
Interpretable, Verifiable, and Robust
Reinforcement Learning via Program

Synthesis

Osbert Bastani1(B), Jeevana Priya Inala2, and Armando Solar-Lezama3

1 University of Pennsylvania, Philadelphia, PA 19104, USA
obastani@seas.upenn.edu

2 Microsoft Research, Redmond, WA 98052, USA
jinala@microsoft.com

3 Massachusetts Institute of Technology, Cambridge, MA 02139, USA

asolar@csail.mit.edu

Abstract. Reinforcement learning is a promising strategy for automat-
ically training policies for challenging control tasks. However, state-of-
the-art deep reinforcement learning algorithms focus on training deep
neural network (DNN) policies, which are black box models that are
hard to interpret and reason about. In this chapter, we describe recent
progress towards learning policies in the form of programs. Compared to
DNNs, such programmatic policies are significantly more interpretable,
easier to formally verify, and more robust. We give an overview of algo-
rithms designed to learn programmatic policies, and describe several case
studies demonstrating their various advantages.

Keywords: Interpretable reinforcement learning · Program synthesis

1 Introduction

Reinforcement learning is a promising strategy for learning control policies for
challenging sequential decision-making tasks. Recent work has demonstrated its
promise in applications including game playing [34,43], robotics control [14,31],
software systems [13,30], and healthcare [6,37]. A typical strategy is to build a
high-fidelity simulator of the world, and then use reinforcement learning to train
a control policy to act in this environment. This policy makes decisions (e.g.,
which direction to walk) based on the current state of the environment (e.g.,
the current image of the environment captured by a camera) to optimize the
cumulative reward (e.g., how quickly the agent reaches its goal).

There has been significant recent progress on developing powerful deep rein-
forcement learning algorithms [33,41], which train a policy in the form of a deep
neural network (DNN) by using gradient descent on the DNN parameters to opti-
mize the cumulative reward. Importantly, these algorithms treat the underlying
environment as a black box, making them very generally applicable.
c© The Author(s) 2022
A. Holzinger et al. (Eds.): xxAI 2020, LNAI 13200, pp. 207–228, 2022.
https://doi.org/10.1007/978-3-031-04083-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-04083-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-04083-2_11


208 O. Bastani et al.

A key challenge in many real-world applications is the need to ensure that
the learned policy continues to act correctly once it is deployed in the real world.
However, DNN policies are typically very difficult to understand and analyze,
making it hard to make guarantees about their performance. The reinforcement
learning setting is particularly challenging since we need to reason not just about
isolated predictions but about sequences of highly connected decisions.

As a consequence, there has been a great deal of recent interest in learning
policies in the form of programs, called programmatic policies. Such policies
include existing interpretable models such as decision trees [9], which are simple
programs composed of if-then-else statements, as well as more complex ones such
as state machines [26] and list processing programs [27,50]. In general, programs
have been leveraged in machine learning to achieve a wide range of goals, such
as representing high-level structure in images [16,17,25,46,47,53] and classifying
sequence data such as trajectories or text [12,42].

Programmatic policies have a number of advantages over DNN policies that
make it easier to ensure they act correctly. For instance, programs tend to be
significantly more interpretable than DNNs; as a consequence, human experts
can often understand and debug behaviors of a programmatic policy [26,27,50].
In addition, in contrast to DNNs, programs have discrete structure, which make
them much more amenable to formal verification [3,9,39], which can be used to
prove correctness properties of programmatic policies. Finally, there is evidence
that programmatic policies are more robust than their DNN counterparts—e.g.,
they generalize better to changes in the task or robot configuration [26].

A key challenge with learning programmatic policies is that state-of-the-art
reinforcement learning algorithms cannot be applied. In particular, these algo-
rithms are based on the principle of gradient descent on the policy parameters,
yet programmatic policies are typically non-differentiable (or at least, their opti-
mization landscape contains many local minima). As a consequence, a common
strategy to learning these policies is to first learn the DNN policy using deep rein-
forcement learning, and then using imitation learning to compress the DNN into
a program. Essentially, this strategy reduces the reinforcement learning problem
for programmatic policies into a supervised learning problem, for which efficient
algorithms often exist—e.g., based on program synthesis [21]. A refinement of
this strategy is to adaptively update the DNN policy to mirror the programmatic
policy, which reduces the gap between the DNN and the program [26,49].

In this chapter, we provide an overview of recent progress in this direction.
We begin by formalizing the reinforcement learning problem (Sect. 2); then,
we describe interesting kinds of programmatic policies that have been stud-
ied (Sect. 3), algorithms for learning programmatic policies (Sect. 4), and case
studies demonstrating the value of programmatic policies (Sect. 5).

2 Background on Reinforcement Learning

We consider a reinforcement learning problem formulated as a Markov decision
process (MDP) M = (S,A, P,R) [36], where S is the set of states, A is the set
of actions, P (s′ | a, s) ∈ [0, 1] is the probability of transitioning from state s ∈ S



Reinforcement Learning via Program Synthesis 209

to state s′ ∈ S upon taking action a ∈ A, and R(s, a) ∈ R is the reward accrued
by taking action a in state s.

Given an MDP M , our goal is to train an agent that acts in M in a way that
accrues high cumulative reward. We represent the agent as a policy π : S → A
mapping states to actions. Then, starting from a state s ∈ S, the agent selects
action a = π(s) according to the policy, observes a reward R(s, a), transitions to
the next state s′ ∼ P (· | s, a), and then iteratively continues this process starting
from s′. For simplicity, we assume that a deterministic initial state s1 ∈ S along
with a fixed, finite number of steps H ∈ N. Then, we formalize the trajectory
taken by the agent as a rollout ζ ∈ (S × A × R)H , which is a sequence of state-
action-reward tuples ζ = ((s1, a1, r1), ..., (sH , aH , rH)). We can sample a rollout
by taking rt = R(st, at) and st+1 ∼ P (· | st, at) for each t ∈ [H] = {1, ...,H}; we
let D(π)(ζ) denote the distribution over rollouts induced by using policy π.

Now, our goal is to choose a policy π ∈ Π in a given class of policies Π that
maximizes the expected reward accrued. In particular, letting J(ζ) =

∑H
t=1 rt

be the cumulative reward of rollout ζ, our goal is to compute

π̂ = arg max
π∈Π

J(π) where J(π) = Eζ∼D(π) [J(ζ)],

i.e., the policy π ∈ Π that maximizes the expected cumulative reward over the
induced distribution of rollouts D(π)(ζ).

As an example, we can model a robot navigating a room to reach a goal as
follows. The state (x, y) ∈ S = R

2 represents the robot’s position, and the action
(v, φ) ∈ A = R

2 represents the robot’s velocity v and direction φ. The transition
probabilities are P (s′ | s, a) = N (f(s, a), Σ), where

f((x, y), (v, φ)) = (x + v · cos φ · τ, y + v · sin φ · τ),

where τ ∈ R>0 is the time increment, and where Σ ∈ R
2×2 is the variance in

the state transitions due to stochastic perturbations. Finally, the rewards are
the distance to the goal—i.e., R(s, a) = −‖s−g‖2 +λ · ‖a‖2, where g ∈ R

2 is the
goal and λ ∈ R>0 is a hyperparameter. Intuitively, the optimal policy π̂ for this
MDP takes actions in a way that maximizes the time the robot spends close to
the goal g, while avoiding very large (and therefore costly) actions.

3 Programmatic Policies

The main difference in programmatic reinforcement learning compared to tra-
ditional reinforcement learning is the choice of policy class Π. In particular, we
are interested in cases where Π is a space of programs of some form. In this
section, we describe specific choices that have been studied.

3.1 Traditional Interpretable Models

A natural starting point is learning policies in the form of traditional inter-
pretable models, including decision trees [10] and rule lists [52]. In particular,
these models can be thought of as simple programs composed of simple primitives
such as if-then-else rules and arithmetic operations. For example, in Fig. 1, we



210 O. Bastani et al.

Fig. 1. A decision tree policy trained to control the cart-pole model; it achieves near-
perfect performance. Adapted from [9].

show an example of a decision tree policy trained to control the cart-pole robot,
which consists of a pole balanced on a cart and the goal is to move the cart back
and forth to keep the pole upright [11]. Here, the state consists of the velocity
and angle of each the cart and the pole (i.e., S ⊆ R

4), and the actions are to
move the cart left or right (i.e., A = {left, right}). As we discuss in Sect. 5, these
kinds of policies provide desirable properties such as interpretability, robustness,
and verifiability. A key shortcoming is that they have difficulty handling more
complex inputs, e.g., sets of other agents, sequences of observations, etc. Thus,
we describe programs with more sophisticated components below.

Fig. 2. (a) A depiction of the task, which is to drive the blue car (the agent) out from
between the two stationary black cars. (b) A state machine policy trained to solve this
task. Adapted from [26]. (Color figure online)



Reinforcement Learning via Program Synthesis 211

3.2 State Machine Policies

A key shortcoming of traditional interpretable models is that they do not possess
internal state—i.e., the policy cannot propagate information about the current
time step to the next time step. In principle, for an MDP, keeping internal state
is not necessary since the state variable contains all information necessary to
act optimally. Nevertheless, in many cases, it can be helpful for the policy to
keep internal state—for instance, for motions such as walking or swimming that
repeat iteratively, it can be helpful to internally keep track of progress within the
current iteration. In addition, if the state is partially observed (i.e., the policy
only has access to o = h(s) instead of the full state s), then internal state may
be necessary to act optimally [28]. In the context of deep reinforcement learning,
recurrent neural networks (RNNs) can be used to include internal state [23].

For programmatic policies, a natural analog is to use polices based on finite-
state machines. In particular, state machine policies are designed to be inter-
pretable while including internal state [26]. Its internal state records one of a
finite set of possible modes, each of which is annotated with (i) a simple pol-
icy for choosing the action when in this mode (e.g., a linear function of the
state), and (ii) rules for when to transition to the next mode (e.g., if some lin-
ear inequality becomes satisfied, then transition to a given next mode). These
policies are closely related to hybrid automata [2,24], which are models of a sub-
class of dynamical systems called hybrid systems that include both continuous
transitions (modeled by differential equations) and discrete, discontinuous ones
(modeled by a finite-state machine). In particular, the closed-loop system con-
sisting of a state-machine policy controlling a hybrid system is also a hybrid
system.

As an example, consider Fig. 2; the blue car (the agent) is parked between
two stationary black cars, and its goal is to drive out of its parking spot into the
goal position while avoiding collisions. The state is (x, y, θ, d) ∈ R

4, where (x, y)
is the center of the car, θ is its orientation, and d is the distance between the
two black cars. The actions are (v, ψ) ∈ R

2, where v is the velocity and ψ is the
steering angle. The transitions are the standard bicycle dynamics [35].

In Fig. 2b, we show the state machine policy synthesized by our algorithm
for this task. We use df and db to denote the distances between the agent and
the front and back black cars, respectively. This policy has three different modes
(besides a start mode ms and an end mode me). Roughly speaking, it says (i)
immediately shift from mode ms to m1, and drive the car forward and to the
left, (ii) continue until close to the car in front; then, transition to mode m2,
and drive the car backwards and to the right, (iii) continue until close to the car
behind; then, transition back to mode m1, (iv) iterate between m1 and m2 until
the car can safely exit the parking spot; then, transition to mode m3, and drive
forward and to the right to make the car parallel to the lane.



212 O. Bastani et al.

Fig. 3. Two groups of agents (red vs. blue) at their initial positions (circles) trying
to reach their goal positions (crosses). The solid line shows the trajectory taken by a
single agent in each group. (Color figure online)

Fig. 4. (a) Soft attention computed by a DNN for the agent along the y-axis deciding
whether to focus on the agent along the x-axis. (b) Sparse attention computed by a
program. (c) Program used by each agent to select other agents to focus on. Adapted
from [27].

3.3 List Processing Programs

Another kind of programmatic policy is list processing programs, which are
compositions of components designed to manipulate lists—e.g., the map, filter,



Reinforcement Learning via Program Synthesis 213

and fold operators [18]; the set of possible components can be chosen based on
the application. In contrast to state machine policies, list processing programs
are designed to handle situations where the state includes lists of elements. For
example, in multi-agent systems, the full state consists of a list of states for each
individual agent [27]. In this case, the program must compute a single action
based on the given list of states. Alternatively, for environments with variable
numbers of objects, the set of object positions must be encoded as a list. Finally,
they can also be used to choose actions based on the history of the previous k
states [50], which achieves a similar goal as state machine policies.

As an example, consider the task in Fig. 3, where agents in group 1 (blue)
are navigating from the left to their goal on the right, while agents in group 2
(red) are navigating from the right to their goal on the left. The system state
s ∈ R

2k is a list containing the position (xi, yi) of each agent of the k agents. An
action a ∈ R

2k consists of the velocities (vi, wi) to be applied by each agent. We
consider a strategy where we use a single policy π : S × [k] → R

2, which takes
as input the system state along with the index of the current agent i ∈ [k], and
produces the action π(s, i) to be taken by agent i. This policy is applied to each
agent to construct the full list of actions.

To solve this task, each agent must determine which agents to focus on; in
the example in Fig. 3, it is useful to attend to the closest neighbor in the same
group (to avoid colliding with them), as well as with an arbitrary agent from the
opposite group (to coordinate so their trajectories do not collide).

For now, we describe programmatic policies for each agent designed to select
a small number of other agents to focus on. This list of agents can in principle be
processed by a second programmatic policy to determine the action to choose;
however, in Sect. 3.4, we describe a strategy that combines them with a neural
network policy to select actions. Figure 4c shows an example of a programmatic
policy that each agent can use to choose other agents to focus on for the task in
Fig. 3. This program consists of two rules, each of which selects a single agent
to focus on; the program returns the set consisting of both selected agents. In
each of these rules, agent i is selecting over other agents j in the list �; di,j is
the distance between them and θi,j is the angle between them. Intuitively, rule
R1 chooses the nearest other agent j such that θi,j ∈ [−1.85, π], which is likely
an agent in the same group as agent i that is directly in front of agent i; thus,
agent i needs to focus on it to avoid colliding into it. In contrast, R2 chooses a
random agent from the agents that are far away, which is likely an agent in the
other group; thus, agent i can use this information to avoid the other group.

3.4 Neurosymbolic Policies

In some settings, we want part of the policy to be programmatic, but other
parts of the policy to be DNNs. We refer to policies that combine programs and
DNNs as neurosymbolic policies. Intuitively, the program handles part of the
computation that we would like to be interpretable, whereas the DNN handles
the remainder of the computation (potentially the part that cannot be easily
approximated by an interpretable model).



214 O. Bastani et al.

One instance of this strategy is to leverage programs as the attention mech-
anism for a transformer model [27]. At a high level, a transformer [48] is a DNN
that operates on a list of inputs. These models operate by first choosing a small
subset of other elements of the list to focus on (the attention layer), then uses a
fully-connected layer to decide what information from the other agents is useful
(the value layer), and finally uses a second fully-connected layer to compute the
result (output layer). For example, transformers can be applied to multi-agent
systems since it has to reason over the list of other agents.

A neurosymbolic transformer is similar to a transformer but uses program-
matic policies for the attention layer; the value layer and the output layer are still
neural networks. This architecture makes the attention layer interpretable—e.g.,
it is easy to understand and visualize why an agent attends to another agent,
while still retaining much of the complexity of the original transformer.

For example, the program shown in Fig. 4c can be used to select other agents
to attend to in a neurosymbolic transformer; unlike a DNN attention layer,
this program is interpretable. An added advantage is that the program pro-
duces sparse attention weights; in contrast, a DNN attention layer produces soft
attention weights, so every agent needs to attend to every other agent, even if
the attention weight is small. Figure 4a shows the soft attention computed by a
DNN, and Fig. 4b shows the sparse attention computed by a program.

4 Synthesizing Programmatic Policies

Next, we describe our algorithms for training programmatic policies. We begin
by describing the general strategy of first training a deep neural network (DNN)
policy using deep reinforcement learning, and then using imitation learning in
conjunction with the DNN policy to reduce the reinforcement learning problem
for programmatic policies to a supervised learning problem (Sect. 4.1 and 4.2).
Then, we describe a refinement of this strategy where the DNN is adaptively
updated to better mirror the current programmatic policy (Sect. 4.3). Finally,
all of these strategies rely on a subroutine for solving the supervised learning
problem; we briefly discuss approaches to doing so (Sect. 4.4).

4.1 Imitation Learning

We focus on the setting of continuous state and action spaces (i.e., S ⊆ R
n

and A ⊆ R
m), but our techniques are applicable more broadly. A number of

algorithms have been proposed for computing optimal policies for a given MDP
M and policy class Π [44]. For continuous state and action spaces, state-of-the-
art deep reinforcement learning algorithms [33,41] consider a parameteric policy
class Π = {πθ | θ ∈ Θ}, where the parameters Θ ⊆ R

d are real-valued—e.g., πθ

is a DNN and θ are its parameters. Then, they compute π∗ by optimizing over
θ. One strategy is to use gradient descent on the objective—i.e.,

θ′ ← θ + η · ∇θJ(πθ).



Reinforcement Learning via Program Synthesis 215

Algorithm 1. Training programmatic policies using imitation learning.
procedure ImitationLearn(M, Q∗, m, n)

Train oracle policy π∗ ← TrainDNN(M)
Initialize training dataset Z ← ∅

Initialize programmatic policy π̂0 ← π∗

for i ∈ {1, ..., n} do
Sample m trajectories to construct Zi ← {(s, π∗(s)) ∼ D(π̂i−1)}
Aggregate dataset Z ← Z ∪ Zi

Train programmatic policy π̂i ← TrainProgram(Z)
end for
return Best policy π̂ ∈ {π̂1, ..., π̂N} on cross validation

end procedure

In particular, the policy gradient theorem [45] encodes how to compute an unbi-
ased estimator of this objective in terms of ∇θπθ. In general, most state-of-the-
art approaches rely on gradient descent on the policy parameters θ. However,
such approaches cannot be applied to training programmatic policies, since the
search space of programs is typically discrete.

Instead, a general strategy is to use imitation learning to reduce the rein-
forcement learning problem to a supervised learning problem. At a high level,
the idea is to first use deep reinforcement learning to learn an high-performing
DNN policy π∗, and then train the programmatic policy π̂ to imitate π∗.

A näıve strategy is to use an imitation learning algorithm called behavioral
cloning [4], which uses π∗ to explore the MDP, collects state-action pairs Z =
{(s, a)} pairs occurring in rollouts ζ ∼ D(π∗), and then trains π̂ using supervised
learning on the dataset Z—i.e.,

π̂ = arg min
π∈Π

∑

(s,a)∈Z

1(π(s) = a). (1)

Intuitively, the key shortcoming with this approach is that if π̂ makes a mistake
compared to the DNN policy π∗, then it might reach a state s that is very
different from the states in the dataset Z. Thus, π̂ may not know the correct
action to take in state s, leading to poor performance. As a simple example,
consider a self-driving car, and suppose π∗ drives perfectly in the center of lane,
whereas π̂ deviates slightly from the center early in the rollout. Then, it reaches
a state never seen in the training data Z, which means π̂ does not know how to
act in this state, so it may deviate further.

State-of-the-art imitation learning algorithms are designed to avoid these
issues. One simple but effective strategy is the Dataset Aggregation (DAgger)
algorithm [38], which iteratively retrains the programmatic policy based on the
distribution of states it visits. The first iteration is the same as behavioral
cloning; in particular, it generates an initial dataset Z0 using π∗ and trains
an initial programmatic policy π̂0. In each subsequent iteration i, it generates a
dataset Zi using the previous programmatic policy π̂i−1, and then trains π̂i on Zi.



216 O. Bastani et al.

This strategy is summarized in Algorithm 1; it has been successfully leveraged
to train programmatic policies to solve reinforcement learning problems [50].

4.2 Q-Guided Imitation Learning

One shortcoming of Algorithm 1 is that it does not account for the fact that
certain actions are more important than others [9]. Instead, the loss function
in Eq. 1 treats all state-action pairs in the dataset Z as being equally impor-
tant. However, in practice, one state-action pair (s, a) may be significantly more
consequential than another one (s′, a′)—i.e., making a mistake π̂(s) 	= a might
degrade performance by significantly more than a mistake π̂(s′) 	= a.

For example, consider the toy game of Pong in Fig. 8; the goal is to move the
paddle to prevent the ball from exiting the screen. Figure 5a shows a state where
the action taken is very important; the paddle must be moved to the right, or
else the ball cannot be stopped from exiting. In contrast, Fig. 5b shows a state
where the action taken is unimportant. Ideally, our algorithm would upweight
the former state-action pair and downweight the latter.

One way to address this issue is by leveraging the Q-function, which measures
the quality of a state-action pair—in particular, Q(π)(s, a) ∈ R is the cumulative
reward accrued by taking action a in state s, and then continuing with policy π.
Traditional imitation learning algorithms do not have access to Q(π∗), since π∗ is
typically a human expert, and it would be difficult to elicit these values. However,
the Q function Q(π∗) for the DNN policy π∗ is computed as a byproduct of many
deep reinforcement learning algorithms, so it is typically available in our setting.
Given Q(π∗), a natural alternative to Eq. 1 is

π̂ = arg min
π∈Π

∑

(s,a)∈Z

(Q(π∗)(s, a) − Q(π∗)(s, π̂(s))). (2)

Intuitively, the term Q(π∗)(s, a) − Q(π∗)(s, π̂(s)) measures the degradation in
performance by taking the incorrect action π̂(s) instead of a. Indeed, it can be
proven that this objective exactly encodes the gap in performance between π̂
and π∗—i.e., in the limit of infinite data, it is equivalent to computing

π̂ = arg min
π∈Π

{J(π∗) − J(π̂)}.

Finally, a shortcoming of Eq. 2 is that it is not a standard supervised learning
problem. To address this issue, we can instead optimize the lower bound

Q(π∗)(s, a) − Q(π∗)(s, π̂(s)) ≤
(

Q(π∗)(s, a) − arg min
a′∈A

Q(π∗)(s, a′)
)

· 1(π̂(s) = a),

which yields the optimization problem

π̂ = arg min
π∈Π

∑

(s,a)∈Z

(

Q(π∗)(s, a) − arg min
a′∈A

Q(π∗)(s, a′)
)

· 1(π̂(s) = a).

This strategy is proposed in [9] and shown to learn significantly more compact
policies compared to the original DAgger algorithm.



Reinforcement Learning via Program Synthesis 217

4.3 Updating the DNN Policy

Another shortcoming of Algorithm 1 is that it does not adjust the DNN policy
π∗ to account for limitations on the capabilities of the programmatic policy π̂.
Intuitively, if π̂ cannot accurately approximate π∗, then π∗ may suggest actions
that lead to states where π̂ cannot perform well, even if π∗ performs well in these
states. There has been work on addressing this issue. For example, coaching can
be used to select actions that are more suitable for π̂ [22]. Alternatively, π∗ can
be iteratively updated using gradient descent to better reflect π̂ [49].

A related strategy is adaptive teaching, where rather than choosing π∗ to be
a DNN, it is instead a policy whose structure mirrors that of π̂ [26]. In this case,
we can directly update π∗ on each training iteration to reflect the structure of
π̂. As an example, in the case of state machine policies, π∗ can be chosen to be a
“loop-free” policy, which consists of a linear sequence of modes. These modes can
then be mapped to the modes of π̂, and regularized so that their local policies
and mode transitions mirror that of π̂. Adaptive teaching has been shown to be
an effective strategy for learning state machine policies [26].

(a) Critical state (b) Non-critical state

Fig. 5. A toy game of Pong. The paddle is the gray bar at the bottom, and the ball
is the gray square. The red arrow shows the direction the ball is traveling, and the
blue arrows show the possible actions (move paddle left vs. right). We show examples
where the action taken in this state (a) does, and (b) does not significantly impact the
cumulative reward accrued from this state. (Color figure online)

4.4 Program Synthesis for Supervised Learning

Recall that imitation learning reduces the reinforcement learning problem for
programmatic policies to a supervised learning problem. We briefly discuss algo-
rithms for solving this supervised learning problem. In general, this problem is an
instance of programming by example [19,20], which is a special case of program
synthesis [21] where the task is specified by a set of input-output examples. In
our setting, the input-output examples are the state-action pairs in the dataset
Z used to train the programmatic policy at each iteration of Algorithm 1.



218 O. Bastani et al.

An added challenge applying program synthesis in machine learning settings
is that traditional programming by example algorithms are designed to compute
a program that correctly fits all of the training examples. In contrast, in machine
learning, there typically does not exist a single program that fits all of the train-
ing examples. Instead, we need to solve a quantitative synthesis problem where
the goal is to minimize the number of errors on the training data.

One standard approach to solving such program synthesis problems is to
simply enumerate over all possible programmatic policies π ∈ Π. In many cases,
Π is specified as a context-free grammar, in which case standard algorithms can
be used to enumerate programs in that grammar (typically up to a bounded
depth) [5]. In addition, domain-specific techniques can be used to prune prov-
ably suboptimal portions of the search space to speed up enumeration [12]. For
particularly large search spaces, an alternative strategy is to use a stochastic
search algorithm that heuristically optimzes the objective; for example, Metropo-
lis Hastings can be used to adaptively sample programs (e.g., with the unnor-
malized probability density function taken to be the objective value) [27,40].

Fig. 6. A human expert can modify our state machine policy to improve performance.
(a) A trajectory using the original state machine policy shown in Fig. 2(b). (b) The
human expert sets the steering angle to the maximum value 0.5. (c) The human expert
sets the thresholds in the mode transitions so the blue car drives as close to the black
cars as possible. Adapted from [26]. (Color figure online)

5 Case Studies

In this section, we describe a number of case studies that demonstrate the value
of programmatic policies, demonstrating their interpretability (Sect. 5.1), verifi-
ability (Sect. 5.2), and robustness (Sect. 5.3).



Reinforcement Learning via Program Synthesis 219

Fig. 7. Visualization of the programmatic attention layer in Fig. 4c, which has two
rules R1 and R2. In this task, there are three groups of agents. The red circle denotes
the agent currently choosing an action, the red cross denotes its goal, and the green
circle denotes the agent selected by the rule. (a, b) Visualization of rule R1 for two
different states; orange denotes the region where the filter condition is satisfied—i.e.,
R1 chooses a random agent in this region. (c) Visualization of rule R2, showing the
score output by the map operator; darker values are higher—i.e., the rule chooses the
agent with the darkest value. Adapted from [27]. (Color figure online)

5.1 Interpretability

A key advantage of programmatic policies is that they are interpretable [26,27,
50]. One consequence of their interpretability is that human experts can examine
programmatic policies and modify them to improve performance. As an example,
consider the state machine policy shown in Fig. 2b in Sect. 3. We have manually
made the following changes to this policy: (i) increase the steering angle in mode
m1 to its maximum value 0.5 (so the car steers as much as possible when exit-
ing the parking spot), and (ii) decrease the gap maintained between the agent
and the black cars by changing the condition for transitioning from mode m1 to
mode m2 to df ≤ 0.1, and from mode m2 to mode m1 to db ≤ 0.1 (so the blue
car drives as far as possible without colliding with a black car before changing
directions). Figure 6 visualizes the effects changes; in particular, it shows tra-
jectories obtained using the original policy, the policy with change (i), and the
policy with change (ii). As can be seen, the second modified policy exits the



220 O. Bastani et al.

parking spot more quickly than the original policy. There is no straightforward
way to make these kinds of changes to improve a DNN policy.

Similarly, we describe how it is possible to interpret programmatic attention
layers in neurosymbolic transformers. In particular, Fig. 7 visualizes the synthe-
sized programmatic attention policy described in Sect. 3 for a multi-agent control
problem; in this example, there are three groups of agents, each trying to move
towards their goals. Figures 7a & 7b visualize rule R1 in two different states.
In particular, R1 selects a random far-away agent in the orange region to focus
on. Note that in both states, the orange region is in the direction of the goal of
the agent. Intuitively, the agent is focusing on an agent in the other group that
is between itself and the goal; this choice enables the agent to plan a path to
its goal that avoids colliding with the other group. Next, Fig. 7c visualizes rule
R2; this rule simply focuses on a nearby agent, which enables the agent to avoid
collisions with other agents in the same group.

5.2 Verification

Another key advantage of programmatic policies is that they are significantly
easier to formally verify. Intuitively, because they make significant use of discrete
control flow structures, it is easier for formal methods to prune branches of the
search space corresponding to unreachable program paths.

Verification is useful when there is an additional safety constraint that must
be satisfied by the policy in addition to maximizing cumulative reward. A com-
mon assumption is that the agent should remain in a safe subset of the state
space Ssafe ⊆ S during the entire rollout. Furthermore, in these settings, it
is often assumed that the transitions are deterministic—i.e., the next state is
s′ = f(s, a) for some deterministic transition function f : S × A → S. Finally,
rather than considering a single initial state, we instead consider a subset of
initial states S1 ⊆ Ssafe. Then, we consider the safety constraint that for any
rollout ζ starting from s1 ∈ S1, we have st ∈ Ssafe for all t ∈ [H]; we use
φ(π) ∈ {true, false} to indicate whether a given policy π satisfies this constraint.
Our goal is to solve

π∗ = arg max
π∈Πsafe

J(π) where Πsafe = {π ∈ Π | φ(π)}.

A standard strategy for verifying safety is to devise a logical formula that encodes
a safe rollout; in particular, we can encode our safety constraint as follows:

φ(π) ≡ ∀�s .

[

(s1 ∈ S1) ∧
H∧

t=1

(at = π(st) ∧ st+1 = f(st, at))

]

⇒
H∧

t=1

(st ∈ Ssafe),

where �s = (s1, ..., sH) are the free variables, and we use ≡ to distinguish equality
of logical formulas from equality of variables within a formula. Intuitively, this
formula says that if (i) s1 is an initial state, and (ii) the actions are chosen by π
and the transitions by f , then all states are safe.



Reinforcement Learning via Program Synthesis 221

(a) Recurrent region (b) Failure case

Fig. 8. (a) A recurrent region; proving that the ball always returns to this region
implies that the policy plays correctly for an infinite horizon. (b) A failure case found
by verification, where the paddle fails to keep the ball from exiting. (Color figure online)

With this expression for φ(π), to prove safety, it suffices to prove that
¬φ(π) ≡ false. The latter equivalence is an instance of Satisfiability Modulo
Theory (SMT), and can automatically be checked by an SMT solver [15] as long
as predicates of the form s ∈ Ssafe, a = π(s), and s′ = f(s, a) can be expressed in
a theory that is supported by the SMT solver. A standard setting is where Ssafe

is a polytope, and π and f are piecewise affine; in these cases, each of these pred-
icates can be expressed as conjunctions and disjunctions of linear inequalities,
which are typically supported (e.g., the problem can be reduced to an integer
program).

As an example, this strategy has been used to verify that the decision tree
policy for a toy game of pong shown in Fig. 1 in Sect. 3 is correct—i.e., that
it successfully blocks the ball from exiting. In this case, we can actually prove
correctness over an infinite horizon. Rather than prove that the ball does not
exit in H steps, we instead prove that for any state s1 where the ball is in the
top half of the screen (depicted in blue in Fig. 8a), the ball returns to this region
after H steps. If this property is true, then the ball never exits the screen.

For this property, the SMT solver initially identified a failure case where the
ball exits the screen, which is shown in Fig. 8b; in this corner case, the is at the
very edge of the screen, and the paddle fails to keep the ball from exiting. This
problem can be fixed by manually examining the decision tree and modifying it to
correctly handle the failure case; the modified decision tree has been successfully
proven to be correct—i.e., it always keeps the ball in the screen.

In another example, we used bounded verification to verify that the state
machine policy in Fig. 2b does not result in any collisions for parallel parking
task in Fig. 2a. We used dReach [29], an SMT solver designed to verify safety
for hybrid systems, which are dynamical systems that include both continu-
ous transitions (modeled using differential equations) and discrete, discontinu-
ous ones (modeled using a finite-state machine). In particular, dReach performs
bounded reachability analysis, where it unrolls the state machine modes up to



222 O. Bastani et al.

Fig. 9. A failure case found using our verification algorithm with tolerance parameter
δ = 0.24 for the state machine policy in Fig. 2b on the parallel parking task in Fig. 2a.
Here, the car collides with the car in the front.

some bound. Furthermore, dReach is sound and δ-complete—i.e., if it says the
system is safe, then it is guaranteed to be safe, and if it says the system is unsafe,
then there exists some δ-bounded perturbation that renders the system unsafe.
Thus, we can vary δ to quantify the robustness of the system to perturbations.

With δ = 0.1, dReach proved that the policy in Fig. 2b is indeed safe for
up to an unrolling of 7 modes of the state machine, which was enough for the
controller to complete the task from a significant fraction of the initial state
space. However, with δ = 0.24, dReach identified a failure case where the car
would collide with the car in the front (under some perturbations of the original
model); this failure case is shown in Fig. 9. We manually fixed this problem
by inspecting the state machine policy in Fig. 2b and modifying the switching
conditions Gm2

m1
and Gm1

m2
to df ≤ 0.5 and db ≤ 0.5, respectively. With these

changes, dReach proved that the policy is safe for δ = 0.24.
More generally, similar strategies can be used to verify robustness and sta-

bility of programmatic controllers [9,50]. It can also be extended to compute
regions of attraction—for instance, to show that a decision tree policy provably
stabilizes a pendulum to the origin [39]. To improve performance, one strategy
is to compose a provably safe programmatic policy with a higher performing
but potentially unsafe DNN policy using shielding [1,7,8,32,51]; intuitively, this
strategy uses the DNN policy as long as the programmatic policy can ensure
safety. Finally, the techniques so far have focused on safety after training the
policy; in some settings, it can be desirable to continue running reinforcement
learning after deploying the policy to adapt to changing environments. To enable
safety during learning, one strategy is to prove safety while accounting for uncer-
tainty in the current model of the environment [3].



Reinforcement Learning via Program Synthesis 223

5.3 Robustness

Another advantage of programmatic policies is that they tend to be more robust
than DNN policies—i.e., they generalize well to states outside of the distribution
on which the policy was trained. For example, it has been shown that a program-
matic policy trained to drive a car along one race track can generalize to other
race tracks not seen during training, while DNN policies trained in the same
way do not generalize as well [50]. We can formalize this notion by considering
separate training and test distributions over tasks—e.g., the training distribu-
tion over tasks might include driving on just a single race track, whereas the
test distribution includes driving on a number of additional race tracks. Then, a
policy is robust if it performs well on the test distribution over tasks even when
it is trained on the training distribution of tasks.

A special case is inductive generalization, where the tasks are indexed by
natural numbers i ∈ N, the training distribution is over small i, and the test
distribution is over large i [26]. As a simple example, i may indicate the horizon
over which the task is trained; then, a robust policy is one that is trained on
short horizon tasks but generalizes to long horizon tasks.

Going back to the parallel parking task from Fig. 2 in Sect. 3; for this task,
we can consider inductively generalization of a policy in terms of the number of
back-and-forth motions needed to solve the task [26]. In particular, Figs. 10a, 10b,
and 10c depict training tasks with relatively few back-and-forth motions, and
Fig. 10d depicts a test task with a much larger number of back-and-forth motions.
As shown in Fig. 10e, a DNN policy trained using deep reinforcement learning can
solve additional tasks from the training distribution; however, Fig. 10f shows that
this policy does not generalize to tasks from the test distribution. In contrast,
a state machine policy performs well on both additional tasks from the train-
ing distribution (Fig. 10g) as well as tasks from the test distribution (Fig. 10h).
Intuitively, the state machine policy is learning to the correct back-and-forth
motion needed to solve the parallel parking problem. It can do so since (i) it is
sufficiently expressive to represent the “correct” solution, yet (ii) it is sufficiently
constrained that it learns a systematic policy. In contrast, the DNN policy can
likely represent the correct solution, but because it is highly underconstrained,
it finds an alternative solution that works on the training tasks, but does not
generalize well to the test tasks. Thus, programmatic policies provide a promis-
ing balance between expressiveness and structure needed to solve challenging
control tasks in a generalizable way.

For an illustration of these distinctions, we show the sequence of actions taken
as a function of time by a programmatic policy compared to a DNN policy in
Fig. 11. Here, the task is to fly a 2D quadcopter through an obstacle course
by controlling its vertical acceleration. As can be seen, the state machine policy
produces a smooth repeating pattern of actions; in contrast, the DNN policy acts
highly erratically. This example further illustrates how programmatic policies
are both complex (evidenced by the complexity of the red curve) yet structured
(evidenced by the smoothness of the red curve and its repeating pattern). In
contrast, DNN policies are expressive (as evidenced by the complexity of the red
curve), but lack the structure needed to generalize robustly.



224 O. Bastani et al.

Fig. 10. (a, b, c) Training tasks for the autonomous driving problem in Fig. 2. (d) Test
task, which is harder due to the increased number of back-and-forth motions required.
(a) The trajectory taken by the DNN policy on a training task. (b) The trajectory
taken by the DNN policy on a test task; as can be seen, it has several unsafe collisions.
(c) The trajectory taken by the state machine policy (SMP) on a training task. (d)
The trajectory taken by the SMP on a test task; as can be seen, it generalizes well to
this task. Adapted from [26].

Fig. 11. The vertical acceleration (i.e., action) selected by the policy as a function
of time, for each our programmatic policy (red) and a DNN policy (blue), for a 2D
quadcopter task. Adapted from [26]. (Color figure online)



Reinforcement Learning via Program Synthesis 225

6 Conclusions and Future Work

In this chapter, we have describe an approach to reinforcement learning where we
train programmatic policies such as decision trees, state machine policies, and list
processing programs, instead of DNN policies. These policies can be trained using
algorithms based on imitation learning, which first train a DNN policy using
deep reinforcement learning and then train a programmatic policy to imitate
the DNN policy. This strategy reduces the reinforcement learning problem to
a supervised learning problem, that can be solved by existing algorithms such
as program synthesis. Through a number of case studies, we have demonstrated
that compared to DNN policies, programmatic policies are highly interpretable,
are easier to formally verify, and generalized more robustly.

We leave a number of directions for future work. One important challenge
is that synthesizing programmatic policies remains costly. Many state-of-the-art
program synthesis algorithms rely heavily on domain-specific pruning strategies
to improve performance, including strategies targeted at machine learning appli-
cations [12]. Leveraging these strategies can significantly increase the complexity
of programmatic policies that can be learned in a tractable way.

Another interesting challenge is scaling verification algorithms to more real-
istic problems. The key limitation of existing approaches is that even if the pro-
grammatic policy has a compact representation, the model of the environment
often does not. A natural question in this direction is whether we can learn pro-
grammatic models of the environment that are similarly easy to formally verify,
while being a good approximation of the true environment.

Finally, we have described one strategy for constructing neurosymbolic poli-
cies that combine programs and DNNs—i.e., the neurosymbolic transformer. We
believe a number of additional kinds of model compositions may be feasible—for
example, leveraging a neural network to detect objects and then using a program
to reason about them, or using programs to perform high-level reasoning such
as path planning while letting a DNN policy take care of low-level control.

References

1. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2018)

2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

3. Anderson, G., Verma, A., Dillig, I., Chaudhuri, S.: Neurosymbolic reinforcement
learning with formally verified exploration. In: Neural Information Processing Sys-
tems (2020)

4. Bain, M., Sammut, C.: A framework for behavioural cloning. In: Machine Intelli-
gence 15, pp. 103–129 (1995)

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30


226 O. Bastani et al.

5. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: DeepCoder:
learning to write programs. In: International Conference on Learning Representa-
tions (2017)

6. Bastani, H., et al.: Deploying an artificial intelligence system for COVID-19 testing
at the greek border. Available at SSRN (2021)

7. Bastani, O.: Safe reinforcement learning with nonlinear dynamics via model pre-
dictive shielding. In: 2021 American Control Conference (ACC), pp. 3488–3494.
IEEE (2021)

8. Bastani, O., Li, S., Xu, A.: Safe reinforcement learning via statistical model pre-
dictive shielding. In: Robotics: Science and Systems (2021)

9. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy
extraction. arXiv preprint arXiv:1805.08328 (2018)

10. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Routledge (2017)

11. Brockman, G., et al.: OpenAI gym. arXiv preprint arXiv:1606.01540 (2016)
12. Chen, Q., Lamoreaux, A., Wang, X., Durrett, G., Bastani, O., Dillig, I.: Web

question answering with neurosymbolic program synthesis. In: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, pp. 328–343 (2021)

13. Chen, Y., Wang, C., Bastani, O., Dillig, I., Feng, Yu.: Program synthesis using
deduction-guided reinforcement learning. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12225, pp. 587–610. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53291-8 30

14. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on
passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

16. Ellis, K., Ritchie, D., Solar-Lezama, A., Tenenbaum, J.B.: Learning to infer graph-
ics programs from hand-drawn images. arXiv preprint arXiv:1707.09627 (2017)

17. Ellis, K., Solar-Lezama, A., Tenenbaum, J.: Unsupervised learning by program
synthesis (2015)

18. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Not. 50(6), 229–239 (2015)

19. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. ACM Sigplan Not. 46(1), 317–330 (2011)

20. Gulwani, S.: Programming by examples. Dependable Softw. Syst. Eng. 45(137),
3–15 (2016)

21. Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Found. Trends R©
Program. Lang. 4(1–2), 1–119 (2017)

22. He, H., Eisner, J., Daume, H.: Imitation learning by coaching. Adv. Neural. Inf.
Process. Syst. 25, 3149–3157 (2012)

23. Heess, N., Hunt, J.J., Lillicrap, T.P., Silver, D.: Memory-based control with recur-
rent neural networks. arXiv preprint arXiv:1512.04455 (2015)

24. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series, vol. 170, pp.
265–292. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-59615-5 13

25. Huang, J., Smith, C., Bastani, O., Singh, R., Albarghouthi, A., Naik, M.: Gener-
ating programmatic referring expressions via program synthesis. In: International
Conference on Machine Learning, pp. 4495–4506. PMLR (2020)

http://arxiv.org/abs/1805.08328
http://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1007/978-3-030-53291-8_30
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1707.09627
http://arxiv.org/abs/1512.04455
https://doi.org/10.1007/978-3-642-59615-5_13


Reinforcement Learning via Program Synthesis 227

26. Inala, J.P., Bastani, O., Tavares, Z., Solar-Lezama, A.: Synthesizing programmatic
policies that inductively generalize. In: International Conference on Learning Rep-
resentations (2020)

27. Inala, J.P., et al.: Neurosymbolic transformers for multi-agent communication. In:
Neural Information Processing Systems (2020)

28. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

29. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

30. Kraska, T., et al.: SageDB: a learned database system. In: CIDR (2019)
31. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor

policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)
32. Li, S., Bastani, O.: Robust model predictive shielding for safe reinforcement learn-

ing with stochastic dynamics. In: 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 7166–7172. IEEE (2020)

33. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

34. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

35. Pepy, R., Lambert, A., Mounier, H.: Path planning using a dynamic vehicle model.
In: 2006 2nd International Conference on Information & Communication Technolo-
gies, vol. 1, pp. 781–786. IEEE (2006)

36. Puterman, M.L.: Markov decision processes. Handb. Oper. Res. Manage. Sci. 2,
331–434 (1990)

37. Raghu, A., Komorowski, M., Celi, L.A., Szolovits, P., Ghassemi, M.: Continuous
state-space models for optimal sepsis treatment: a deep reinforcement learning
approach. In: Machine Learning for Healthcare Conference, pp. 147–163. PMLR
(2017)

38. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured
prediction to no-regret online learning. In: Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics, pp. 627–635. JMLR
Workshop and Conference Proceedings (2011)

39. Sadraddini, S., Shen, S., Bastani, O.: Polytopic trees for verification of learning-
based controllers. In: Zamani, M., Zufferey, D. (eds.) NSV 2019. LNCS, vol. 11652,
pp. 110–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28423-7 8

40. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. ACM
SIGARCH Comput. Archit. News 41(1), 305–316 (2013)

41. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P.: Trust region policy
optimization. In: International Conference on Machine Learning, pp. 1889–1897.
PMLR (2015)

42. Shah, A., Zhan, E., Sun, J.J., Verma, A., Yue, Y., Chaudhuri, S.: Learning differ-
entiable programs with admissible neural heuristics. In: NeurIPS (2020)

43. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

44. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

45. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods
for reinforcement learning with function approximation. In: Advances in Neural
Information Processing Systems, pp. 1057–1063 (2000)

https://doi.org/10.1007/978-3-662-46681-0_15
http://arxiv.org/abs/1509.02971
https://doi.org/10.1007/978-3-030-28423-7_8


228 O. Bastani et al.

46. Tian, Y., et al.: Learning to infer and execute 3D shape programs. In: International
Conference on Learning Representations (2018)

47. Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C., Chaudhuri, S.: HOUDINI:
lifelong learning as program synthesis. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 8701–8712 (2018)

48. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

49. Verma, A., Le, H.M., Yue, Y., Chaudhuri, S.: Imitation-projected programmatic
reinforcement learning. In: Neural Information Processing Systems (2019)

50. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically inter-
pretable reinforcement learning. In: International Conference on Machine Learning,
pp. 5045–5054. PMLR (2018)

51. Wabersich, K.P., Zeilinger, M.N.: Linear model predictive safety certification for
learning-based control. In: 2018 IEEE Conference on Decision and Control (CDC),
pp. 7130–7135. IEEE (2018)

52. Wang, F., Rudin, C.: Falling rule lists. In: Artificial Intelligence and Statistics, pp.
1013–1022. PMLR (2015)

53. Young, H., Bastani, O., Naik, M.: Learning neurosymbolic generative models via
program synthesis. In: International Conference on Machine Learning, pp. 7144–
7153. PMLR (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Interpretable, Verifiable, and Robust Reinforcement Learning via Program Synthesis
	1 Introduction
	2 Background on Reinforcement Learning
	3 Programmatic Policies
	3.1 Traditional Interpretable Models
	3.2 State Machine Policies
	3.3 List Processing Programs
	3.4 Neurosymbolic Policies

	4 Synthesizing Programmatic Policies
	4.1 Imitation Learning
	4.2 Q-Guided Imitation Learning
	4.3 Updating the DNN Policy
	4.4 Program Synthesis for Supervised Learning

	5 Case Studies
	5.1 Interpretability
	5.2 Verification
	5.3 Robustness

	6 Conclusions and Future Work
	References




