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Abstract. Recent deep-learning models have achieved impressive pre-
dictive performance by learning complex functions of many variables,
often at the cost of interpretability. This chapter covers recent work
aiming to interpret models by attributing importance to features and
feature groups for a single prediction. Importantly, the proposed attri-
butions assign importance to interactions between features, in addition
to features in isolation. These attributions are shown to yield insights
across real-world domains, including bio-imaging, cosmology image and
natural-language processing. We then show how these attributions can
be used to directly improve the generalization of a neural network or to
distill it into a simple model. Throughout the chapter, we emphasize the
use of reality checks to scrutinize the proposed interpretation techniques.
(Code for all methods in this chapter is available at �github.com/csinva
and �github.com/Yu-Group, implemented in PyTorch [54]).
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1 Interpretability: For What and For Whom?

Deep neural networks (DNNs) have recently received considerable attention
for their ability to accurately predict a wide variety of complex phenomena.
However, there is a growing realization that, in addition to predictions, DNNs
are capable of producing useful information (i.e. interpretations) about domain
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relationships contained in data. More precisely, interpretable machine learn-
ing can be defined as “the extraction of relevant knowledge from a machine-
learning model concerning relationships either contained in data or learned by
the model” [50].1

Fig. 1. Chapter overview. We begin by defining interpretability and some of its desider-
ata, following [50] (Sect. 1). We proceed to overview different methods for computing
interpretations for interactions/transformations (Sect. 2), including for scoring interac-
tions [49], generating hierarchical interpretations [68], and calculating importances for
transformations of features [67]. Next, we show how these interpretations can be used
to improve models (Sect. 3), including by directly regularizing interpretations [60] and
distilling a model through interpretations [31]. Finally, we show how these interpreta-
tions can be adapted to real-world applications (Sect. 4), including molecular partner
prediction, cosmological parameter prediction, and skin-cancer classification.

Here, we view knowledge as being relevant if it provides insight for a par-
ticular audience into a chosen problem. This definition highlights that inter-
pretability is poorly specified without the context of a particular audience and
problem, and should be evaluated with the context in mind. This definition also
implies that interpretable ML provides correct information (i.e. knowledge), and
we use the term interpretation, assuming that the interpretation technique at

1 We include different headings such as explainable AI (XAI), intelligible ML and
transparent ML under this definition.
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hand has passed some form of reality check (i.e. it faithfully captures some notion
of reality).

Interpretations have found uses both in their own right, e.g. medicine [41],
policy-making [11], and science [5,77], as well as in auditing predictions them-
selves in response to issues such as regulatory pressure [29] and fairness [22]. In
these domains, interpretations have been shown to help with evaluating a learned
model, providing information to repair a model (if needed), and building trust
with domain experts [13]. However, this increasing role, along with the explo-
sion in proposed interpretation techniques [4,27,31,50,53,75,81,84] has raised
considerable concerns about the use of interpretation methods in practice [2,30].
Furthermore, it is unclear how interpretation techniques should be evaluated in
the real-world context to advance our understanding of a particular problem.
To do so, we first review some of the desiderata of interpretability, following
[50] among many definitions [19,40,63], then discuss some methods for critically
evaluating interpretations.

The PDR Desiderata for Interpretations. In general, it is unclear how to select
and evaluate interpretation methods for a particular problem and audience. To
help guide this process, we cover the PDR framework [50], consisting of three
desiderata that should be used to select interpretation methods for a particu-
lar problem: predictive accuracy, descriptive accuracy, and relevancy. Predictive
accuracy measures the ability of a model to capture underlying relationships
in the data (and generally includes different measures of a model’s quality of
fit)—this can be seen as the most common form of reality check. In contrast,
descriptive accuracy measures how well one can approximate what the model has
learned using an interpretation method. Descriptive accuracy measures errors
during the post-hoc analysis stage of modeling, when interpretations methods
are used to analyze a fitted model. For an interpretation to be trustworthy, one
should try to maximize both of the accuracies. In cases where either accuracy
is not very high, the resulting interpretations may still be useful. However, it is
especially important to check their trustworthiness through external validation,
such as running an additional experiment. Relevancy guides which interpreta-
tion to select based on the context of the problem, often playing a key role in
determining the trade-off between predictive and descriptive accuracy; however,
predictive accuracy and relevancy are not always a trade-off and the examples
are shown in Sect. 4.

Evaluating Interpretations and Additional Reality Checks. Techniques striving
for interpretations can provide a large amount of fine-grained information, often
not just for individual features but also for feature groups [49,68]. As such, it is
important to ensure that this added information correctly reflects a model (i.e.
has high descriptive accuracy), and can be useful in practice. This is challenging
in general, but there are some promising directions. One direction, often used in
statistical research including causal inference, uses simulation studies to evaluate
interpretations. In this setting, a researcher defines a simple generative process,
generates a large amount of data from that process, and trains their statistical
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or ML model on that data. Assuming a proper simulation setup, a sufficiently
relevant and powerful model to recover the generative process, and sufficiently
large training data, the trained model should achieve near-perfect generalization
accuracy. The practitioner then measures whether their interpretations recover
aspects of the original generative process. If the simulation captures the reality
well, then it can be viewed as a weaker form of reality check.

Going a step further, interpretations can be tested by gathering new data in
followup experiments or observations for retrospective validation. Another direc-
tion, which this chapter also focuses on, is to demonstrate the interpretations
through domain knowledge which is relevant to a particular domain/audience. To
do so, we closely collaborate with domain experts and showcase how interpreta-
tions can inform relevant knowledge in fundamental problems in cosmology and
molecular-partner prediction. We highlight the use of reality checks to evaluate
each proposed method in the chapter.

Chapter Overview. A vast line of prior work has focused on assigning importance
to individual features, such as pixels in an image or words in a document. Several
methods yield feature-level importance for different architectures. They can be
categorized as gradient-based [7,65,71,73], decomposition-based [6,51,66] and
others [15,26,57,85], with many similarities among the methods [3,43]. While
many methods have been developed to attribute importance to individual fea-
tures of a model’s input, relatively little work has been devoted to understanding
interactions between key features. These interactions are a crucial part of inter-
preting modern deep-learning models, as they are what enable strong predictive
performance on structured data.

Here, we cover a line of work that aims to identify, attribute importance,
and utilize interactions in neural networks for interpretation. We then explore
how these attributions can be used to help improve the performance of DNNs.
Despite their strong predictive performance, DNNs sometimes latch onto spu-
rious correlations caused by dataset bias or overfitting [79]. As a result, DNNs
often exploit bias regarding gender, race, and other sensitive attributes present
in training datasets [20,28,52]. Moreover, DNNs are extremely computationally
intensive and difficult to audit.

Figure 1 shows an overview of this chapter. We first overview different
methods for computing interpretations (Sect. 2), including for scoring inter-
actions [49], generating hierarchical interpretations [68], and calculating impor-
tances for transformations of features [67]. Next, we show how these interpreta-
tions can be used to improve models (Sect. 3), including by directly regularizing
interpretations [60] and distilling a model through interpretations [31]. Finally,
we show how these interpretations can be adapted to real-world problems (Sect.
4), including molecular partner prediction, cosmological parameter prediction,
and skin-cancer classification.



Interpreting Deep-Learning Models with Reality Checks 233

2 Computing Interpretations for Feature Interactions
and Transformations

This section reviews three recent methods developed to extract the interactions
between features that an (already trained) DNN has learned. First, Sect. 2.1
shows how to compute importance scores for groups of features via contex-
tual decomposition (CD), a method which works with LSTMs [49] and arbi-
trary DNNs, such as CNNs [68]. Next, Sect. 2.2 covers agglomerative contextual
decomposition (ACD), where a group-level importance measure, in this case CD,
is used as a joining metric in an agglomerative clustering procedure. Finally, Sect.
2.3 covers transformation importance (TRIM), which allows for computing scores
for interactions on transformations of a model’s input. Other methods have been
recently developed for understanding model interactions with varying degrees of
computational cost and faithfulness to the trained model [17,18,75,76,78,83].

2.1 Contextual Decomposition (CD) Importance Scores for General
DNNs

Contextual decomposition breaks up the forward pass of a neural network in
order to find an importance score of some subset of the inputs for a particular
prediction. For a given DNN f(x), its output is represented as a SoftMax opera-
tion applied to logits g(x). These logits, in turn, are the composition of L layers
gi, i = 1, . . . , L, such as convolutional operations or ReLU non-linearities:

f(x) = SoftMax(g(x)) = SoftMax(gL(gL−1(...(g2(g1(x)))))). (1)

Given a group of features {xj}j∈S , the CD algorithm, gCD(x), decomposes the
logits g(x) into a sum of two terms, β(x) and γ(x). β(x) is the importance
measure of the feature group {xj}j∈S , and γ(x) captures contributions to g(x)
not included in β(x).

gCD(x) = (β(x), γ(x)), (2)
β(x) + γ(x) = g(x). (3)

Computing the CD decomposition for g(x), requires layer-wise CD decomposi-
tions gCD

i (x) = (βi, γi) for each layer gi(x), where gi(x) represents the vector
of neural activations at the i-th layer. Here, βi corresponds to the importance
measure of {xj}j∈S to layer i, and γi corresponds to the contribution of the rest
of the input to layer i. Maintaining the decomposition requires βi + γi = gi(x)
for each i, the CD scores for the full network are computed by composing these
decompositions.

gCD(x) = gCD
L (gCD

L−1(...(g
CD
2 (gCD

1 (x))))). (4)
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Note that the above equation shows the CD algorithm gCD takes as input a
vector x and for each layer it outputs the pair of vector scores gCD

i (x) = (βi, γi);
and the final output is given by a pair of numbers gCD(x) = (β(x), γ(x)) such
that the sum β(x) + γ(x) equals the logits g(x).

The initial CD work [49] introduced decompositions gCD
i for layers used in

LSTMs and the followup work [68] for layers used in CNNs and more generic
deep architectures. Below, we give example decompositions for some commonly
used layers, such as convolutional layer, linear layer, or ReLU activation.

When gi is a convolutional or fully connected layer, the layer operation con-
sists of a weight matrix W and a bias vector b. The weight matrix can be multi-
plied with βi−1 and γi−1 individually, but the bias must be partitioned between
the two. The bias is partitioned proportionally based on the absolute value of
the layer activations. For the convolutional layer, this equation yields only one
activation of the output; it must be repeated for each activation.

βi = Wβi−1 +
|Wβi−1|

|Wβi−1| + |Wγi−1| · b; (5)

γi = Wγi−1 +
|Wγi−1|

|Wβi−1| + |Wγi−1| · b. (6)

Next, for the ReLU activation function,2 importance score βi is computed
as the activation of βi−1 alone and then update γi by subtracting this from the
total activation.

βi = ReLU(βi−1); (7)
γi = ReLU(βi−1 + γi−1) − ReLU(βi−1). (8)

For a dropout layer, dropout is simply applied to βi−1 and γi−1 individually.
Computationally, a CD call is comparable to a forward pass through the net-
work f .

Reality Check: Identifying Top-Scoring Phrases. When feasible, a com-
mon means of scrutinizing what a model has learned is to inspect its most
important features and interactions. Table 1 shows the ACD-top-scoring phrases
of different lengths for an LSTM trained on SST (here the phrases are considered
from all sentences in the SST’s validation set). These phrases were extracted by
running ACD separately on each sample in validation set. The score of each
phrase was then computed by averaging over the score it received in each occur-
rence in an ACD hierarchy. The extracted phrases are clearly reflective of the
corresponding sentiment, providing additional evidence that ACD is able to cap-
ture meaningful positive and negative phrases. The paper [49] also shows that
CD properly captures negation interactions for phrases.

2 See [49, Sect. 3.2.2] for other activation functions such as sigmoid or hyperbolic
tangent.
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Table 1. Top-scoring phrases of different lengths extracted by CD on SST’s validation
set. The positive/negative phrases identified by CD are all indeed positive/negative.

Length Positive Negative

1 Pleasurable, glorious Nowhere, grotesque, sleep

3 Amazing accomplishment, great
fun

Bleak and desperate, conspicuously
lacks

5 A pretty amazing accomplishment Ultimately a pointless endeavour

2.2 Agglomerative Contextual Decomposition (ACD)

Next, we cover agglomerative contextual decomposition (ACD), a general tech-
nique that can be applied to a wide range of DNN architectures and data types.
Given a prediction from a trained DNN, ACD produces a hierarchical clustering
of the input features, along with the contribution of each cluster to the final
prediction. This hierarchy is designed to identify clusters of features that the
DNN learned are predictive. Throughout this subsection, we use the term CD
interaction score between two groups of features to mean the difference between
the scores of the combined group and the original groups.

Given the generalized CD scores introduced above, we now introduce the
clustering procedure used to produce ACD interpretations. At a high level, this
method is equivalent to agglomerative hierarchical clustering, where the CD
interaction score is used as the joining metric to determine which clusters to join
at each step. This procedure builds the hierarchy by starting with individual
features and iteratively combining them based on the highest interaction scores
provided by CD. The displayed ACD interpretation is the hierarchy, along with
the CD importance score at each node.

The clustering procedure proceeds as follows. After initializing by computing
the CD scores of each feature individually, the algorithm iteratively selects all
groups of features within k% of the highest-scoring group (where k is a hyperpa-
rameter) and adds them to the hierarchy. Each time a new group is added to the
hierarchy, a corresponding set of candidate groups is generated by adding indi-
vidual contiguous features to the original group. For text, the candidate groups
correspond to adding one adjacent word onto the current phrase, and for images
adding any adjacent pixel onto the current image patch. Candidate groups are
ranked according to the CD interaction score, which is the difference between
the score of the candidate and the original groups.

Reality Check: Human Experiment. Human experiments show that ACD
allows users to better reason about the accuracy of DNNs. Each subject was
asked to fill out a survey asking whether, using ACD, they could identify the
more accurate of two models across three datasets (SST [70], MNIST [36] and
ImageNet [16]), and ACD was compared against three baselines: CD [49], Inte-
grated Gradients (IG) [73], and occlusion [38,82]. Each model uses a standard
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DNN Prediction

DNN

negative

ACD Interpretation

Positive

Negative

not very good

very good

not very good

not very good

Fig. 2. ACD illustrated through the toy example of predicting the phrase “not very
good” as negative. Given the network and prediction, ACD constructs a hierarchy
of meaningful phrases and provides importance scores for each identified phrase. In
this example, ACD identifies that “very” modifies “good” to become the very positive
phrase “very good”, which is subsequently negated by “not” to produce the negative
phrase “not very good”.

architecture that achieves high classification accuracy, and has an analogous
model with substantially poorer performance obtained by randomizing some
fraction of its weights while keeping the same predicted label. The objective of
this experiment was to determine if subjects could use a small number of inter-
pretations produced by ACD to identify the more accurate of the two models
(Fig. 2).

For each question, 11 subjects were given interpretations from two different
models (one high-performing and one with randomized weights), and asked to
identify which of the two models had a higher generalization accuracy. To prevent
subjects from simply selecting the model that predicts more accurately for the
given example, for each question a subject is shown two sets of examples: one
where only the first model predicts correctly and one where only the second
model predicts correctly (although one model generalizes to new examples much
better).

Figure 3 shows the results of the survey. For SST, humans were better able to
identify the strongly predictive model using ACD compared to other baselines,
with only ACD and CD outperforming random selection (50%). Based on a one-
sided two-sample t-test, the gaps between ACD and IG/Occlusion are significant,
but not the gap between ACD and CD. In the simple setting of MNIST, ACD
performs similarly to other methods. When applied to ImageNet, a more complex
dataset, ACD substantially outperforms prior, non-hierarchical methods, and is
the only method to outperform random chance. The paper [68] also contains
results showing that the ACD hierarchy is robust to adversarial perturbations.
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Fig. 3. Results for human studies. Binary accuracy for whether a subject correctly
selected the more accurate model using different interpretation techniques.

2.3 Transformation Importance with Applications to Cosmology
(TRIM)

Both CD and ACD show how to attribute importance to interactions between
features. However, in many cases, raw features such as pixels in an image or words
in a document may not be the most meaningful spaces to perform interpretation.
When features are highly correlated or features in isolation are not semantically
meaningful, the resulting attributions need to be improved.

To meet this challenge, TRIM (Transformation Importance) attributes
importance to transformations of the input features (see Fig. 4). This is crit-
ical for making interpretations relevant to a particular audience/problem, as
attributions in a domain-specific feature space (e.g. frequencies or principal com-
ponents) can often be far more interpretable than attributions in the raw feature
space (e.g. pixels or biological readings). Moreover, features after transformation
can be more independent, semantically meaningful, and comparable across data
points. The work here focuses on combining TRIM with CD, although TRIM
can be combined with any local interpretation method.

x s
f(x)

TRIM(s)
x -

Fig. 4. TRIM: attributing importance to a transformation of an input Tθ(x) given a
model f(x).
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TRIM aims to interpret the prediction made by a model f given a single
input x. The input x is in some domain X , but we desire an explanation for its
representation s in a different domain S, defined by a mapping T : X → S, such
that s = T (x). For example, if x is an image, s may be its Fourier representation,
and T would be the Fourier transform. Notably, this process is entirely post-hoc:
the model f is already fully trained on the domain X . By reparametrizing the
network as shown in Fig. 4, we can obtain attributions in the domain S. If we
require that the mapping T be invertible, so that x = T−1(s), we can represent
each data point x with its counterpart s in the desired domain, and the function
to interpret becomes f ′ = f ◦ T−1; the function f ′ can be interpreted with
any existing local interpretation method attr (e.g. LIME [57] or CD [49,68])).
Note that if the transformation T is not perfectly invertible (i.e. x �= x′), then
the residuals x − x′ may also be required for local interpretation. For example,
they are required for any gradient-based attribution method to aid in computing
∂f ′/∂s.3 Once we have the reparameterized function f ′(s), we need only specify
which part of the input to interpret, before calculating the TRIM score:

Definition 1. Given a model f , an input x, a mask M , a transformation T ,
and an attribution method attr,

TRIM(s) = attr (f ′; s)

where f ′ = f ◦ T−1, s = M � T (x)

Here M is a mask used to specify which parts of the transformed space to interpret
and � denotes elementwise multiplication.

In the work here, the choice of attribution method attr is CD, and
attr (f ;x′, x) represents the CD score for the features x′ as part of the input x.
This formulation does not require that x′ simply be a binary masked version of
x; rather, the selection of the mask M allows a human/domain scientist to decide
which transformed features to score. In the case of image classification, rather
than simply scoring a pixel, one may score the contribution of a frequency band
to the prediction f(x). This general setup allows for attributing importance to a
wide array of transformations. For example, T could be any invertible transform
(e.g. a wavelet transform), or a linear projection (e.g. onto a sparse dictionary).
Moreover, we can parameterize the transformation Tθ and learn the parameters
θ to produce a desirable representation (e.g. sparse or disentangled).

As a simple example, we investigate a text-classification setting using TRIM.
We train a 3-layer fully connected DNN with ReLU activations on the Kaggle
Fake News dataset,4 achieving a test accuracy of 94.8%. The model is trained
directly on a bag-of words representation, but TRIM can provide a more succinct
space via a topic model transformation. The topic model is learned via latent
dirichlet allocation [10], which provides an invertible linear mapping between a

3 If the residual is not added, the gradient of f ′ = f ◦ T −1 requires ∂f/∂x|x′ , which
can potentially cause evaluation of f at the out-of-distribution examples x′ �= x.

4 https://www.kaggle.com/c/fake-news/overview.

https://www.kaggle.com/c/fake-news/overview
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document’s bag-of-words representation and its topic-representation, where each
topic assigns different linear weights to each word. Figure 5 shows the mean
attributions for different topics when the model predicts Fake. Interestingly, the
topic with the highest mean attribution contains recognizable words such as
clinton and emails.

Fig. 5. TRIM attributions for a fake-news classifier based on a topic model transforma-
tion. Each row shows one topic, labeled with the top ten words in that topic. Higher
attributions correspond to higher contribution to the class fake. Calculated over all
points which were accurately classified as fake in the test set (4,160 points).

Simulation. In the case of a perfectly invertible transformation, such as the
Fourier transform, TRIM simply measures the ability of the underlying attribu-
tion method (in this case CD) to correctly attribute importance in the trans-
formed space. We run synthetic simulations showing the ability of TRIM with
CD to recover known groundtruth feature importances. Features are generated
i.i.d. from a standard normal distribution. Then, a binary classification outcome
is defined by selecting a random frequency and testing whether that frequency
is greater than its median value. Finally, we train a 3-layer fully connected DNN
with ReLU activations on this task and then test the ability of different methods
to assign this frequency the highest importance. Table 2 shows the percentage
of errors made by different methods in such a setup. CD has the lowest error on
average, compared to popular baselines.

Table 2. Error (%) in recovering a groundtruth important frequency in simulated data
using different attribution methods with TRIM, averaged over 500 simulated datasets.

CD DeepLift [66] SHAP [43] Integrated gradients [73]

0.4 ± 0.282 3.6 ± 0.833 4.0 ± 0.897 4.2 ± 0.876
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3 Using Attributions to Improve Models

This section shows two methods for using the attributions introduced in Sect.
2 to directly improve DNNs. Section 3.1 shows how CD scores can be penalized
during training to improve generalization in interesting ways and Sect. 3.2 shows
how attribution scores can be used to distill a DNN into a simple data-driven
wavelet model.

3.1 Penalizing Explanations to Align Neural Networks with Prior
Knowledge (CDEP)

While much work has been put into developing methods for explaining DNNs,
relatively little work has explored the potential to use these explanations to help
build a better model. Some recent work proposes forcing models to attend to
certain regions [12,21,48], penalizing the gradients or expected gradients of a
neural network [8,21,23,42,61,62], or using layer-wise relevance propagation to
prune/improve models [72,80]. A newly emerging line of work investigates how
domain experts can use explanations during the training loop to improve their
models (e.g. [64]).

Here, we cover contextual decomposition explanation penalization (CDEP),
a method which leverages CD to enable the insertion of domain knowledge into
a model [60]. Given prior knowledge in the form of importance scores, CDEP
works by allowing the user to directly penalize importances of certain features
or feature interactions. This forces the DNN to not only produce the correct
prediction, but also the correct explanation for that prediction. CDEP can be
applied to arbitrary DNN architectures and is often orders of magnitude faster
and more memory efficient than recent gradient-based methods [23,62]; CDEP
offers significant computational improvements, since, unlike gradient-based attri-
butions, the CD score is computed along the forward pass, only first derivatives
are required for optimization, early layers can be frozen, and all activations of a
DNN do not need to be cached to perform backpropagation; furthermore, with
gradient-based methods the training requires the storage of activations and gra-
dients for all layers of the network as well as the gradient with respect to the
input, whereas penalizing CD requires only a small constant amount of memory
more than standard training.

CDEP works by augmenting the traditional objective function used to train a
neural network, as displayed in Eq. (9) with an additional component. In addition
to the standard prediction loss L, which teaches the model to produce the correct
predictions by penalizing wrong predictions, we add an explanation error Lexpl,
which teaches the model to produce the correct explanations for its predictions
by penalizing wrong explanations. In place of the prediction and labels fθ(X), y,
used in the prediction error L, the explanation error Lexpl uses the explanations
produced by an interpretation method explθ(X), along with targets provided by
the user explX . The two losses are weighted by a hyperparameter λ ∈ R:
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θ̂ = argmin
θ

Prediction error
︷ ︸︸ ︷

L (fθ(X), y) +λ

Explanation error
︷ ︸︸ ︷

Lexpl (explθ(X), explX) (9)

CDEP uses CD as the explanation function used to compute explθ(X), allow-
ing the penalization of interactions between features. We now substitute the
above CD scores into the generic equation in Eq. (9) to arrive at CDEP as it is
used in this chapter. We collect from the user, for each input xi, a collection of
feature groups xi,S , xi ∈ R

d, S ⊆ {1, ..., d}, along with explanation target values
explxi,S

, and use the ‖·‖1 loss for Lexpl. This yields a vector β(xj) for any subset
of features in an input xj which we would like to penalize. We can then collect
prior knowledge label explanations for this subset of features, explxj

and use it
to regularize the explanation:

θ̂ = argmin
θ

Prediction error
︷ ︸︸ ︷
∑

i

∑

c

− yi,c log fθ(xi)c +λ

Explanation error
︷ ︸︸ ︷
∑

i

∑

S

||β(xi,S) − explxi,S
||1 (10)

In the above, i indexes each individual example in the dataset, S indexes a
subset of the features for which we penalize their explanations, and c sums over
each class.

The choice of prior knowledge explanations explX is dependent on the appli-
cation and the existing domain knowledge. CDEP allows for penalizing arbitrary
interactions between features, allowing the incorporation of a very broad set of
domain knowledge. In the simplest setting, practitioners may precisely provide
prior knowledge human explanations for each data point. To avoid assigning
human labels, one may utilize programmatic rules to identify and assign prior
knowledge importance to regions, which are then used to help the model iden-
tify important/unimportant regions. In a more general case, one may specify
importances of different feature interactions.

Towards Reality Check: ColorMNIST Task. Here, we highlight CDEP’s
ability to alter which features a DNN uses to perform digit classification. Similar
to one previous study [39], we alter the MNIST dataset to include three color
channels and assign each class a distinct color, as shown in Fig. 6. An unpenalized
DNN trained on this biased data will completely misclassify a test set with
inverted colors, dropping to 0% accuracy (see Table 3), suggesting that it learns
to classify using the colors of the digits rather than their shape.

Interestingly, this task can be approached by minimizing the contribution of
pixels in isolation (which only represent color) while maximizing the importance
of groups of pixels (which can represent shapes). To do this, CDEP penalizes the
CD contribution of sampled single-pixel values, following Eq. (10). Minimizing
the contribution of single pixels encourages the DNN to focus instead on groups
of pixels. Table 3 shows that CDEP can partially divert the network’s focus on
color to also focus on digit shape. The table includes 2 baselines: penalization
of the squared gradients (RRR) [62] and Expected Gradients (EG) [23]. The
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Fig. 6. ColorMNIST: the shapes remain the same between the training set and the
test set, but the colors are inverted. (Color figure online)

baselines do not improve the test accuracy of the model on this task above the
random baseline, while CDEP significantly improves the accuracy to 31.0%.

Table 3. Test Accuracy on ColorMNIST. CDEP is the only method that captures and
removes color bias. All values averaged over thirty runs. Predicting at random yields
a test accuracy of 10%.

Vanilla CDEP RRR Expected gradients

ColorMNIST 0.2 ± 0.2 31.0 ± 2.3 0.2 ± 0.1 10.0 ± 0.1

The paper [60] further shows how CDEP can be applied to diverse applica-
tions, such as notions of fairness in the COMPAS dataset [35] and in natural-
language processing.

3.2 Distilling Adaptive Wavelets from Neural Networks with
Interpretations

One promising approach to acquiring highly predictive interpretable models is
model distillation. Model distillation is a technique which distills the knowledge
in one model into another model. Here, we focus on the case where we distill
a DNN into a simple, wavelet model. Wavelets have many useful properties,
including fast computation, an orthonormal basis, and interpretation in both
spatial and frequency domains [44]. Here, we cover adaptive wavelet distillation
(AWD), a method to learn a valid wavelet by distilling information from a trained
DNN [31].

Equation (11) shows the three terms in the formulation of the method. xi

represents the i-th input signal, x̂i represents the reconstruction of xi, h and g
represent the lowpass and highpass wavelet filters, and Ψxi denotes the wavelet
coefficients of xi. λ is a hyperparameter penalizing the sparsity of the wavelet
coefficients, which can help to learn a compact representation of the input signal
and γ is a hyperparameter controlling the strength of the interpretation loss,
which controls how much to use the information coming from a trained model f :
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minimize
h,g

L(h, g) =
1

m

∑

i

‖xi − x̂i‖2
2

︸ ︷︷ ︸
Reconstruction loss

+
1

m

∑

i

W (h, g, xi; λ)

︸ ︷︷ ︸
Wavelet loss

+ γ
∑

i

‖TRIMf (Ψxi)‖1

︸ ︷︷ ︸
Interpretation loss

,

(11)

Here the reconstruction loss ensures that the wavelet transform is invertible,
allowing for reconstruction of the original data. Hence the transform does not
lose any information in the input data.

The wavelet loss ensures that the learned filters yield a valid wavelet trans-
form. Specifically, [45,47] characterize the sufficient and necessary conditions on
h and g to build an orthogonal wavelet basis. Roughly speaking, these conditions
state that in the frequency domain the mass of the lowpass filer h is concentrated
on the range of low frequencies while the highpass filter g contains more mass in
the high frequencies. We also desire the learned wavelet to provide sparse repre-
sentations so we add the �1 norm penalty on the wavelet coefficients. Combining
all these conditions via regularization terms, we define the wavelet loss at the
data point xi as

W (h, g, xi;λ) = λ‖Ψxi‖1 + (
∑

n

h[n] −
√

2)2 + (
∑

n

g[n])2 + (‖h‖22 − 1)2

+
∑

w

(|̂h(w)|2 + |̂h(w + π)|2 − 2)2 +
∑

k

(
∑

n

h[n]h[n − 2k] − 1k=0)2,

where g is set as g[n] = (−1)nh[N − 1 − n] and where N is the support size of
h (see [31] for further details on the formulations of wavelet loss).

Finally, the interpretation loss enables the distillation of knowledge from the
pre-trained model f into the wavelet model. It ensures that attributions in the
space of wavelet coefficients Ψxi are sparse, where the attributions of wavelet
coefficients is calculated by TRIM, as described in Sect. 2.3. This forces the
wavelet transform to produce representations that concisely explain the model’s
predictions at different scales and locations.

A key difference between AWD and existing adaptive wavelet techniques
(e.g. [55,56]) is that they use interpretations from a trained model to learn the
wavelets; this incorporates information not just about the signal but also an
outcome of interest and the inductive biases learned by a DNN. This can help
learn an interpretable representation that is well-suited to efficient computation
and effective prediction.

Reality Check: Molecular Partner Prediction. For evaluation, see Sect.
4.1, which shows an example of how a distilled AWD model can provide a simpler,
more interpretable model while improving prediction accuracy.
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4 Real-Data Problems Showcasing Interpretations

In this section, we focus on three real-data problems where the methods intro-
duced in Sect. 2 and Sect. 3 are able to provide useful interpretations in context.
Sect. 4.1 describes how AWD can distill DNNs used in cell biology, Sect. 4.2
describes how TRIM + CD yield insights in a cosmological context, and Sect.
4.3 describes how CDEP can be used to ignore spurious correlations in a medical
imaging task.

4.1 Molecular Partner Prediction

We now turn our attention to a crucial question in cell biology: understand-
ing clathrin-mediated endocytosis (CME) [32,34]. It is the primary pathway
by which things are transported into the cell, making it essential functions
of higher eukaryotic life [46]. Many questions about this process remain unan-
swered, prompting a line of studies aiming to better understand this process [33].
One major challenge with analysis of CME, is the ability to readily distinguish
between abortive coats (ACs) and successful clathrin-coated pits (CCPs). Doing
so enables an understanding of what mechanisms allow for successful endocy-
tosis. This is a challenging problem where DNNs have recently been shown to
outperform classical statistical and ML methods.

Figure 7 shows the pipeline for this challenging problem. Tracking algorithms
run on videos of cells identify time-series traces of endocytic events. An LSTM
model learns to classify which endocytic events are successful and CD scores
identify which parts of the traces the model uses. Using these CD scores, domain
experts are able to validate that the model does, in fact use reasonable features
such as the max value of the time-series traces and the length of the trace.

-

Videos of cells LSTM model

A C

+ +

+
+

+
--
-

-
-

-

B D

+

CD Score 
InterpretationExtracted traces Distilled wavelet model

E

Fig. 7. Molecular partner prediction pipeline. (A) Tracking algorithms run on videos
of cells identify (B) time-series traces of endocytic events. (C) An LSTM model learns
to classify which endocytic events are successful and (D) CD scores identify which
parts of the traces the model uses. (E) AWD distills the LSTM model into a simple
wavelet model which is able to obtain strong predictive performance.

However, the LSTM model is still relatively difficult to understand and com-
putationally intensive. To create an extremely transparent model, we extract
only the maximum 6 wavelet coefficients at each scale. By taking the maximum
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coefficients, these features are expected to be invariant to the specific locations
where a CME event occurs in the input data. This results in a final model with
30 coefficients (6 wavelet coefficients at 5 scales). These wavelet coefficients are
used to train a linear model, and the best hyperparameters are selected via cross-
validation on the training set. Figure 7 shows the best learned wavelet (for one
particular run) extracted by AWD corresponding to the setting of hyperparam-
eters λ = 0.005 and γ = 0.043. Table 4 compares the results for AWD to the
original LSTM and the initialized, non-adaptive DB5 wavelet model, where the
performance is measured via a standard R2 score, a proportion of variance in the
response that is explained by the model. The AWD model not only closes the gap
between the standard wavelet model (DB5) and the neural network, it consider-
ably improves the LSTM’s performance (a 10% increase of R2 score). Moreover,
we calculate the compression rates of the AWD wavelet and DB5—these rates
measure the proportion of wavelet coefficients in the test set, in which the magni-
tude and the attributions are both above 10−3. The AWD wavelet exhibits much
better compression than DB5 (an 18% reduction), showing the ability of AWD
to simultaneously provide sparse representations and explain the LSTM’s pre-
dictions concisely. The AWD model also dramatically decreases the computation
time at test time, a more than 200-fold reduction when compared to LSTM.

In addition to improving prediction accuracy, AWD enables domain experts
to vet their experimental pipelines by making them more transparent. By
inspecting the learned wavelet, AWD allows for checking what clathrin signa-
tures signal a successful CME event; it indicates that the distilled wavelet aims
to identify a large buildup in clathrin fluorescence (corresponding to the build-
ing of a clathrin-coated pit) followed by a sharp drop in clathrin fluorescence
(corresponding to the rapid deconstruction of the pit). This domain knowledge
is extracted from the pre-trained LSTM model by AWD using only the saliency
interpretations in the wavelet space.

Table 4. Performance comparisons for different models in molecular-partner predic-
tion. AWD substantially improves predictive accuracy, compression rate, and compu-
tation time on the test set. A higher R2 score, and lower compression factor, and lower
computation time indicate better results. For AWD, values are averaged over 5 different
random seeds.

AWD (Ours) Standard wavelet (DB5) LSTM

Regression (R2 score) 0.262 (0.001) 0.197 0.237

Compression factor 0.574 (0.010) 0.704 N/A

Computation time 0.0002 s 0.0002 s 0.0449 s

To see the effect of interpretation loss on learning the wavelet transforms
and increased performance, we also learn the wavelet transform while setting
the interpreration loss to be zero. In this case, the best regression R2 score
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selected via cross-validation is 0.231, and the adaptive wavelets without the
interpretation loss still outperforms the baseline wavelet but fail to outperform
the neural network models.

4.2 Cosmological Parameter Prediction

We now turn to a cosmology example, where attributing importance to trans-
formations helps understand cosmological models in a more meaningful feature
space. Specifically, we consider weak gravitational lensing convergence maps, i.e.
maps of the mass distribution in the Universe integrated up to a certain distance
from the observer. In a cosmological experiment (e.g. a galaxy survey), these
mass maps are obtained by measuring the distortion of distant galaxies caused
by the deflection of light by the mass between the galaxy and the observer [9].
These maps contain a wealth of physical information of interest to cosmologists,
such as the total matter density in the universe, Ωm. Current research aims at
identifying the most informative features in these maps for inferring the true
cosmological parameters, with DNN-based inference methods often obtaining
state-of-the-art results [25,58,59].

In this context, it is important to not only have a DNN that predicts well, but
also understand what it learns. Knowing which features are important provides
deeper understanding and can be used to design optimal experiments or analysis
methods. Moreover, because this DNN is trained on numerical simulations (real-
izations of the Universe with different cosmological parameters), it is important
to validate that it uses physical features rather than latching on to numerical
artifacts in the simulations. TRIM can help understand and validate that the
DNN learns appropriate physical features by analyzing attributing importance
in the spectral domain.

A DNN is trained to accurately predict Ωm from simulated weak gravitational
lensing convergence maps (full details in [67]). To understand what features the
model is using, we desire an interpretation in the space of the power spectrum.
The images in Fig. 8 show how different information is contained within dif-
ferent frequency bands in the mass maps. The plot in Fig. 8 shows the TRIM
attributions with CD (normalized by the predicted value) for different frequency
bands when predicting the parameter Ωm. Interestingly, the most important
frequency band for the predictions seems to peak at scales around � = 104 and
then decay for higher frequencies.5 A physical interpretation of this result is that
the DNN concentrates on the most discriminative part of the Power Spectrum,
i.e. at scales large enough not to be dominated by sample variance, and smaller
than the frequency cutoff at which the simulations lose power due to resolution
effects.

Figure 9 shows some of the curves from Fig. 8 separated based on their
cosmology, to show how the curves vary with the value of Ωm. Increasing the
value of Ωm increases the contribution of scales close to � = 104, making other

5 Here the unit of frequency used is angular multipole �.
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Fig. 8. Different scales (i.e. frequency bands) contribute differently to the prediction of
Ωm. Each blue line corresponds to one testing image and the red line shows the mean.
Images show the features present at different scales. The bandwidth is Δ� = 2,700.
(Color figure online)

frequencies relatively unimportant. This seems to correspond to known cosmo-
logical knowledge, as these scales seem to correspond to galaxy clusters in the
mass maps, which are structures very sensitive to the value of Ωm. The fact that
the importance of these features varies with Ωm would seem to indicate that at
lower Ωm the model is using a different source of information, not located at any
single scale, for making its prediction.

4.3 Improving Skin Cancer Classification via CDEP

In recent years, deep learning has achieved impressive results in diagnosing skin
cancer [24]. However, the datasets used to train these models often include spuri-
ous features which make it possible to attain high test accuracy without learning
the underlying phenomena [79]. In particular, a popular dataset from ISIC (Inter-
national Skin Imaging Collaboration) has colorful patches present in approxi-
mately 50% of the non-cancerous images but not in the cancerous images as can
be seen in Fig. 10 [14]. We use CDEP to remedy this problem by penalizing the
DNN placing importance on the patches during training.
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Fig. 9. TRIM attributions vary with the value of Ωm.

Benign

half of data polluted with patchesMalignant

Fig. 10. Example images from the ISIC dataset. Half of the benign lesion images
include a patch in the image. Training on this data results in the neural network overly
relying on the patches to classify images; CDEP avoids this.

The task in this section is to classify whether an image of a skin lesion
contains (1) benign melanoma or (2) malignant melanoma. In a real-life task,
this would for example be done to determine whether a biopsy should be taken.
In order to identify the spurious patches, binary maps of the patches for the skin
cancer task are segmented using SLIC, a common image-segmentation algorithm
[1]. After the spurious patches were identified, they are penalized using to have
zero importance.

Table 5 shows results comparing the performance of a DNN trained with
and without CDEP. We report results on two variants of the test set. The first,
which we refer to as “no patches” only contains images of the test set that do not
include patches. The second also includes images with those patches. Training
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with CDEP improves the AUC and F1-score for both test sets, compared to
both a Vanilla DNN and using the RRR method introduced in [62]. Further
visual inspection shows that the DNN attributes low importance to regions in
the images with patches.

Table 5. Results from training a DNN on ISIC to recognize skin cancer (averaged over
three runs). Results shown for the entire test set and for only the test-set images that
do not include patches (“no patches”). The network trained with CDEP generalizes
better, getting higher AUC and F1 on both.

AUC (no patches) F1 (no patches) AUC (all) F1 (all)

Vanilla 0.93 0.67 0.96 0.67

RRR 0.76 0.45 0.87 0.45

CDEP 0.95 0.73 0.97 0.73

5 Discussion

Overall, the interpretation methods here are shown to (1) accurately recover
known importances for features/feature interactions [49], (2) correctly inform
human decision-making and be robust to adversarial perturbations [68], and
(3) reliably alter a neural network’s predictions when regularized appropriately
[60]. For each case, we demonstrated the use of reality checks through predictive
accuracy (the most common form of reality check) or through domain knowledge
which is relevant to a particular domain/audience.

There is considerable future work to do in developing and evaluating attri-
butions, particularly in distilling/building interpretable models for real-world
domains and understanding how to better make useful interpretation methods.
Below we discuss them in turn.

5.1 Building/Distilling Accurate and Interpretable Models

In the ideal case, a practitioner can develop a simple model to make their pre-
dictions, ensuring interpretability by obviating the need for post-hoc interpreta-
tion. Interpretable models tend to be faster, more computationally efficient, and
smaller than their DNN counterparts. Moreover, interpretable models allow for
easier inspection of knowledge extracted from the learned models and make real-
ity checks more transparent. AWD [31] represents one effort to use attributions
to distill DNNs into an interpretable wavelet model, but the general idea can
go much further. There are a variety of interpretable models, such as rule-based
models [37,69,74] or additive models [13] whose fitting process could benefit from
accurate attributions. Moreover, AWD and related techniques could be extended
beyond the current setting to unsupervised/reinforcement learning settings or
to incorporate multiple layers. Alternatively, attributions can be used as feature
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engineering tools, to help build simpler, more interpretable models. More useful
features can help enable better exploratory data analysis, unsupervised learning,
or reality checks.

5.2 Making Interpretations Useful

Furthermore, there is much work remaining to improve the relevancy of inter-
pretations for a particular audience/problem. Given the abundance of possible
interpretations, it is particularly easy for researchers to propose novel methods
which do not truly solve any real-world problems or fail to faithfully capture
some aspects of reality. A strong technique to avoid this is to directly test newly
introduced methods in solving a domain problem. Here, we discussed several
real-data problems that have benefited from improved interpretations Sect. 4,
spanning from cosmology to cell biology. In instances like this, where interpreta-
tions are used directly to solve a domain problem, their relevancy is indisputable
and reality checks can be validated through domain knowledge. A second, less
direct, approach is the use of human studies where humans are asked to perform
tasks, such as evaluating how much they trust a model’s predictions [68]. While
challenging to properly construct and perform, these studies are vital to demon-
strating that new interpretation methods are, in fact, relevant to any potential
practitioners. We hope the plethora of open problems in various domains such as
science, medicine, and public policy can help guide and benefit from improved
interpretability going forward.
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K.R.: How to explain individual classification decisions. J. Mach. Learn. Res.
11(Jun), 1803–1831 (2010)



Interpreting Deep-Learning Models with Reality Checks 251

8. Bao, Y., Chang, S., Yu, M., Barzilay, R.: Deriving machine attention from human
rationales. arXiv preprint arXiv:1808.09367 (2018)

9. Bartelmann, M., Schneider, P.: Weak gravitational lensing. Phys. Rep. 340(4–5),
291–472 (2001)

10. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

11. Brennan, T., Oliver, W.L.: The emergence of machine learning techniques in crim-
inology. Criminol. Public Policy 12(3), 551–562 (2013)

12. Burns, K., Hendricks, L.A., Saenko, K., Darrell, T., Rohrbach, A.: Women also
snowboard: overcoming bias in captioning models. arXiv preprint arXiv:1803.09797
(2018)

13. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible
models for healthcare: predicting pneumonia risk and hospital 30-day readmission.
In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1721–1730. ACM (2015)

14. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a chal-
lenge hosted by the international skin imaging collaboration (ISIC). arXiv preprint
arXiv:1902.03368 (2019)

15. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. arXiv
preprint arXiv:1705.07857 (2017)

16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR 2009 (2009)

17. Devlin, S., Singh, C., Murdoch, W.J., Yu, B.: Disentangled attribution curves for
interpreting random forests and boosted trees. arXiv preprint arXiv:1905.07631
(2019)

18. Dhamdhere, K., Agarwal, A., Sundararajan, M.: The shapley taylor interaction
index. arXiv preprint arXiv:1902.05622 (2019)

19. Doshi-Velez, F., Kim, B.: A roadmap for a rigorous science of interpretability. arXiv
preprint arXiv:1702.08608 (2017)

20. Dressel, J., Farid, H.: The accuracy, fairness, and limits of predicting recidivism.
Sci. Adv. 4(1), eaao5580 (2018)

21. Du, M., Liu, N., Yang, F., Hu, X.: Learning credible deep neural networks with
rationale regularization. arXiv preprint arXiv:1908.05601 (2019)

22. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226. ACM (2012)

23. Erion, G., Janizek, J.D., Sturmfels, P., Lundberg, S., Lee, S.I.: Learning explainable
models using attribution priors. arXiv preprint arXiv:1906.10670 (2019)

24. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural
networks. Nature 542(7639), 115 (2017)

25. Fluri, J., Kacprzak, T., Lucchi, A., Refregier, A., Amara, A., Hofmann, T., Schnei-
der, A.: Cosmological constraints with deep learning from KiDS-450 weak lensing
maps. Phys. Rev. D 100(6), 063514 (2019)

26. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful
perturbation. arXiv preprint arXiv:1704.03296 (2017)

27. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784 (2017)

28. Garg, N., Schiebinger, L., Jurafsky, D., Zou, J.: Word embeddings quantify 100
years of gender and ethnic stereotypes. Proc. Natil. Acad. Sci. 115(16), E3635–
E3644 (2018)

http://arxiv.org/abs/1808.09367
http://arxiv.org/abs/1803.09797
http://arxiv.org/abs/1902.03368
http://arxiv.org/abs/1705.07857
http://arxiv.org/abs/1905.07631
http://arxiv.org/abs/1902.05622
http://arxiv.org/abs/1702.08608
http://arxiv.org/abs/1908.05601
http://arxiv.org/abs/1906.10670
http://arxiv.org/abs/1704.03296
http://arxiv.org/abs/1711.09784


252 C. Singh et al.

29. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. arXiv preprint arXiv:1606.08813 (2016)

30. Gupta, A., Arora, S.: A simple saliency method that passes the sanity checks.
arXiv preprint arXiv:1905.12152 (2019)

31. Ha, W., Singh, C., Lanusse, F., Upadhyayula, S., Yu, B.: Adaptive wavelet distilla-
tion from neural networks through interpretations. Adv. Neural Inf. Process. Syst.
34 (2021)

32. He, K., et al.: Dynamics of Auxilin 1 and GAK in clathrin-mediated traffic. J. Cell
Biol. 219(3) (2020)

33. Kaksonen, M., Roux, A.: Mechanisms of clathrin-mediated endocytosis. Nat. Rev.
Mol. Cell Biol. 19(5), 313 (2018)

34. Kirchhausen, T., Owen, D., Harrison, S.C.: Molecular structure, function, and
dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol.
6(5), a016725 (2014)

35. Larson, J., Mattu, S., Kirchner, L., Angwin, J.: How we analyzed the COMPAS
recidivism algorithm. ProPublica 9 (2016)

36. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.com/
exdb/mnist/

37. Letham, B., Rudin, C., McCormick, T.H., Madigan, D., et al.: Interpretable clas-
sifiers using rules and Bayesian analysis: building a better stroke prediction model.
Ann. Appl. Stat. 9(3), 1350–1371 (2015)

38. Li, J., Monroe, W., Jurafsky, D.: Understanding neural networks through repre-
sentation erasure. arXiv preprint arXiv:1612.08220 (2016)

39. Li, Y., Vasconcelos, N.: REPAIR: removing representation bias by dataset resam-
pling. arXiv preprint arXiv:1904.07911 (2019)

40. Lipton, Z.C.: The mythos of model interpretability. arXiv preprint
arXiv:1606.03490 (2016)

41. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88 (2017)

42. Liu, F., Avci, B.: Incorporating priors with feature attribution on text classifica-
tion. arXiv preprint arXiv:1906.08286 (2019)

43. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, pp. 4768–4777 (2017)

44. Mallat, S.: A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way.
Academic Press (2008)

45. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet rep-
resentation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

46. McMahon, H.T., Boucrot, E.: Molecular mechanism and physiological functions of
clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12(8), 517 (2011)

47. Meyer, Y.: Wavelets and Operators: Volume 1. No. 37, Cambridge University Press
(1992)

48. Mitsuhara, M., et al.: Embedding human knowledge in deep neural network via
attention map. arXiv preprint arXiv:1905.03540 (2019)

49. Murdoch, W.J., Liu, P.J., Yu, B.: Beyond word importance: contextual decompo-
sition to extract interactions from LSTMs. In: ICLR (2018)

50. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, meth-
ods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci.
116(44), 22071–22080 (2019)

51. Murdoch, W.J., Szlam, A.: Automatic rule extraction from long short term memory
networks (2017)

http://arxiv.org/abs/1606.08813
http://arxiv.org/abs/1905.12152
http://yann.com/exdb/mnist/
http://yann.com/exdb/mnist/
http://arxiv.org/abs/1612.08220
http://arxiv.org/abs/1904.07911
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1906.08286
http://arxiv.org/abs/1905.03540


Interpreting Deep-Learning Models with Reality Checks 253

52. Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an
algorithm used to manage the health of populations. Science 366(6464), 447–453
(2019)

53. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill 2(11), e7
(2017)

54. Paszke, A., et al.: Automatic differentiation in Pytorch (2017)
55. Recoskie, D.: Learning sparse orthogonal wavelet filters (2018)
56. Recoskie, D., Mann, R.: Learning sparse wavelet representations. arXiv preprint

arXiv:1802.02961 (2018)
57. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the

predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM
(2016)
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