv

Dt
dV . (1.54)

Let us introduce the Gauss theorem that will be useful for many developments.

Theorem 1.3 (Gauss theorem) Gauss theorem, also known as the divergence theo-
rem, transforms the volume integral of the divergence of a continuous media property
into a surface integral

∫

ω(t)
div L dV =

∫

∂ω(t)
L n dS . (1.55)

With Eq. (1.53) and the divergence theorem for a second-order tensor L the contact
force term yields

∫

∂ω(t)
σi j n j dS =

∫

ω(t)

∂σi j

∂x j
dV or

∫

∂ω(t)
σn dS =

∫

ω(t)
div σ dV . (1.56)
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Equation (1.52) now reads

∫

ω(t)

[
ρ
Dv

Dt
− div σ − ρb

]
dV = 0 . (1.57)

Invoking the localization theorem

Theorem 1.4 For an arbitrary material volume, the integral equation is identically
satisfied when the integrand vanishes,
Eq. (1.57) gives

ρ
Dv

Dt
= div σ + ρb . (1.58)

In absence of volume torque, the principle of conservation of angular momentum
implies the symmetry of the Cauchy stress tensor

σ = σ T . (1.59)

This reduces the number of unknown stress components from 9 to 6.

1.6 Equation of Energy

The principle of conservation of energy is expressed as:
For the same material volume ω(t), the time derivative of the total energy is equal to
the sum of the power of the volume and contact forces and the rate of heat received
by the material.

The total energy is the sum of the kinetic energy defined by

∫

ω(t)

1

2
ρ v · v dV (1.60)

and the internal energy ∫

ω(t)
ρ u dV, (1.61)

where u is the internal energy density per unit mass. One gets

d

dt

∫

ω(t)

[
1

2
(v · v) + u

]
ρ dV =

∫

∂ω(t)
t · v dS +

∫

ω(t)
ρb · v dV

+
∫

∂ω(t)
(−q · n)dS +

∫

ω(t)
r dV . (1.62)

In Eq. (1.62), q represents the heat flux vector across the surface ∂ω(t), while r
designates the heat produced or received per unit time and volume. For example, r
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could be the heat produced or consumed by a chemical reaction in the material or
heating by the Joule effect.

By the application of the conservation of mass (1.48), of Cauchy principle (1.53)
and divergence and localization theorems to the relation (1.62), we obtain:

ρ
D

Dt

(
1

2
(v · v) + u

)
= div (σv) + ρb · v − div q + r . (1.63)

The first term on the right hand side of Eq. (1.63) can be written as

div (σv) = div (σ ) · v + σ : ∇v . (1.64)

Subtracting from (1.63) the equation of motion (1.58) multiplied by v, we have:

ρ
Du

Dt
= σ : ∇v − div q + r . (1.65)

The product σ : ∇v is the scalar product of two tensors such that in indexed form,
one has

(σ : ∇v) = σi j
∂vi

∂x j
. (1.66)

1.7 Constitutive and State Equations

The elaboration of the constitutive equation for a viscous Newtonian fluid is based
on the following assumptions:
i. For a fluid at rest, the viscous fluid behaves as a perfect (without viscosity) or
inviscid fluid.
ii. For a moving fluid, the stress tensor depends through a linear relation on the strain
rate tensor or the rate of deformation tensor. This hypothesis is characteristic of the
Newtonian behavior of the fluid. The necessity of a quantitative relation between
the internal forces in a moving fluid and the kinematical quantities describing the
motion is due to Newton. Langlois and Deville [49] extract from his famous book
Philosophiae Naturalis Principia Mathematica the following excerpt.

Resistentiam quae oritur ex defectu lubricitatis partium fluidi, caeteris paribus,
proportionatem esse velocitati, qua partes fluidi separantur ab invicem3.
iii. The fluid is isotropic.

These hypotheses allow writing the general constitutive equation of a viscous
incompressible fluid in the form

σ = −p I + 2μ d . (1.67)

3 The resistance arising from imperfect slipping between fluid particles to be proportional to the
velocity with which the particles are moving apart, other things being equal.
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The symbol p represents the pressure. The strain rate tensor d, which is the symmetric
part of the velocity gradient tensor ∇v, has for components:

di j = 1

2

(
∂vi

∂x j
+ ∂v j

∂xi

)
. (1.68)

The factor μ is the dynamic viscosity coefficient of dimension ML−1T−1 expressed
in Pa.s. The tensor I is the unit tensor; using indices, it corresponds to the Kronecker
symbol δi j defined by the relation

δi j =
{
1 if i = j,
0 if i 	= j.

(1.69)

In an incompressible fluid, pressure is the scalar field resulting from the imposition
of the continuity constraint. For the incompressible viscous fluid, the continuity Eq.
(1.50) is equivalent to tr(d) = 0, with tr being the trace operator of a tensor defined
as the sum of its diagonal elements. The incompressible perfect fluid is obtained for
a vanishing viscosity in (1.67):

σ = −p I . (1.70)

In this last case, the stress tensor is spherical, because only its diagonal elements are
non zero.

The incompressible fluid is a particular case from the thermodynamics point of
view, as ρ is supposed to be a constant. The specific heat capacity is therefore unique
and will be denoted by c. Furthermore we assume that the relation between the
internal energy u and c is

du

dT
= c(T ) .

This relation can be integrated if the heat capacity is considered as a constant, and
with an appropriate choice of the integration constants, we get

u = c T . (1.71)

A last constitutive equation is still to be considered to close the system of equations
to be solved, namely the heat flux. For the vast majority of Newtonian fluids, exper-
imental data show that there exists a linear relation between the heat flux and the
temperature gradient. This is given by Fourier’s law

q = −k(T ) grad T , (1.72)

k being the coefficient of thermal conductivity, which is, most often, only a function
of temperature. Its SI units are W m−1 K−1. For air considered as an ideal gas,
k = 0.0262 W m−1K−1.
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1.8 Incompressible Navier–Stokes Equations

We suppose that the flow is isothermal with T = cnst . The principle of conservation
of energy is satisfied. Inserting the constitutive equation (1.67) in the Eq. (1.58), we
generate the incompressible Navier–Stokes equations or more precisely the Navier–
Stokes equations for the incompressible fluid

div v = 0 (1.73)

ρ
Dv

Dt
= −∇p + μ
v + ρb . (1.74)

Equation (1.74) is a non-linear second-order partial differential equation. It states
that acceleration is produced by the actions of the pressure gradient, the viscous
forces, and the body forces. Note that the presence of the non-linearity in the accel-
eration term, namely the advective acceleration, renders the search for closed form
or analytical solutions extremely dreadful. This partial differential equation requires
initial and boundary conditions to be integrated and solved.

1.9 Boundary and Initial Conditions

1.9.1 No Slip Wall

A viscous fluid in contact with a rigid wall will adhere to the wall due to the effects
of viscosity. The no-slip condition can therefore be written as

v f luid = vwall . (1.75)

1.9.2 Interface

An interface occurs when two immiscible fluids are in direct contact. For a two-
dimensional flow, the interface is a planar curvy line, while in the three-dimensional
case, the interface is a surface. Examples are provided by coating flows where multi-
layer materials are produced in the polymeric industrial applications.

Consider Fig. 1.10. The interface condition expresses the mechanical equilibrium
of the contact forces applied by fluids I and II on either side of the interface. We have

t I + t II = 0 , (1.76)

with definition (1.53) for t . Taking the equality nI = −nII into account, one obtains



1.9 Boundary and Initial Conditions 21

tI

tII

fluid I interface

nI

fluid II

nII

Fig. 1.10 Interface description

σ InI = σ IInI . (1.77)

The interface conditions are obtained by projecting Eq. (1.77) onto the normal nI

and the tangent vector τ giving

σ InI · nI = σ IInI · nI , (1.78)

σ InI · τ = σ IInI · τ . (1.79)

1.9.3 Laminar Free Surface

An interesting particular case of an interface is that of a free surface (cf. Fig. 1.11)
where a laminar viscous fluid is in contact with an inviscid fluid: e.g. air, assumed
to be at rest. Taking n, the outgoing normal vector from the viscous fluid, as a
reference, we have here σ II = −pinvis I , where pinvis is the pressure in the perfect
(inviscid) fluid. The fluid index I is omitted for simplicity. Conditions (1.78) and
(1.79) are now written as

σn · n = −pinvis(n · n) = −pinvis , (1.80)

σn · τ = 0 . (1.81)

The latter relation is consistent with the fact that an inviscid fluid is incapable to
sustain a shear force.

Free surface conditions imply that we know the form of the surface for their
application. However, the form of the surface is itself part of the solution of the
problem at hand. We find that free surface problems constitute one of the major
difficulties in fluid mechanics as they are intrinsically non-linear. In some cases,
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x1

x 2

viscous fluid free surface

n
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Fig. 1.11 Free surface

closed form solutions are sought in Lagrangian formulation. The initial geometrical
domain is prescribed and the solutionmethod tracks the trajectories of fluid particles.
This procedure is carried out in the breaking of a dam problem as described in Chap.
12 of the monograph by Stoker [100].

For certain fluids, condition (1.80) needs to be extended to take into account
surface tension. Then we have

σn · n = −pinvis + γ

(
1

R1
+ 1

R2

)
, (1.82)

in which R1 and R2 are the principal radii of curvature of the surface, and γ is the
viscous-inviscid surface tension coefficient expressed in N/m. The newton N is the
force that gives to a mass of 1 kg an acceleration of 1 m/s. For example, for the
water-air interface, we have γ = 0.072 N/m. The quantity inside the parentheses
multiplying the surface tension coefficient in Eq. (1.82) is equal to 2�, where � is
the average curvature of the surface. Its sign depends on the concavity (−) or the
convexity (+) of the surface.

In practice, we generally limit the study to a part of the space occupied by the
fluid. In this case, it is necessary to add the conditions on the entry section, where
the velocity vector is typically prescribed, and the exit surface, where contact forces
are usually imposed. The latter are most often taken to be zero, which corresponds
to a situation where the fluid is allowed to exit at its own speed.

For the case of a transient problem, the initial conditions are the velocities, which
are often zero at the start.
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1.9.4 Perfect Fluid

As viscosity plays no role here, the fluid can slip along a wall. The adherence condi-
tion no longer applies. We impose that the normal component of the fluid velocity be
zero with respect to the wall with which it is in contact. The slip condition is written
as

v f luid · n = vwall · n . (1.83)

Similarly, we impose the value of the normal component of the fluid velocity for
the entry section and the pressure on the exit section. For transient flows, we proceed
as for viscous flows.

Finally, in aerodynamics (external flows, for example, the flow around a wing pro-
file or an airfoil), we very often find conditions to impose on an immaterial boundary
(which may be at infinity). The typical example is that of a finite obstacle (like a
slender body) placed in an unconfined flow. In this case we impose the condition that
the flow is uniform at infinity.

1.10 Thermodynamics Considerations
and Incompressibility

The speed of sound in ambient air at temperature 293 K is of the order of 340ms−1,
whereas in water, it is 1500ms−1. By definition, the speed of sound is the variation
of pressure with respect to density at fixed entropy s

a2 = ∂p

∂ρ

∣∣∣
∣
s

. (1.84)

As a2 is obtained by the limit

a2 = lim
�ρ→0

�p

�ρ
, (1.85)

for an incompressible fluid,�ρ = 0 and then the speed of sound is infinite. Therefore
the question is raised: “How do we define the concept of an incompressible fluid?”.

1.10.1 Compressible Fluid and Compressible Navier–Stokes
Equations

To examine thismatter, let us consider theNavier–Stokes equations for the compress-
ible fluid in detail. The mass conservation equation is given by (1.48). To produce the
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Navier–Stokes equations, we need the constitutive equation for compressible viscous
fluids

σ = −p I + λ(ρ, T ) tr(d)I + 2μ(ρ, T ) d , (1.86)

where λ is the volume viscosity. The coefficients λ and μ depend on the density ρ

and the temperature T . In the compressible case, the pressure is a thermodynamic
variable such that p = p(ρ, T ). If we assume that the fluid internal energy does not
depend on density, but only on temperature, we are in the framework of the ideal
gas that satisfies the Boyle–Mariotte law “at constant temperature, the product of the
pressure p and the volume V is constant”. This law allows us to write the pressure
state equation

p = ρRT , (1.87)

that is a scalar constitutive equation for the pressure. R is the ideal gas constant
expressed in J kg−1K−1. For ambient air, R = 287 J kg−1K−1.

Introducing the constitutive equation (1.86) in the momentum equation (1.58), we
obtain the Navier–Stokes equations for the compressible fluid

ρ
Dv

Dt
= −∇ p + ∇ (λ trd) + div (2μ d) + ρb . (1.88)

The treatment of the energy equation (1.65) requires a fewmore concepts. Assuming
that the fluid is an ideal gas, its internal energy u and its mass enthalpy h are defined
as

h = u + p

ρ
. (1.89)

The variables h and u depend only on the temperature. The specific heat capacities
at constant volume and pressure are such that

du = cv(T )dT , dh = cp(T )dT , (1.90)

where cv and cp are the specific heat capacities at constant volume and constant
pressure, respectively. Taking into account the state equations (1.87) and (1.89), one
gets

dh = du + R dT , (1.91)

from which we obtain
R = cp(T ) − cv(T ) . (1.92)

For air considered as an ideal gas, cp = 1006 Jkg−1 K−1. If we assume that the
heat capacities are constant in the considered temperature range, we canwrite, within
an additive constant,
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u = cv T , (1.93)

h = cp T , (1.94)

s = cv log p − cp log ρ , (1.95)

where s is the entropy. If the flow is isentropic (same entropy), we have

p

ργ
= cnst , (1.96)

with the definition of the heat capacity ratio:

γ = cp
cv

. (1.97)

In the special case of an ideal gas, (1.84) takes the form, with the use of (1.96)

a2 = γ
p

ρ
= γ RT . (1.98)

With the help of (1.93), the energy equation (1.65) becomes

ρ cv

DT

Dt
= σ : ∇v − div q + r . (1.99)

The expression σ : ∇v may be written successively

σi j
∂vi

∂x j
= σi j di j = −p δi j di j + λ dkk di j δi j + 2μ(di j )

2

= −p dii + λ(dii )
2 + 2μ(di j )

2

or
σ : d = −p tr d + λ(tr d)2 + 2μ(d : d) . (1.100)

To obtain the left hand side of Eq. (1.100), we have used the property stating that the
trace of the inner product of a symmetric tensor σ T with the antisymmetric part of the
tensor ∇v, which is the rotation rate tensor, vanishes. From the mass conservation
equation (1.48), we have

tr d = − 1

ρ

Dρ

Dt
.

Therefore Eq. (1.99) yields

ρcv

DT

Dt
= p

ρ

Dρ

Dt
+ λ (tr d)2 + 2μ d : d − divq + r . (1.101)

Using the state equation (1.87), (1.101) is transformed as
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ρcv

DT

Dt
= Dp

Dt
− ρR

DT

Dt
+ λ(tr d)2 + 2μ d : d − divq + r . (1.102)

Let us now modify the energy equation (1.102) by taking the Fourier law (1.72) and
the relation (1.92) into account

ρcp
DT

Dt
= Dp

Dt
+ λ(tr d)2 + 2μ d : d + div(k∇T) + r . (1.103)

The compressible Navier–Stokes equations comprise themass conservation equa-
tion (1.48), themomentum equations (1.88), the energy equation (1.103) and the state
equation (1.87). To investigate the limit case of the compressible set of equations
to the incompressible formulation, we need to write the dimensionless form of the
Navier–Stokes equations and let theMachnumber go to zero. This analysis is deferred
till the next chapter.

1.10.2 Incompressibility

From the mass conservation equation (1.48), we deduce

div v = − 1

ρ

Dρ

Dt
, (1.104)

from which one concludes that incompressibility is obtained when the density does
not vary with time along a trajectory, i.e.

dρ

dt
= 0 . (1.105)

Let us consider a compressible fluid whose pressure depends on the density and the
temperature or whose density is a function of the pressure and the temperature. It is
possible to expand the previous relationship

dρ

dt
=

(
∂ρ

∂p

)

T

dp

dt
+

(
∂ρ

∂T

)

p

dT

dt
, (1.106)

giving via (1.104)

div v + 1

ρ

(
∂ρ

∂p

)

T

dp

dt
+ 1

ρ

(
∂ρ

∂T

)

p

dT

dt
= 0 . (1.107)

The coefficient of isothermal compressibility χT is defined by
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χT = 1

ρ

(
∂ρ

∂p

)

T

. (1.108)

Forwater, one hasχT = 5.10−10 Pa−1. For air,χT = 10−5 Pa−1. The other coefficient
is the isobaric expansion

α = 1

ρ

(
∂ρ

∂T

)

p

. (1.109)

The compressibility coefficient for liquids is very small. Batchelor [10] notices that
water density increases by 1

2% when the pressure augments from 1 to 100 bars, at
constant ambient temperature (1 bar = 105 Pa). This large strength to compression
of liquids is one of its main characteristics and from the viewpoint of fluid dynamics,
it is a reason why we can consider them as incompressible with a great precision.

1.10.3 Boussinesq Approximation for Weakly Dilatable
Fluids

Let us examine the non isothermal flow of a weakly compressible fluid. We are able
to consider thermal effects for an incompressible fluid, like e.g. in the case of nat-
ural convection. This is achieved by Boussinesq approximation [17] that assumes
a constant density in the full set of equations except in the body force term, where
temperature differences in the fluid induce an Archimedes’ thrust generated by den-
sity differences. This modeling is used in materials science, for example to study the
convection currents in molten metal (Czochralski process for silicium production),
im molten glass (floated glass process), etc. It is also widely used in geophysical
flows and in meteorology.

Introducing the inner product

d : d = di j di j , (1.110)

equation (1.99) becomes

ρc
DT

Dt
= 2μ d : d − div q + r . (1.111)

Using the state equation (1.72), Eq. (1.111) is transformed

ρc
DT

Dt
= 2μ d : d + div (k ∇T ) + r . (1.112)

We notice that the first term in the right hand side is the power dissipated by the
viscous effects that in most cases, are negligible. However for very viscous fluids
like molten glass or the terrestrial magma, these effects must be taken care of. The
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temperature equation (1.112) is simplified for constant k. We have

ρc
DT

Dt
= 2μ d : d + k 
 T + r . (1.113)

In the Boussinesq approximation the body force is gravity and hence b = g. Fur-
thermore for the weakly dilatable fluid, the state equation for density is linearized

ρ = ρ0(1 − α(T − T0)), (1.114)

with α the coefficient of volumic expansion expressed in K−1. The quantity ρ0 is the
density at the reference temperature T0. One observes that when the fluid gets hotter,
it is lighter as ρ decreases; when it is cooling, it is heavier as ρ increases. Eventually,
the Boussinesq approximation supposes that the fluid is incompressible with all its
material characteristics constant, except in the gravity term. The set of Boussinesq
equations reads

div v = 0, (1.115)

ρ0
Dv

Dt
= −∇p + μ
 v + ρ0((1 − α(T − T0))g, (1.116)

ρ0c
DT

Dt
= 2μ d : d + k 
 T + r. (1.117)

In this system of equations, the velocity-temperature coupling is obtained by the
Archimedes’ thrust in the body force term, also called the buoyancy term.

It is customary to modify the pressure term in (1.116) with the following expres-
sion

p̃ = p + ρ0g · x , (1.118)

where the hydrostatic pressure is incorporated. The corresponding Navier–Stokes
equation is

ρ0
Dv

Dt
= −∇ p̃ + μ
 v − ρ0α(T − T0)g . (1.119)

1.11 The Method of Control Volume

Instead of tackling the fluid mechanics partial differential equations, as will be the
usual approach in this monograph, a large number of fluid problems can be solved
using the integral formulation of mass and momentum conservation laws expressed
on control volumes. The control volume is denoted V with surface S.

The mass conservation law (1.50) yields

∫

V
div v dV =

∫

S
v · n dS . (1.120)
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The momentum conservation equation (1.52) reads

d

dt

∫

V
ρ(x, t)v(x, t) dV =

∫

V
ρ(x, t)b(x, t) dV +

∫

S
t(x, t, n) dS . (1.121)

For an incompressible fluid we have

d

dt

∫

V
ρ(x, t)v(x, t) dV = ρ

∫

V

Dv

Dt
dV . (1.122)

The material derivative (1.23) can be recast in the following form

∂vi

∂t
+ ∂vi

∂x j
v j = ∂vi

∂t
+ ∂viv j

∂x j
. (1.123)

The second term in the right-hand side of (1.123) is the divergence of the tensor
V = v ⊗ v. Using the divergence theorem one obtains

∫

V
div V dV =

∫

S
Vn dS =

∫

S
(v · n)v dS . (1.124)

Finally, the relevant equation for the control volume method is

ρ

∫

V

∂v

∂t
dV + ρ

∫

S
(v · n)v dS =

∫

V
ρbdV +

∫

S
tdS . (1.125)

Exercises

1.1 Evaluate by the method of control volume the shearing force F exerted by the
viscous fluid on the plate of length L shown in Fig. 1.12 using the velocity profiles
given in the inflow and outflow sections. It is assumed that

• the inflow velocity is uniform of valueU and the outflow profile is linear over the
height h

• the pressure is uniform in the fluid
• the body force is neglected.

The control volume ABCD in dashed lines has height H .

1.2 Show that the velocity field vi = Axi/r3, where xi xi = r2 and A is an arbitrary
constant, satisfies the conservation of mass equation for an incompressible fluid.

1.3 Show that the flow given by the velocity field
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Fig. 1.12 Simplified flow on a flat plate

vr = (1 − r2) cos θ

r2

vθ = (1 + r2) sin θ

r2
vz = 0

satisfies the incompressibility equation.

1.4 Natural Convection Between Two Differentially Heated Vertical Parallel
Walls
Let us consider the steady state, two-dimensional slow flow of a viscous incom-
pressible fluid subjected to a variable temperature field. The fluid flows between two
infinite parallel walls at different temperatures, cf. Fig. 1.13, such that T2 > T1. The
heat transfer is by conduction only.

Theproblem is solvedwith theBoussinesq approximation.Theviscous dissipation
and the volume heat production are neglected.

Obtain the simplified temperature and momentum equations and compute the
temperature and velocity fields.

1.5 Free Jet
A viscous fluid in laminar flow exits from the cylindrical pipe of a die as it is shown
in Fig. 1.14. In the circular pipe the fluid velocity is that of a Poiseuille flow

vz = vmax

(
1 − r2

R2
0

)
. (1.126)

This relation will be demonstrated in Sect. 3.2.2. The maximum velocity vmax is
reached on the pipe symmetry axis.

The problem is solved in two stages.

• After extrusion, the velocity profile is homogeneous. This means that it is assumed
there is no diffusion with the exterior air at the pipe exit and no mixing. Compute
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Fig. 1.13 Natural convection in an infinite plane channel. The solid line is the velocity profile
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Fig. 1.14 Free jet

the velocity ratio V/vmax where V is the flat velocity profile after extrusion. The
control volume method is needed in this step.

• Evaluate the contraction coefficient

β = R2
1

R2
0

, (1.127)

where R1 is the jet radius after extrusion.
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