Skip to main content

Covalent Modification of Graphite and Graphene Using Diazonium Chemistry

  • Chapter
  • First Online:
Aryl Diazonium Salts and Related Compounds

Abstract

The production of graphene with controlled properties and structure is one of the most challenging aspects for a chemist. Covalent functionalization is one of the common approaches to obtain well-defined and robust modification of carbon materials. Different protocols have been proposed for carrying out this functionalization step. However, aryl diazonium salts chemistry should be highlighted due to its efficiency and simplicity. In this book chapter we focus on the modification of carbon materials with sp2 hybridization (graphite and graphene) by using aryl diazonium salts. The on-surface chemistry of diazonium salts on model substrates is explored with a focus on the attempts that have been done to improve the fundamental knowledge about the aryl-carbon interface. Recent developments include control of the structure and the spatial distribution of the aryl moieties on the surface. Finally, the expansion of the protocols to bulk dispersions of graphene and the advantages for the mass production and development of applications based on this material are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  2. Narita A, Wang XY, Feng X, Müllen K (2015) New advances in nanographene chemistry. Chem Soc Rev 44:6616–6643

    Article  CAS  Google Scholar 

  3. Koehler FM, Jacobsen A, Ensslin K et al (2010) Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene. Small 6:1125–1130. https://doi.org/10.1002/smll.200902370

    Article  CAS  PubMed  Google Scholar 

  4. Mali KS, Greenwood J, Adisoejoso J et al (2015) Nanostructuring graphene for controlled and reproducible functionalization. Nanoscale 7:1566–1585

    Article  CAS  Google Scholar 

  5. Kiang Chua C, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42:3222–3233. https://doi.org/10.1039/c2cs35474h

    Article  CAS  Google Scholar 

  6. Criado A, Melchionna M, Marchesan S, Prato M (2015) The covalent functionalization of graphene on substrates. Angew Chem Int Ed 54:10734–10750. https://doi.org/10.1002/anie.201501473

    Article  CAS  Google Scholar 

  7. Park J, Yan M (2013) Covalent functionalization of graphene with reactive intermediates. Acc Chem Res 46:181–189. https://doi.org/10.1021/ar300172h

    Article  CAS  PubMed  Google Scholar 

  8. Allongue P, Delamar M, Desbat B et al (1997) Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J Am Chem Soc 119:201–207. https://doi.org/10.1021/ja963354s

    Article  CAS  Google Scholar 

  9. Delamar M, Hitmi R, Pinson J, Savéant J (1992) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 114:5883–5884. https://doi.org/10.1021/ja00040a074

    Article  CAS  Google Scholar 

  10. Doppelt P, Hallais G, Pinson J et al (2007) Surface modification of conducting substrates. Existence of azo bonds in the structure of organic layers obtained from diazonium salts.https://doi.org/10.1021/cm0700551

  11. Mesnage A, Lefèvre X, Jégou P et al (2012) Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces. Langmuir 28:11767–11778. https://doi.org/10.1021/la3011103

    Article  CAS  PubMed  Google Scholar 

  12. Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246

    Article  CAS  Google Scholar 

  13. Sampathkumar K, Diez-Cabanes V, Kovaricek P et al (2019) On the suitability of Raman spectroscopy to monitor the degree of graphene functionalization by diazonium salts. J Phys Chem C 123:22397–22402. https://doi.org/10.1021/acs.jpcc.9b06516

    Article  CAS  Google Scholar 

  14. Tanaka M, Sawaguchi T, Sato Y et al (2011) Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives. Langmuir 27:170–178. https://doi.org/10.1021/la1035757

    Article  CAS  PubMed  Google Scholar 

  15. Ma H, Lee L, Brooksby PA et al (2014) Scanning tunneling and atomic force microscopy evidence for covalent and noncovalent interactions between aryl films and highly ordered pyrolytic graphite. J Phys Chem C 118:5820–5826. https://doi.org/10.1021/jp411826s

    Article  CAS  Google Scholar 

  16. Greenwood J, Phan TH, Fujita Y et al (2015) Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation. ACS Nano 9:5520–5535. https://doi.org/10.1021/acsnano.5b01580

    Article  CAS  PubMed  Google Scholar 

  17. Verstraete L, De Feyter S (2021) 2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement. Chem Soc Rev. https://doi.org/10.1039/D0CS01338B

    Article  PubMed  Google Scholar 

  18. van Gorp H, Walke P, Teyssandier J et al (2020) On the thermal stability of aryl groups chemisorbed on graphite. J Phys Chem C 124:1980–1990. https://doi.org/10.1021/acs.jpcc.9b09808

    Article  CAS  Google Scholar 

  19. Seber G, Rudnev AV, Droghetti A et al (2017) Covalent modification of highly ordered pyrolytic graphite with a stable organic free radical by using diazonium chemistry. Chem Eur J 23:1415–1421. https://doi.org/10.1002/chem.201604700

    Article  CAS  PubMed  Google Scholar 

  20. Xia Y, Martin C, Seibel J et al (2020) Iodide mediated reductive decomposition of diazonium salts: towards mild and efficient covalent functionalization of surface-supported graphene. Nanoscale 12:11916–11926. https://doi.org/10.1039/d0nr03309j

    Article  CAS  PubMed  Google Scholar 

  21. Pandurangappa M, Ramakrishnappa T (2008) Derivatization and characterization of functionalized carbon powder via diazonium salt reduction. J Solid State Electrochem 12:1411–1419. https://doi.org/10.1007/s10008-007-0470-6

    Article  CAS  Google Scholar 

  22. Rodríguez González MC, Brown A, Eyley S et al (2020) Self-limiting covalent modification of carbon surfaces: diazonium chemistry with a twist. Nanoscale 12:18782–18789. https://doi.org/10.1039/d0nr05244b

    Article  CAS  PubMed  Google Scholar 

  23. Mévellec V, Roussel S, Tessier L et al (2007) Grafting polymers on surfaces: a new powerful and versatile diazonium salt-based one-step process in aqueous media. Chem Mater 19:6323–6330. https://doi.org/10.1021/cm071371i

    Article  CAS  Google Scholar 

  24. Tahara K, Kubo Y, Lindner B et al (2019) Steric and electronic effects of electrochemically generated aryl radicals on grafting of the graphite surface. Langmuir 35:2089–2098. https://doi.org/10.1021/acs.langmuir.8b03339

    Article  CAS  PubMed  Google Scholar 

  25. Jiang D, Sumpter BG, Dai S (2006) How do aryl groups attach to a graphene sheet? https://doi.org/10.1021/JP065980

  26. González MCR, Carro P, Vázquez L, Creus AH (2016) Mapping nanometric electronic property changes induced by an aryl diazonium sub-monolayer on HOPG. Phys Chem Chem Phys 18:29218–29225. https://doi.org/10.1039/c6cp05910d

    Article  PubMed  Google Scholar 

  27. Bekyarova E, Itkis ME, Ramesh P et al (2009) Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J Am Chem Soc 131:1336–1337. https://doi.org/10.1021/ja8057327

    Article  CAS  PubMed  Google Scholar 

  28. Wang QH, Jin Z, Kim KK et al (2012) Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat Chem 4:724–732. https://doi.org/10.1038/nchem.1421

    Article  CAS  PubMed  Google Scholar 

  29. Mathieu C, Barrett N, Rault J et al (2011) Microscopic correlation between chemical and electronic states in epitaxial graphene on SiC(000-1). Phys Rev B—Condens Matter Mater Phys 83.https://doi.org/10.1103/PhysRevB.83.235436

  30. Liu H, Ryu S, Chen Z et al (2009) Photochemical reactivity of graphene. J Am Chem Soc 131:17099–17101. https://doi.org/10.1021/ja9043906

    Article  CAS  PubMed  Google Scholar 

  31. Wu Q, Wu Y, Hao Y et al (2013) Selective surface functionalization at regions of high local curvature in graphene. Chem Commun 49:677–679. https://doi.org/10.1039/c2cc36747e

    Article  CAS  Google Scholar 

  32. Bissett MA, Konabe S, Okada S et al (2013) Enhanced chemical reactivity of graphene induced by mechanical strain. ACS Nano 7:10335–10343. https://doi.org/10.1021/nn404746h

    Article  CAS  PubMed  Google Scholar 

  33. Shih CJ, Wang QH, Jin Z et al (2013) Disorder imposed limits of mono- and bilayer graphene electronic modification using covalent chemistry. Nano Lett 13:809–817. https://doi.org/10.1021/nl304632e

    Article  CAS  PubMed  Google Scholar 

  34. Niyogi S, Bekyarova E, Itkis ME et al (2010) Spectroscopy of covalently functionalized graphene. Nano Lett 10:4061–4066. https://doi.org/10.1021/nl1021128

    Article  CAS  PubMed  Google Scholar 

  35. Zhang H, Bekyarova E, Huang JW et al (2011) Aryl functionalization as a route to band gap engineering in single layer graphene devices. Nano Lett 11:4047–4051. https://doi.org/10.1021/nl200803q

    Article  CAS  PubMed  Google Scholar 

  36. Ambrosio G, Brown A, Daukiya L et al (2020) Impact of covalent functionalization by diazonium chemistry on the electronic properties of graphene on SiC. Nanoscale 12:9032–9037. https://doi.org/10.1039/d0nr01186j

    Article  CAS  PubMed  Google Scholar 

  37. Ambrosio G, Drera G, di Santo G et al (2020) Interface chemistry of graphene/Cu grafted by 3,4,5-tri-methoxyphenyl. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-60831-8

    Article  CAS  Google Scholar 

  38. Breton T, Downard AJ (2017) Controlling grafting from aryldiazonium salts: a review of methods for the preparation of monolayers. Aust J Chem 70:960–972

    Article  CAS  Google Scholar 

  39. Nielsen LT, Vase KH, Dong M et al (2007) Electrochemical approach for constructing a monolayer of thiophenolates from grafted multilayers of diaryl disulfides. J Am Chem Soc 129:1888–1889. https://doi.org/10.1021/ja0682430

    Article  CAS  PubMed  Google Scholar 

  40. Leroux YR, Hapiot P (2013) Nanostructured monolayers on carbon substrates prepared by electrografting of protected aryldiazonium salts. Chem Mater 25:489–495. https://doi.org/10.1021/cm303844v

    Article  CAS  Google Scholar 

  41. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2008) Sterically hindered diazonium salts for the grafting of a monolayer on metals. J Am Chem Soc 130:8576–8577. https://doi.org/10.1021/ja8018912

    Article  CAS  PubMed  Google Scholar 

  42. Actis P, Caulliez G, Shul G et al (2008) Functionalization of glassy carbon with diazonium salts in ionic liquids. Langmuir 24:6327–6333. https://doi.org/10.1021/la703714a

    Article  CAS  PubMed  Google Scholar 

  43. Menanteau T, Levillain E, Downard AJ, Breton T (2015) Evidence of monolayer formation via diazonium grafting with a radical scavenger: electrochemical, AFM and XPS monitoring. Phys Chem Chem Phys 17:13137–13142. https://doi.org/10.1039/c5cp01401h

    Article  CAS  PubMed  Google Scholar 

  44. González MCR, Orive AG, Salvarezza RC, Creus AH (2016) Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces. Phys Chem Chem Phys 18:1953–1960. https://doi.org/10.1039/c5cp06415e

    Article  PubMed  Google Scholar 

  45. Menanteau T, Dias M, Levillain E et al (2016) Electrografting via diazonium chemistry: the key role of the aryl substituent in the layer growth mechanism. J Phys Chem C 120:4423–4429. https://doi.org/10.1021/acs.jpcc.5b12565

    Article  CAS  Google Scholar 

  46. Wei T, Bao L, Hauke F, Hirsch A (2020) Recent advances in graphene patterning. ChemPlusChem 85:1655–1668. https://doi.org/10.1002/cplu.202000419

    Article  CAS  PubMed  Google Scholar 

  47. Kirkman PM, Güell AG, Cuharuc AS, Unwin PR (2014) Spatial and temporal control of the diazonium modification of sp2 carbon surfaces. J Am Chem Soc 136:36–39. https://doi.org/10.1021/ja410467e

    Article  CAS  PubMed  Google Scholar 

  48. Maldonado S, Smith TJ, Williams RD et al (2006) Surface modification of indium tin oxide via electrochemical reduction of aryldiazonium cations. Langmuir 22:2884–2891. https://doi.org/10.1021/la052696l

    Article  CAS  PubMed  Google Scholar 

  49. Corgier BP, Bélanger D (2010) Electrochemical surface nanopatterning using microspheres and aryldiazonium. Langmuir 26:5991–5997. https://doi.org/10.1021/la904521w

    Article  CAS  PubMed  Google Scholar 

  50. van Gorp H, Walke P, Bragança AM et al (2018) Self-assembled polystyrene beads for templated covalent functionalization of graphitic substrates using diazonium chemistry. ACS Appl Mater Interfaces 10:12005–12012. https://doi.org/10.1021/acsami.7b18969

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen VQ, Schaming D, Martin P, Lacroix JC (2019) Nanostructured mixed layers of organic materials obtained by nanosphere lithography and electrochemical reduction of aryldiazonium salts. Langmuir 35:15071–15077. https://doi.org/10.1021/acs.langmuir.9b02811

    Article  CAS  PubMed  Google Scholar 

  52. Koehler FM, Luechinger NA, Ziegler D et al (2009) Permanent pattern-resolved adjustment of the surface potential of graphene-like carbon through chemical functionalization. Angew Chem Int Ed 48:224–227. https://doi.org/10.1002/anie.200804485

    Article  CAS  Google Scholar 

  53. Wei T, Kohring M, Chen M et al (2020) Highly efficient and reversible covalent patterning of graphene: 2D-management of chemical information. Angew Chem Int Ed 59:5602–5606. https://doi.org/10.1002/anie.201914088

    Article  CAS  Google Scholar 

  54. Bao L, Zhao B, Lloret V et al (2020) Spatially resolved bottom-side fluorination of graphene by two-dimensional substrate patterning. Angew Chem Int Ed 59:6700–6705. https://doi.org/10.1002/anie.202002508

    Article  CAS  Google Scholar 

  55. Wei T, Kohring M, Weber HB et al (2021) Molecular embroidering of graphene. Nat Commun 12:1–8. https://doi.org/10.1038/s41467-020-20651-w

    Article  CAS  Google Scholar 

  56. Phan TH, van Gorp H, Li Z et al (2019) Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13:5559–5571. https://doi.org/10.1021/acsnano.9b00439

    Article  CAS  PubMed  Google Scholar 

  57. Xia Z, Leonardi F, Gobbi M et al (2016) Electrochemical functionalization of graphene at the nanoscale with self-assembling diazonium salts. ACS Nano 10:7125–7134. https://doi.org/10.1021/acsnano.6b03278

    Article  CAS  PubMed  Google Scholar 

  58. Nguyen VQ, Sun X, Lafolet F et al (2016) Unprecedented self-organized monolayer of a Ru(II) complex by diazonium electroreduction. J Am Chem Soc 138:9381–9384. https://doi.org/10.1021/jacs.6b04827

    Article  CAS  PubMed  Google Scholar 

  59. Tahara K, Ishikawa T, Hirsch BE et al (2018) Self-assembled monolayers as templates for linearly nanopatterned covalent chemical functionalization of graphite and graphene surfaces. ACS Nano 12:11520–11528. https://doi.org/10.1021/acsnano.8b06681

    Article  CAS  PubMed  Google Scholar 

  60. Tahara K, Kubo Y, Hashimoto S et al (2020) Porous self-assembled molecular networks as templates for chiral-position-controlled chemical functionalization of graphitic surfaces. J Am Chem Soc 142:7699–7708. https://doi.org/10.1021/jacs.0c02979

    Article  CAS  PubMed  Google Scholar 

  61. Lomeda JR, Doyle CD, Kosynkin DV et al (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206. https://doi.org/10.1021/ja806499w

    Article  CAS  PubMed  Google Scholar 

  62. Sun Z, Kohama S, Zhang Z et al (2010) Soluble graphene through edge-selective functionalization. Nano Res 3:117–125. https://doi.org/10.1007/s12274-010-1016-2

    Article  CAS  Google Scholar 

  63. Bouša D, Pumera M, Sedmidubský D et al (2016) Fine tuning of graphene properties by modification with aryl halogens. Nanoscale 8:1493–1502. https://doi.org/10.1039/c5nr06295k

    Article  PubMed  Google Scholar 

  64. Englert JM, Dotzer C, Yang G et al (2011) Covalent bulk functionalization of graphene. Nat Chem 3:279–286. https://doi.org/10.1038/nchem.1010

    Article  CAS  PubMed  Google Scholar 

  65. Abellán G, Schirowski M, Edelthalhammer KF et al (2017) Unifying principles of the reductive covalent graphene functionalization. J Am Chem Soc 139:5175–5182. https://doi.org/10.1021/jacs.7b00704

    Article  CAS  PubMed  Google Scholar 

  66. Leroux YR, Bergamini JF, Ababou S et al (2015) Synthesis of functionalized few-layer graphene through fast electrochemical expansion of graphite. J Electroanal Chem 753:42–46. https://doi.org/10.1016/j.jelechem.2015.06.013

    Article  CAS  Google Scholar 

  67. Ossonon BD, Bélanger D (2017) Functionalization of graphene sheets by the diazonium chemistry during electrochemical exfoliation of graphite. Carbon 111:83–93. https://doi.org/10.1016/j.carbon.2016.09.063

    Article  CAS  Google Scholar 

  68. Gautier C, LĂłpez I, Breton T (2021) A post-functionalization toolbox for diazonium (electro)-grafted surfaces: review of the coupling methods. Mater Adv. https://doi.org/10.1039/D1MA00077B

    Article  Google Scholar 

  69. Hetemi D, Noël V, Pinson J (2020) Grafting of diazonium salts on surfaces: application to biosensors. Biosensors 10

    Google Scholar 

  70. Hajdukiewicz J, Boland S, Kavanagh P, Leech D (2010) An enzyme-amplified amperometric DNA hybridisation assay using DNA immobilised in a carboxymethylated dextran film anchored to a graphite surface. Biosens Bioelectron 25:1037–1042. https://doi.org/10.1016/j.bios.2009.09.020

    Article  CAS  PubMed  Google Scholar 

  71. Ahmed ME, Dey S, Mondal B, Dey A (2017) H2 evolution catalyzed by a FeFe-hydrogenase synthetic model covalently attached to graphite surfaces. Chem Commun 53:8188–8191. https://doi.org/10.1039/c7cc04281g

    Article  CAS  Google Scholar 

  72. Martin C, Alias M, Christien F et al (2009) Graphite-grafted silicon nanocomposite as a negative electrode for lithium-ion batteries. Adv Mater 21:4735–4741. https://doi.org/10.1002/adma.200900235

    Article  CAS  Google Scholar 

  73. Rüdiger O, Abad JM, Hatchikian EC et al (2005) Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2. J Am Chem Soc 127:16008–16009. https://doi.org/10.1021/ja0554312

    Article  CAS  PubMed  Google Scholar 

  74. Moock DS, Steinmüller SO, Wessely ID et al (2018) Surface functionalization of silicon, HOPG, and graphite electrodes: toward an artificial solid electrolyte interface. ACS Appl Mater Interfaces 10:24172–24180. https://doi.org/10.1021/acsami.8b04877

    Article  CAS  PubMed  Google Scholar 

  75. Castelaín M, Martínez G, Merino P et al (2012) Graphene functionalisation with a conjugated poly(fluorene) by click coupling: striking electronic properties in solution. Chem Eur J 18:4965–4973. https://doi.org/10.1002/chem.201102008

  76. Neri G, Scala A, Barreca F et al (2015) Engineering of carbon based nanomaterials by ring-opening reactions of a reactive azlactone graphene platform. Chem Commun 51:4846–4849. https://doi.org/10.1039/c5cc00518c

    Article  CAS  Google Scholar 

  77. Fortgang P, Tite T, Barnier V et al (2016) Robust electrografting on self-organized 3D graphene electrodes. ACS Appl Mater Interfaces 8:1424–1433. https://doi.org/10.1021/acsami.5b10647

    Article  CAS  PubMed  Google Scholar 

  78. Peng C, Xiong Y, Liu Z et al (2013) Bulk functionalization of graphene using diazonium compounds and amide reaction. Appl Surf Sci 280:914–919. https://doi.org/10.1016/j.apsusc.2013.05.094

    Article  CAS  Google Scholar 

  79. Wang R, Xue C (2013) A sensitive electrochemical immunosensor for alpha-fetoprotein based on covalently incorporating a bio-recognition element onto a graphene modified electrode via diazonium chemistry. Anal Methods 5:5195–5200. https://doi.org/10.1039/c3ay40739j

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven De Feyter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez González, M.C., Mali, K.S., De Feyter, S. (2022). Covalent Modification of Graphite and Graphene Using Diazonium Chemistry. In: Chehimi, M.M., Pinson, J., Mousli, F. (eds) Aryl Diazonium Salts and Related Compounds. Physical Chemistry in Action. Springer, Cham. https://doi.org/10.1007/978-3-031-04398-7_8

Download citation

Publish with us

Policies and ethics