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Plasma Based Approaches for Deposition 
and Grafting of Antimicrobial Agents 
to Polymer Surfaces

Todorka Gancheva Vladkova and Dilyana Nikolaeva Gospodinova

1  Introduction

Improved protection of urinary stents against infections is a significant current chal-
lenge because of the increasing microbial resistance to the conventional antibiotics 
and negative issues for the patients. Formation of crystalline biofilms of pathogenic 
microbial cells is the leading cause of urinary stent associated infections.

On many parameters polymeric materials satisfy the basic requirements and are 
widely used for the fabrication of urinary stents, silicones and polyurethanes being 
preferable ones currently [1]; and biodegradables attracting interest lately. However, 
the nonsufficient microbial resistance, biofilm formation and encrustation are their 
common gap.

A lot of approaches, antimicrobial agents and techniques are under a study to 
mitigate the problem by creation of contact killing, releasing or low adhesive sur-
faces do not allowing attachment of microbial cells [2–4].

The plasma treatment has a number of advantages that make it preferable in 
many strategies for the development of antimicrobial biomaterials. The control over 
the plasma processing parameters allows control over the surface chemistry, charge, 
structure, morphology, hydrophilic/hydrophobic balance, etc. Due to a variety of 
biomaterials and bacteria, causing urinary tract infections, plasma assisted antibac-
terial strategies need in tailoring to each specific surface [5–8].
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2  Physical Plasma and Plasma Processes

Plasma is a multicomponent system obtained by a partial ionization of gas. The 
plasma consists of positively and negatively charged ions, negatively charged elec-
trons, radicals, neutral and excited atoms, highly energetic molecules and molecular 
fragments [8–12]. According to the temperature of the ions, the plasma refers to low 
temperature (cold) or high temperature plasma [13].

Surface modification of polymeric biomaterials is performed in low temperature 
plasma created by ionization of inert (Ar, Ne, He) or reactive (O2, N2, NH3, CO2) 
gases or volatile monomers at low (RF) or atmospheric pressure by applying energy 
in the form of heat, direct or alternating electric current, radiation or laser light 
[8, 12].

Depending on the mode of plasma treatment, four types modification processes 
happen on the polymer surface: sputtering, etching, ion implantation and plasma 
polymer deposition [12].

Plasma sputtering is the plasma physical degradation, limited to the outermost 
layer of the polymeric biomaterial, as it simplified presented in Fig. 1.

Plasma sputtering is used for sterilization of sensitive to temperature or radiation 
biomaterials, removal of surface contaminations and deposition of sputtered thin 
coatings [12, 14].

Plasma etching (Fig. 2) is a process at which the loss of the exposed polymeric 
material is deeper and the adsorption of energetic species is followed by a product 
formation, prior to a product desorption.
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Fig. 1 Simplified presentation of plasma sputtering: the plasma degradation is limited to the out-
ermost layer of the polymeric material
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Fig. 2 Simplified presentation of plasma etching: the loss of the exposed polymeric biomaterial is 
deeper and the adsorption of energetic species is followed by a product formation, prior to a prod-
uct desorption
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Fig. 3 Simplified presentation of plasma ion implantation: the presenting in the plasma excited 
species react directly with the polymer surface and induce grafting of new functional groups

Plasma etching is aimed at: removal of impurities, surface nanopatterning, cross- 
linking of surface polymer chains and generation of surface functional groups 
[11, 15].

Plasma ion implantation is a process at which the presenting in the plasma 
excited species react directly with the polymer surface and induce grafting of new 
chemical groups (amine, hydroxyl and others), Fig. 3 [11, 15].

Plasma polymer deposition (PPD) is a process in which a thin polymer-like film 
is formed over the surface of the substrate polymer (Fig. 4).

PPD happens inside the plasma reactor but outside the plasma zone where acti-
vated gas species polymerize onto the cold substrate. The generated films are 
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Fig. 4 Simplified presentation of plasma polymer deposition: a thin polymer-like film is formed 
over the surface of the original biomaterial

commonly referred as plasma polymers although they do not be formally classified 
as polymers because they do not consist of repeating monomer units [10, 15]. Using 
plasma of different gaseous substances: allylamine, octadiene, aldehydes, ethanol, 
acrylic acid, perfluorooctane, etc.) and optimizing the operation conditions it is pos-
sible to create thin coatings with different functional groups and varied properties 
(hydrophilic/hydrophobic, positively/negatively charged or non-charged, soft or 
hard, etc.), as it is evident from Fig. 5.

Plasma-enhanced chemical vapor deposition (PECVD) is the most common 
plasma polymerization technique. Magnetron sputtering, liquid-assisted deposi-
tion, plasma-assisted thermal evaporation, etc. are other technics to polymer sur-
face modification [11, 15–17]. Ion beam processing includes: ion implantation; 
ion beam texturing and sputtering, etc. The ion-beam modification is durable and 
no surface “reconstruction” happens in contrary to the plasma treated surface. 
Plasma immersion ion implantation and ion treatment by plasma exposure are two 
relative new possibilities. The above methods could be utilized in antimicrobial 
approaches to the creation of functionalized, or low adhesive surfaces with con-
trolled topography and surface energy [11, 18]. Some examples of plasma treat-
ments are: ion-plasma modification of polyvinylchloride microfiltration 
membranes [19]; treatment of polyacrylonitrile membranes in DBD discharge in 
air (including magnet stimulated), [20–22]; electron beam cross-linking of sili-
cone rubber [23], plasma pre- treatment of collagen and keratin base materials 
[24]; generation of self-organized patterns in cold atmospheric plasma-activated 
liquids [25] etc.
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Fig. 5 Chemical 
composition (based on 
results from XPS) of RF 
vacuum plasma deposited 
films of different 
monomers: 
diaminocyclohexane 
(DACH), 
hydroxyethylmethacrylate 
(HEMA), 
hexamethyldisiloxane 
(HMDS), acrylic acid 
(AA), methane (CH4) and 
polyethylene oxide (PEO) 
(from. T. Vladkova, 
Surface Engineering of 
Polymeric Biomaterials, 
Smithers Rapra, UK, 2013)
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3  Plasma Approaches to Antimicrobial 
Surfaces Development

Polymer surfaces with antimicrobial properties can be developed either by coating 
deposition, antimicrobial agent grafting or affecting the surface topography and free 
energy. These approaches act through distinct mechanisms: contact killing, killing 
in solution or stimuli responsive killing and bacterial repellence [3, 4, 26]. Plasma 
strategies for developing of such surfaces are in the focus of many current investiga-
tions [27]. They could be referred to the following main groups: deposition of anti-
microbial plasma coatings, plasma based surface functionalization and covalent 
immobilization of antimicrobial molecules.

3.1  Deposition of Antimicrobial Plasma Coatings

Deposition of plasma coatings decreasing the microbial adhesion, contact killing or 
releasing antimicrobial agent (passively or in response of external stimuli) is 
accepted now as a promising strategy to creation of antimicrobial surfaces [4, 8].

Plasma deposition of nanocomposite coatings, containing metal or metal oxides 
nanoparticles (Ag, Cu, Ti, TiO2, etc.), is becoming an important step in the manu-
facturing of antimicrobial polymeric biomaterials [8]. Silver is one of the most uti-
lized antibacterial components of plasma coatings. It is included in different forms: 
as phospholipid encapsulated nanoparticles [28]; hybrid silver-poly(l-lactide) 
nanoparticles [29]; polyvinyl-sulphonate-stabilized nanoparticles [30]; as Ag/
SiO(x)C(y) plasma polymer [31]; as (AgNPs)-loaded coatings with a second n- 
heptylamine layer [32]; plasma-sprayed silver-doped hydroxyapatite coating [33, 
34]; silver-doped diamond-like carbon coatings deposited via a hybrid plasma pro-
cess [35]; Ag clusters incorporated in a:C (Ag/a:C) matrix produced by plasma gas 
condensation process [36]; silver/montmorillonite biocomposite multilayers [37], 
hexamethyldisiloxane nanocomposites [38]; as plasma coated AgNPs [39]; etc. 
Piszek and Radtke [40] discuss chemical vapor deposition (CVD) and atomic layer 
deposition (ALD) as a tools for fabrication of silver layers, nanoparticles, and nano-
composites together with the release of silver ions from nanoparticles or nanolayers 
as well as the antimicrobial activity of these materials.

Vladkova et  al. [41] developed new functional coatings for medical devices, 
employing magnetron co-sputtering to deposit triple TiO2/SiO2/Ag nanocomposite 
thin films. Combining the antimicrobial activity of the TiO2 and Ag with the dispers-
ing effect of the SiO2 these coatings demonstrate strong inhibitory effect toward 
E. coli and P. aeruginosa growth. Direct contact and eluted silver mediated killing 
were experimentally demonstrated as mechanism of antibacterial action of these 
coatings [41]. Kredl et  al. [42] use DC plasma air jet to deposit Cu coating on 
PDMS and acrylonitrile butadiene styrene ABS triple co-polymer surfaces. Good 
antimicrobial activity against Gram-negative and Gram-positive test bacteria with 
clinical significance was found by Stoyanova et  al. [43] for RF magnetron 
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co- sputtered Ag and Cu doped TiO2 coatings. Woskowicz et al. [44] just reported 
MS-PVD plasma treatment of polypropylene surface utilizing sputtering of Ag, Cu 
and their oxides in order to impart antimicrobial activity [44].

Deposition of plasma coatings releasing antimicrobial agents either passively or 
in response to external stimuli is another option to limit bacterial colonization. 
Releasing metal nanoparticles (silver, coper or tin), amino-hydrocarbon coatings, 
prepared by plasma immersion ion implantation are an example discussed as alter-
native of the antibiotics releasing ones [12].

Plasma coatings that release antimicrobials in response to external stimuli are 
produced by ‘sandwiching’ of antimicrobials between two plasma polymer layers, 
plasma polymer over coating or nano-templating for creation of antimicrobial res-
ervoirs [45–47]. A novel approach to generate hydrogel coatings through 
atmospheric- pressure plasma polymerization includes: plasma pre-treatment of the 
substrate leaving reactive surface radicals; plasma-induced polymerization of the 
monomer units and cross-linking the polymer chains into a polymer network [48].

Plasma coatings inhibiting bacterial adhesion are based on the idea for creation 
of surfaces decreasing microbial adhesion down to levels do not allowing attach-
ment or allowing easy detachment of microbial cells. Non-toxicity is the main 
advantage of this strategy together with some others. Ykada et al. [49] proved that 
the work of adhesion in aqueous media, W1,2w approaches to zero when the water 
contact angle (WCA) or surface tension, γc approaches to zero, i.e. low adhesive are 
strong hydrophilic or strong hydrophobic surfaces. Surface enrichment of relevant 
functional groups and topographical modifications are main ways to creation of 
such by plasma treatment [4, 11]. When plasma processes are combined with nano-
texturing, remarkable wetting states such as superhydrophobicity and superhydro-
philicity can be achieved [50–52]. Nwankire et al. [53] deposited superhydrophobic 
(WCA above 150°) siloxane coatings using atmospheric pressure plasma jet system 
and hexamethyldisiloxane (HMDSO), tetramethyl cyclotetrasiloxane (Tomcats) or 
a mixture of Tomcats and fluorosiloxane as liquid precursors [53].

Diamond like carbon (DLC) plasma coatings are also used for creation of low 
adhesive polymer surfaces. A fluid precursor, generally used for production of DLC 
is hydrocarbon (methane) or silicone. The hydrogen to carbon ratio has a dramatic 
influence on the characteristics of the DLC coatings. But overall they characterize by 
excellent biocompatibility and low friction coefficient [11, 54]. In 2007, Laube et al. 
[55] discuss DLC coatings as a new strategy for decreasing the formation of crystal-
line bacterial biofilms on ureteral stents. A preliminary study with ten patients having 
indwelled DLC coated stent demonstrates quite promising results: significantly 
decreased friction, encrustation and biofilm formation. It was concluded that further 
investigation in larger patient groups is necessary for their confirmation. Unfortunately, 
no reports were found about that [55]. The doping with antimicrobial metals (copper, 
silver, and other) or elements increasing the hydrophobicity are conventional tools to 
improve the DLC coatings resistance to bacterial biofilms formation. Ren [56] 
reports increased resistance to bacterial colonization of anti- adhesive Si-and F-Doped 
DLC coatings and micro-nanostructured surfaces than non-doped DLC coatings.

Another promising candidate for antimicrobial protection of biomaterial are 
oxazoline- derived plasma polymer (PPOx) coatings. Bacteria may attach in small 
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numbers to the deposited under appropriate conditions PPOx coatings but would 
not proliferate to form biofilms, that is very interesting for development of low foul-
ing coatings to indwelling medical devices [57, 58]. A simple and efficient strategy 
for preparation of poly(2-oxazoline)-based coatings on polytetrafluoroethylene 
(PTFE) substrate, using diffuse coplanar surface barrier discharge (DCSBD) as a 
cold plasma source was just reported [59].

3.2  Plasma-Based Surface Functionalization 
and Antimicrobial Agents’ Immobilization

Plasma deposited antimicrobial coatings improve the antibacterial activity but the 
effect is not enough durable for some applications and toxicity concerns remain. 
Covalent grafting of antimicrobial agents is a subject of many investigations aimed 
at a long-lasting efficacy and a reduced toxicity [5]. Plasma treatment is an easy way 
to creation of functionalized surfaces with antimicrobial activity or such that can be 
utilized for covalent immobilization of antimicrobial agents including on nanoscale 
topographies [4, 60].

Conventionally, an antimicrobial agent immobilization is carried out in two 
steps: enriching the topmost polymer surface with reactive functional groups by 
cold plasma treatment (RF or atmospheric pressure plasma, lately preferable) fol-
lowed by covalent binding using known chemical reactions [4, 60].

The oxygen-rich surfaces, containing hydroxyl, carboxyl and carbonyl groups 
promote the cellular attachment because of ionic interactions with molecules, medi-
ating the cell adhesion [61]. The amine-rich polymer surfaces created by plasma 
treatment, using allylamine, ethylendiamine, propylamine, butlyamine or heptyl-
amine as starting monomer are positively charged and facilitate the electrostatic 
adsorption of negatively charged proteins, that maybe confer their biocompatibil-
ity [62].

Plasma deposition of ring opening monomers (oxazolines, pyrrole, furfuryl, 
thiophene, aniline, etc.) generates surface chemistries that are not achievable via 
other ways. Careful tuning the plasma deposition condition is very important to 
tailor the amount of functionality suit for any specific application and to ensure that 
film reactivity can be maintained for relevant time [57, 63–67]. Plasma deposited 
polyoxazolines (POx) contain isocyanate-, nitrile groups and intact oxazoline rings. 
This provides unique opportunities to carry out binding reactions with biomole-
cules, nanoparticles and various ligands that contain carboxyl groups in their struc-
tures [57, 68]. Plasma-assisted processing and catechol chemistry as well as the use 
of natural antimicrobial agents to produce synthetic antibiotic-free antibacterial sur-
faces are a particularly hot topic discussed now [69].

Immobilization of biologically active molecules (antibiotics and other antimicro-
bial agents) to polymer surfaces is for a long time studied [4].

Examples of plasma assisted attachment of antibiotics are grafting of triclosan 
and bronopol on oxygen plasma pre-treated polyvinylchloride; grafting of gentamy-
cin to polyvinylidene fluoride after plasma-induced graft polymerization of acrylic 
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acid; etc. [27]. The efficacy of cold plasma for direct deposition of antibiotics is 
discussed lately as a novel approach for localized delivery and retention of the 
effect. Ampicillin and gentamicin, deposited onto two types of surfaces: polysty-
rene micro-titer plates and stainless steel coupons confirmed that the plasma process 
bonds the antibiotics to the surfaces and ensures localized retention of the antibiotic 
activity against planktonic and sessile E. coli and P. aeruginosa [70].

Plasma treated polymer surfaces, enriched with reactive functional groups are 
utilized in other bioactive molecules immobilization such as peptides, proteins, qua-
ternary ammonium compounds, etc. via corresponding chemical reactions [11, 60]: 
Plasma pre-treated expanded poly(tetra fluoro ethylene) (PTFE) was peptide immo-
bilised after acrylic acid (AA) grafting and diNH2PEG coupling [71]; RF acrylic 
acid plasma treated silicone surface was immobilized with avidin protein [72].

Plasma treatments, opening a way to biofunctionalization of chemically inert 
polymers (such as PDMS is) are of especial interest. Trying to combine some advan-
tages of both: ion-beam and plasma treatment, namely the durability of the modify-
ing effect of the ion-beam with the simplicity of the plasma as compared to ion-beam 
equipment, we developed a special irradiation technique, plasma based Ar+ beam, to 
activate the PDMS surface for further hybrid functionalization [18, 73, 74]. 
Assuming that the existence of an ion-flow in the plasma volume could strength the 
surface modifying effect including its durability, a parallel plate reactor equipped 
with a serial capacitance (Fig. 6) was employed to obtain an ion flow in the plasma 
volume. The vary of the discharge power ensures varied density of the ion flow [10].
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Plasma volume
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Fig. 6 Parallel plate single-wafer reactor in variant of plasma based Ar+ beam mode of surface 
treatment

Plasma Based Approaches for Deposition and Grafting of Antimicrobial Agents…



282

Plasma based Ar+ beam

OO O

H

O

O

O

O

H

COOH

AA grafting

di–NH2-PEG bonding 

C

O

Antimicrobial peptide immobilization

C

O

C
O NH – PEG – NH2 

Antimicrobial peptide

NH – PEG – NH 

PDMS

PDMS

PDMS

PDMS

PDMS

Fig. 7 Principle scheme of 
plasma based Ar+ beam 
initiated multistep surface 
modification of cross- 
linked 
polydimethylsiloxane 
(PDMS)

Plasma based Ar+ beam can initiate multistep surface modification procedure 
including antimicrobial agent (peptide/protein) immobilization via flexible spacer. 
The principle scheme of this experimental approach is presented in Fig. 7.

This multistep procedure opens a new way to obtain four types modified PDMS 
surfaces: (1) partially mineralised (moderate hydrophilic, with O-containing groups 
and free radicals); (2) chemically grafted with AA (moderate hydrophilic, with –
COOH functional groups); (3) diNH2PEG-coupled (strong hydrophilic, with –NH2 
functional groups; PEG acting as flexible spacer); and (4) biomolecules immobi-
lized (collagen, antimicrobial peptide, or other). The chemical composition, surface 
topography and roughness as well as the surface hydrophilic/hydrophobic balance, 
surface free energy, its components and polarity were controlled on every stage of 
the modification procedure by means of XPS, AFM, SEM and equilibrium contact 
angle measurements.
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inside the plasma
chamber

in air medium

Fig. 8 A simplified sketch of the cascade process that results in a partial mineralization and 
O-containing functional groups formation on the PDMS surface due to a plasma Ar+ beam 
treatment

Figure 8 demonstrates the cascade process of partial mineralization and func-
tionalization of cross-linked PDMS. It is evident where and how appear a number 
of active centres such as free radicals and oxygen-containing gropes that could be 
utilised in further chemical grafting of desired functionalities.

The partially mineralized surface layer was similar to that obtained after a con-
ventional ion-beam. The PDMS surface hydrophilisation was due to surface polar-
ity increase as a result of polar groups’ accumulation, this effect depending on the 
discharge power. The above presented multi-step procedure has a potential to be 
used whenever need arises to control chemical activity, hydrophilic/hydrophobic 
balance and biocontact properties of chemically inert polymers for application as 
antimicrobial biomaterials for cells culture, processing of biosensors, indwelling 
medical devices, etc.

In 2019, Tran et al. [75] develop a single step plasma process for covalent bind-
ing of antimicrobial peptides on catheters to suppress bacterial adhesion. Plasma 
immersion ion implantation (PIII) was demonstrated as a single step treatment lead-
ing to covalent coupling of antimicrobial peptides to both internal and external sur-
faces of PVC catheter tubing, reducing 99% of bacterial adhesion. Ye et al. [76] 
created self-sterilizing surfaces using a single-step solvent less grafting method. A 
grafting process was conducted by vapor deposition of a crosslinked 
poly(dimethylaminomethyl styrene-co-ethylene glycol diacrylate) (P(DMAMS-co- 
EGDA)) prime layer, followed by in situ grafting of poly(dimethylaminomethyl 
styrene) (PDMAMS) from the reactive sites of the prime layer. This hybrid coating 
demonstrates more than 99% bacterial killing against both Gram-negative E. coli 
and Gram-positive B. subtilis [76]. Surface-grafted polymers, known as polymer 
brushes, become an important tool for surface modification and functionalization. 
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Wang et  al. [77] review the recent progress in the surface-grafting of polymers, 
including their formation and utilization in functional materials for electronics, 
medical devices, etc. O2-functional groups, introduced by oxygen-plasma treat-
ment, on plasma polymerized HMDSO surface, are utilized in binding of pharma-
ceuticals and anti-microbial peptides inhibiting the biofilms accumulation [78, 79]. 
The plasma treatment effectiveness as a tool to direct PET surface modification or 
to surface functionalization prior to immobilization of chitosan was evaluated using 
different discharge types: DC-discharge (at the cathode or at the anode) or 
AC-discharge [80]. The use of cold RF- and atmospheric pressure plasma-assisted 
polymerization for subsequently immobilization of various biomolecules for bio-
medical applications is discussed lately [81].

4  Concluding Remarks

Plasma treatment of polymers under corresponding operation conditions allows 
deposition of contact killing, releasing (including controlled release) or low- 
adhesive antimicrobial coatings, as well as polymer surface functionalization and 
durable immobilization of antimicrobial molecules. Most of the plasma technolo-
gies are developed in laboratory conditions and the surface engineered biomaterials 
are tested in vitro.

The use of plasmas facilitates modifications which are difficult or unable to 
achieve by conventional physical or chemical methods, like for example the stable 
attachment of biologically active molecules onto chemically inert polymer surfaces.

For the step “from laboratory into clinical practice” it is essential to examine 
the in vivo antimicrobial action by using appropriate animal models and 
human groups.
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