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Novel Antimicrobial Strategies to Combat 
Biomaterial Infections
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1 � Introduction

Bacteria are present in nature everywhere and the combat with them has the major 
priority especially in various industrial settings (i.e. food industry) or medical 
devices [1]. It was established earlier that most of bacteria found in nature exist in 
the form of biofilms (attached to surface of different objects and not as free floating 
organisms). Therefore, biofilm formation can be defined as a multistage process. It 
starts with bacteria adhesion to surface and continues with the formation of extra-
cellular matrix. This matrix is composed of one or more polymeric substances (pro-
teins, polysaccharides, humic substances, extracellular DNA) [1, 2]. Bacteria 
adhesion to surfaces depends on different surface parameters: wettability, rough-
ness, chemistry, and charge of materials as well as of the nature of bacterial surface, 
environmental factors and the associated flow conditions etc. [3, 4].

There are several possible strategies to reduce or prevent bacterial infections 
among different populations: patients and medical staff [5]. Traditional hospital 
sterilization strategies are based on usage of high level disinfectants: hydrogen per-
oxide, peracetic acid, glutaraldehyde and low level disinfectants: alcohols, hypo-
chlorites, iodine and iodophor. Advanced sterilization technology focuses on 
chemical-free technology such as UV rays or gas plasma components. However, 
there are several disadvantages of both chemical and chemical-free approaches. 
Firstly, they are toxic to some extent so medical personnel and patients have to 
evacuate the premises. Secondly, the quality of sterilization is proportional to human 
labor invested by cleaning personnel [6]. One of the alternative strategies indepen-
dent of human labor, is to produce antibacterial coatings to reduce or eliminate 
bacteria colonization on surfaces by leaching of biocides, antibacterial surfaces 
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with deposited metals such as copper, silver or gold, formation of superhydrophobic 
surfaces and surfaces encapsulated by photoactive nanoparticles [7–12].

The major drawback of biocides and metal deposited surfaces is their leaching 
from the surface in the environment. In this way those surfaces lose their antibacte-
rial properties after some time. Besides, these surfaces develop bacterial resistance 
which causes more than 33,000 deaths and costs 1.5 billion euros per year in Europe 
[13]. The increase of patients infected in hospitals (in the developing countries the 
infection rate is 75%) was noticed [14]. The cost and cytotoxicity of the agents 
mentioned above might be a problem as well. As the price of the best antimicrobial 
additives (silver, titanium, gold, chitosan) is too high, companies are looking for 
cheaper and safer additives with strong antimicrobial potential. Permanent cytotox-
icity of certain antimicrobial agents in concentrations larger than needed for antimi-
crobial action may cause many problems. A further limited factor of these materials 
usage is that silver and copper nanoparticles are prone to oxidation. After a certain 
time they don’t show antibacterial effects.

In recent years new types of antibacterial surfaces have been designed by encap-
sulation of different photoactive nanoparticles in polymer matrices (polyurethane or 
dimethylsiloxane) [5, 15, 16].

2 � State of the Art

Photodynamic therapy (PDT) is a treatment which includes the usage of light sensi-
tive drugs in the healing of various diseases (for example skin or eye cancers). 
Antibacterial PDT (APDT) is used to eliminate multidrug-resistance pathogenic 
bacteria [17]. Based on principles stated above it is possible to design antibacterial 
surfaces from photoactive nanoparticles (in the form of hybrids or thin films/coat-
ings) or by encapsulation of photoactive nanoparticles into various polymer matri-
ces. One of the properties of these nanoparticles is their ability to produce reactive 
oxygen species-ROS (singlet oxygen, superoxide, hydroxyl radicals, hydrogen per-
oxide) or heat [18, 19]. ROS eradicates multidrug resistant bacteria, quickly disap-
pears and does not represent a danger to the environment. Heat causes denaturation 
of bacteria but requires additional means for its control.

Photoactive nanoparticles called photosensitizers (PSs) produce ROS by the fol-
lowing mechanism: PSs have been excited to a singlet excited state by ultraviolet or 
visible light. From this state electrons are moving to a triple state or return to a 
ground state. Singlet oxygen can be generated if they transfer their electrons or 
energy to molecular oxygen as shown in Fig. 1. Molecular oxygen causes oxidative 
damage of bacteria cells. Since molecular oxygen simultaneously attacks several 
sites in bacteria, the bacteria are unable to mutate and develop resistance [20–23].

Different nanoparticles can be used as PSs: pristine and doped carbon quantum 
dots (CQDs) and graphene quantum dots (GQDs), chitosan nanodots (ChiNDs), 
ultra short single wall carbon nanotubes (US SWCNTs), gold nanoparticles 
(AuNPs)—Fig. 2. It was earlier reported that polymers (polyurethane, 
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Fig. 1  Mechanism of singlet oxygen production by PSs

Fig. 2  Photoactive nanoparticles used potentially in APDT

polydimethylsiloxane) doped with different molecules and nanoparticles [porphy-
rin, methylene blue (MB), crystal violet (CV)/ZnO, Au–MB, CQDs/Ag] eradicate 
wide range of bacteria [Staphylococcus aureus (S. aureus), Staphylococcus epider-
midis (S. epidermis), Saccharomyces cerevisiae, Escherichia coli (E. coli), Bacillus 
subtilis (B. subtilis)] effectively under visible light [12, 24–30].

CQDs and GQDs are zero dimensional carbon nanomaterials with lateral dimen-
sion smaller 10 nm. These materials have very interesting properties: high chemical 
stability, resistance to photo-bleaching, very good solubility in water or organic 
solvents, high photoluminescence and simple route for high yield synthesis—Fig. 
3a, b. Most interesting biomedical property is their ability to generate ROS when 
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Fig. 3  (a) Top view AFM image of CQDs; (b) PL spectra of CQDs; (c) top view AFM image of 
ChiNDs; (d) PL spectra of ChiNDs

they are triggered by visible light and lack of cytotoxicity. Their functionalization 
(by different functional groups) and modification (by doping with different hetero-
atoms for example) contribute to improvement of ROS generation as well as reduc-
tion of energy required for triggering of ROS production [31–36]. ChiNDs are 
novel class of dots with lateral dimension between 20–50 nm, tunable photolumi-
nescence and high chemical stability—Fig. 3c, d. Due to high surface/volume ratio 
ChiNDs should be more efficient than commercial bulk chitosan in bacteria eradi-
cation. There are only few reports on synthesis of ChiNDs by gamma irradia-
tion [37].

AuNPs have been widely studied in biomedicine due to their unique properties 
and multiple surface functionalities. Spherical AuNPs possess high surface-to-
volume ratio, excellent biocompatibility, low toxicity, surface plasmon resonance 
and ability to quench fluorescence. Hybrids of AuNPs and CQDs produce ROS bet-
ter than CQD alone [38].

US-SWCNTs are ultrashort 5–10 nm segments of single-walled carbon nano-
tubes (SWCNTs), with average width of 1  nm and semiconducting nature [39]. 
They are soluble in polar organic solvents, acids, and water. This high solubility in 
organic solvents coupled with their short length, should enable these US-SWNTs to 
be dispersed and incorporated as single tubes into other materials to form 
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composites. Due to their similarity with CQDs and GQDs, US-SWCNTs should be 
potent ROS generators triggered by infrared light.

In our earlier investigation we established that pristine and doped CQDs and 
GQDs can be very toxic against different types of bacteria strains but only under 
blue light irradiation [34]. By depositing CQDs as very thin films (only 3 nm) on 
glass and SiO2 substrates CQDs show good antibacterial activity against S. aureus 
and E. coli and moderate antibiofouling effect toward Bacillus cereus (B. cereus) 
and Pseudomonas aeruginosa (P. aeruginosa) under blue light [33]. By encapsulat-
ing CQDs in polyurethane and polydimethylsiloxane antibacterial activity of these 
nanocomposites enhances several orders of magnitude [5, 16]. Different authors 
reported earlier that CQDs/TiO2, CQDs/Ag or CQDs/ZnO nanostructures as well as 
CQDs functionalized with (ethylenedioxy)bis(ethylamine)-EDA, N, S doped CQDs 
and CQDs @hematite composites show good antibacterial potentials against 
S. aureus, E. coli, K. pneumoniae, B. subtilis [30, 40–44]. CQDs/EDA nanostruc-
tures have higher fluorescence quantum yield compared to pristine CQDs and mixed 
with H2O2 show synergistic effect and thus can inhibit bacteria growth in smaller 
concentrations of each individual chemical [45].

3 � Mechanism of Antibacterial Activity CQDs 
and Their Hybrids

Antibacterial activity of CQDs and their composites with different materials is 
based on the production of ROS. Generated singlet oxygen attacks bacterial wall 
membrane and contributes to lipid peroxidation. The bactericidal efficiency of 
CQDs/polymers depends on the lifetime of generated singlet oxygen [5, 16]. 
Luminescence method of singlet oxygen production indicates that luminescence of 
singlet oxygen come from the CQDs located in the interior of polymer matrix. Thus 
the contribution of the CQDs nearby polymer surface is negligible.

CQDs doping (for example with nitrogen) improves their antibacterial activity 
by the formation of amide and amino groups. Electrostatic interaction between pro-
tonated forms of amines and amides and the lipids of bacterial membrane induces 
bacterial dead [46].

In the case of CQDs/TiO2 composites TiO2 generates ROS-electrons of TiO2 
transfer from valence band to conduction band and thus form holes in the valence 
band whereas CQDs under visible light emit shorter wavelength and excite TiO2 
again [40]. Antibacterial effect of CQDs@hematite is achieved by electron–hole 
generation on the surface of this nanocomposite. The electrons in the conduction 
band react with molecular oxygen and thus produce hydroxyl radicals through an 
oxidative stress [44].

Agents applied in PDT should have low cytotoxicity. In our previous studies we 
established that CQDs had low dark cytotoxicity [47]. But it was also reported that 
cancer cells as well as normal cells might be less sensitive to phototoxicity of GQDs 
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than bacteria strain due to different level of isocitrate dehydrogenase in the cells. 
Singlet oxygen affects the level of isocitrate dehydrogenase and the cells with lower 
level of isocitrate dehydrogenase are more sensitive to death by singlet oxygen [48].

Apart from ROS generation and surface functionalization of CQDs, surface wet-
tability and roughness affect the bacterial death. But the effect of surface roughness 
is limited by the shape and size of bacteria. Namely, bacteria adhere to surfaces 
which features correspond to their own diameters [4].

4 � Conclusion

In this chapter we discussed new light triggered strategies to combat bacterial infec-
tions and possible usage of photoactive polymers for these purposes. Photoactive 
antibacterial polymers are highly promising solution for novel medical devices. To 
enable their wise usage for the treatment of urinary infections some changes must 
be made. For example, the effectiveness of photoactive polymers inside human 
body can be increased by incorporation of micron sized electronic devices (light 
emitting diode, light detector, pH sensor, radio frequent device) into polymer matri-
ces. The smart medical device should have multifunctional role: the detection of 
biofilm formation, the eradication of the formed biofilms by APDT and transferring 
information to medical staff in real time.
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