Skip to main content

Current Trends in Microfluidics and Biosensors for Cancer Research Applications

  • Chapter
  • First Online:
Microfluidics and Biosensors in Cancer Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1379))

Abstract

Despite the significant amount of resources invested, cancer remains a considerable burden in our modern society and a leading cause of death. There is still a lack of knowledge about the mechanistic determinants of the disease, the mechanism of action of drugs, and the process of tumor relapse. Current methodologies to study all these events fail to provide accurate information, threatening the prognosis of cancer patients. This failure is due to the inadequate procedure in how tumorigenesis is studied and how drug discovery and screening are currently made. Traditionally, they both rely on seeding cells on static flat cultures and on the immunolabelling of cellular structures, which are usually limited in their ability to reproduce the complexity of the native cellular habitat and provide quantitative data. Similarly, more complex animal models are employed for—unsuccessfully—mimicking the human physiology and evaluating the etiology of the disease or the efficacy/toxicity of pharmacological compounds. Despite some breakthroughs and success obtained in understanding the disease and developing novel therapeutic approaches, cancer still kills millions of people worldwide, remaining a global healthcare problem with a high social and economic impact. There is a need for novel integrative methodologies and technologies capable of providing valuable readouts. In this regard, the combination of microfluidics technology with miniaturized biosensors offers unprecedented advantages to accelerate the development of drugs. This integrated technology have the potential to unravel the key pathophysiological processes of cancer progression and metastasis, overcoming the existing gap on in vitro predictive platforms and in vivo model systems. Herein, we discuss how this combination may boost the field of cancer theranostics and drug discovery/screening toward more precise devices with clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J et al (2020) Global cancer observatory: cancer today. Lyon, International Agency for Research on Cancer. https://gco.iarc.fr/today. Accessed 16 Aug 2021

    Google Scholar 

  2. Caballero D et al (2017) Organ-on-chip models of cancer metastasis for future personalized medicine: from chip to the patient. Biomaterials 149:98–115

    Article  CAS  PubMed  Google Scholar 

  3. Rebelo R et al (2019) 3D biosensors in advanced medical diagnostics of high mortality diseases. Biosens Bioelectron 130:20–39

    Article  CAS  PubMed  Google Scholar 

  4. Caballero D et al (2020) Chapter 15 - microfluidic systems in cancer research. In: Kundu SC, Reis RL (eds) Biomaterials for 3D tumor modeling. Elsevier, pp 331–377

    Chapter  Google Scholar 

  5. Ma C et al (2021) Organ-on-a-Chip: a new paradigm for drug development. Trends Pharmacol Sci 42(2):119–133

    Article  PubMed  CAS  Google Scholar 

  6. Peck RW, Hinojosa CD, Hamilton GA (2020) Organs-on-chips in clinical pharmacology: putting the patient into the center of treatment selection and drug development. Clin Pharmacol Ther 107(1):181–185

    Article  CAS  PubMed  Google Scholar 

  7. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(23):5591–5596

    Article  CAS  PubMed  Google Scholar 

  8. Weigelt B, Bissell MJ (2008) Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18(5):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levental KR et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caballero D et al (2017) An interplay between matrix anisotropy and actomyosin contractility regulates 3D-directed cell migration. Adv Func Mater 27(35):1702322

    Article  CAS  Google Scholar 

  11. Caballero D, Samitier J (2017) Topological control of extracellular matrix growth: a native-like model for cell morphodynamics studies. ACS Appl Mater Interf 9(4):4159–4170

    Article  CAS  Google Scholar 

  12. Comelles J et al (2015) Cells as active particles in asymmetric potentials: motility under external gradients. Biophys J 108(2):456a

    Article  Google Scholar 

  13. Espina JA, Marchant CL, Barriga EH Durotaxis: the mechanical control of directed cell migration. FEBS J. https://doi.org/10.1111/febs.15862

  14. Lee HJ et al (2017) Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun 8(1):14122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lutolf MP et al (2003) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100(9):5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luque-González MA et al (2020) Human microcirculation-on-chip models in cancer research: key integration of lymphatic and blood vasculatures. Adv Biosys 4(7):2000045

    Article  Google Scholar 

  17. Jin M-Z, Jin W-L (2020) The updated landscape of tumor microenvironment and drug repurposing. Sig Transduct Target Ther 5(1):166

    Article  Google Scholar 

  18. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  CAS  PubMed  Google Scholar 

  19. Shen C et al (2019) Non-swelling hydrogel-based microfluidic chips. Lab Chip 19(23):3962–3973

    Article  CAS  PubMed  Google Scholar 

  20. Bettinger CJ et al (2007) Silk fibroin microfluidic devices. Adv Mater (Deerfield Beach, FL) 19(5):2847–2850

    Article  CAS  Google Scholar 

  21. Zhao X et al (2016) Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv Healthc Mater 5(1):108–118

    Article  CAS  PubMed  Google Scholar 

  22. Gjorevski N, Lutolf MP (2017) Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nat Protoc 12(11):2263–2274

    Article  CAS  PubMed  Google Scholar 

  23. Zhao S et al (2016) Bio-functionalized silk hydrogel microfluidic systems. Biomaterials 93:60–70

    Article  CAS  PubMed  Google Scholar 

  24. Ma L-D et al (2018) Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab Chip 18(17):2547–2562

    Article  CAS  PubMed  Google Scholar 

  25. Kilic O et al (2016) Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip 16(21):4152–4162

    Article  CAS  PubMed  Google Scholar 

  26. Oleaga C et al (2016) Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep 6(1):20030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeffrey SS, Toner M (2019) Liquid biopsy: a perspective for probing blood for cancer. Lab Chip 19(4):548–549

    Article  CAS  PubMed  Google Scholar 

  28. Kalyan S et al (2021) Inertial microfluidics enabling clinical research. Micromachines 12(3):257

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang DK, Leong S, Sohn LL (2015) High-throughput microfluidic device for circulating tumor cell isolation from whole blood. Micro Total Anal Syst 2015:413–415

    PubMed  PubMed Central  Google Scholar 

  30. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

    Article  CAS  PubMed  Google Scholar 

  31. Caballero D et al (2017) Tumour-vessel-on-a-chip models for drug delivery. Lab Chip 17(22):3760–3771

    Article  CAS  PubMed  Google Scholar 

  32. Caballero D, Reis RL, Kundu SC (2020) Engineering patient-on-a-chip models for personalized cancer medicine. In: Oliveira JM, Reis RL (eds) Biomaterials- and microfluidics-based tissue engineered 3D models. Springer International Publishing, Cham, pp 43–64

    Chapter  Google Scholar 

  33. Llenas M et al (2021) Versatile vessel-on-a-chip platform for studying key features of blood vascular tumors. Bioengineering 8(6):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19(2):65–81

    Article  CAS  PubMed  Google Scholar 

  35. Huh D et al (2010) Reconstituting organ-level lung functions on a chip. Science 328(5986):1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Benam, K.H., et al., Human lung small airway-on-a-chip protocol, in 3D cell culture: methods and protocols, Z. Koledova, Editor 2017, Springer, New York. p. 345–365

    Chapter  Google Scholar 

  37. Hassell BA et al (2017) Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Rep 21(2):508–516

    Article  CAS  PubMed  Google Scholar 

  38. Gaudriault P, Fassini D, Homs-Corbera A (2020) Chapter 8 - heart-on-a-chip. In: Hoeng J, Bovard D, Peitsch MC (eds) Organ-on-a-chip. Academic Press, pp 255–293

    Chapter  Google Scholar 

  39. Rigat-Brugarolas LG et al (2014) A functional microengineered model of the human splenon-on-a-chip. Lab Chip 14(10):1715–1724

    Article  CAS  PubMed  Google Scholar 

  40. Kim HJ et al (2016) Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc Natl Acad Sci U S A 113(1):E7–E15

    CAS  PubMed  Google Scholar 

  41. Wilmer MJ et al (2016) Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol 34(2):156–170

    Article  CAS  PubMed  Google Scholar 

  42. Ronaldson-Bouchard K, Vunjak-Novakovic G (2018) Organs-on-a-chip: A fast track for engineered human tissues in drug development. Cell Stem Cell 22(3):310–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ingber DE (2018) Developmentally inspired human ‘organs on chips’. Development 145(16):156125

    Article  CAS  Google Scholar 

  44. Kim S et al (2016) Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication 8(1):1758–5090

    Article  Google Scholar 

  45. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14(4):248–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang B, Radisic M (2017) Organ-on-a-chip devices advance to market. Lab Chip 17(14):2395–2420

    Article  CAS  PubMed  Google Scholar 

  47. Low LA et al (2021) Organs-on-chips: into the next decade. Nat Rev Drug Discov 20(5):345–361

    Article  CAS  PubMed  Google Scholar 

  48. Pisano M et al (2015) An in vitro model of the tumor-lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integr Biol 7(5):525–533

    Article  CAS  Google Scholar 

  49. Fathi P et al (2020) Lymphatic vessel on a chip with capability for exposure to cyclic fluidic flow. ACS Appl Bio Mater 3(10):6697–6707

    Article  CAS  PubMed  Google Scholar 

  50. Zervantonakis IK et al (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Osmani N et al (2019) Metastatic tumor cells exploit their adhesion repertoire to counteract shear forces during intravascular arrest. Cell Rep 28(10):2491–2500

    Article  CAS  PubMed  Google Scholar 

  52. Jeon JS et al (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112(1):214–219

    Article  CAS  PubMed  Google Scholar 

  53. Wang YI et al (2018) Multiorgan microphysiological systems for drug development: strategies, advances, and challenges. Adv Healthc Mater 7(2):1701000

    Article  CAS  Google Scholar 

  54. Lee SH, Sung JH (2018) Organ-on-a-chip technology for reproducing multiorgan physiology. Adv Healthc Mater 7(2):1700419

    Article  CAS  Google Scholar 

  55. Zhang YS et al (2017) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A 114(12):E2293–E2302

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kamei K-i et al (2017) Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs in vitro. RSC Adv 7(58):36777–36786

    Article  CAS  Google Scholar 

  57. Skardal A et al (2016) A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng 113(9):2020–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Skardal A et al (2017) Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep 7(1):017-08879

    Article  CAS  Google Scholar 

  59. Maschmeyer I et al (2015) A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15(12):2688–2699

    Article  CAS  PubMed  Google Scholar 

  60. Xu Z et al (2016) Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis. ACS Appl Mater Interfaces 8(39):25840–25847

    Article  CAS  PubMed  Google Scholar 

  61. Satoh T et al (2018) A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip 18(1):115–125

    Article  CAS  Google Scholar 

  62. Miller PG, Shuler ML (2016) Design and demonstration of a pumpless 14 compartment microphysiological system. Biotechnol Bioeng 113(10):2213–2227

    Article  CAS  PubMed  Google Scholar 

  63. Vernetti L et al (2017) Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle. Sci Rep 7(1):42296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Novak R et al (2020) Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat Biomed Eng 4(4):407–420

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jellali R et al (2016) Long-term human primary hepatocyte cultures in a microfluidic liver biochip show maintenance of mRNA levels and higher drug metabolism compared with Petri cultures. Biopharm Drug Dispos 37(5):264–275

    Article  CAS  PubMed  Google Scholar 

  66. Oleaga C et al (2018) Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials 182:176–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kong C et al (2020) Label-free counting of affinity-enriched circulating tumor cells (CTCs) using a thermoplastic micro-coulter counter (μCC). Analyst 145(5):1677–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Barriere G et al (2014) Circulating tumor cells and epithelial, mesenchymal and stemness markers: characterization of cell subpopulations. Ann Transl Med 2(11):109–109

    PubMed  PubMed Central  Google Scholar 

  69. Farahinia A, Zhang WJ, Badea I (2021) Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: a review. J Sci Adv Mater Dev 6(3):303–320

    CAS  Google Scholar 

  70. Wang X, Liu Z, Pang Y (2017) Concentration gradient generation methods based on microfluidic systems. RSC Adv 7(48):29966–29984

    Article  CAS  Google Scholar 

  71. Miller OJ et al (2012) High-resolution dose–response screening using droplet-based microfluidics. Proc Natl Acad Sci 109(2):378–383

    Article  CAS  PubMed  Google Scholar 

  72. Weiss ACG et al (2019) In situ characterization of protein corona formation on silica microparticles using confocal laser scanning microscopy combined with microfluidics. ACS Appl Mater Interf 11(2):2459–2469

    Article  CAS  Google Scholar 

  73. Bhalla N et al (2016) Introduction to biosensors. Essays Biochem 60(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  74. Caballero D et al (2012) Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface. Anal Chim Acta 720:43–48

    Article  CAS  PubMed  Google Scholar 

  75. Diéguez L et al (2012) Optical gratings coated with thin Si3N4 layer for efficient immunosensing by optical waveguide lightmode spectroscopy. Biosensors 2(2):114–126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Baccar ZM et al (2012) Development of an impedimetric DNA-biosensor based on layered double hydroxide for the detection of long ssDNA sequences. Electrochim Acta 74:123–129

    Article  CAS  Google Scholar 

  77. Darwish N et al (2010) Multi-analytic grating coupler biosensor for differential binding analysis. Sens Act B Chem 144(2):413–417

    Article  CAS  Google Scholar 

  78. Barreiros dos Santos M et al (2015) Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry 101:146–152

    Article  CAS  PubMed  Google Scholar 

  79. Barreiros dos Santos M et al (2013) Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens Bioelectron 45:174–180

    Article  CAS  PubMed  Google Scholar 

  80. Justino CIL, Duarte AC, Rocha-Santos TAP (2017) Recent progress in biosensors for environmental monitoring: a review. Sensors (Basel, Switz) 17(12):2918

    Article  Google Scholar 

  81. Zazoua A et al (2009) Characterisation of a Cr(VI) sensitive polysiloxane membrane by X-ray photoelectron spectrometry and atomic force microscopy. Sens Lett 7(5):995–1000

    Article  CAS  Google Scholar 

  82. Clark LC Jr et al (1953) Continuous recording of blood oxygen tensions by polarography. J Appl Physiol 6(3):189–193

    Article  CAS  PubMed  Google Scholar 

  83. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  CAS  PubMed  Google Scholar 

  84. Guilbault GG, Montalvo JG Jr (1969) A urea-specific enzyme electrode. J Am Chem Soc 91(8):2164–2165

    Article  CAS  PubMed  Google Scholar 

  85. Kumar S et al (2013) Microfluidic-integrated biosensors: prospects for point-of-care diagnostics. Biotechnol J 8(11):1267–1279

    Article  CAS  PubMed  Google Scholar 

  86. Park BY, Zaouk R, Madou MJ (2006) Fabrication of microelectrodes using the lift-off technique. In: Minteer SD (ed) Microfluidic techniques: reviews and protocols. Humana Press, Totowa, NJ, pp 23–26

    Google Scholar 

  87. Caballero D et al (2013) Directing polypyrrole growth by chemical micropatterns: a study of high-throughput well-ordered arrays of conductive 3D microrings. Sens Act B Chem 177:1003–1009

    Article  CAS  Google Scholar 

  88. Xie Y et al (2015) A novel electrochemical microfluidic chip combined with multiple biomarkers for early diagnosis of gastric cancer. Nanoscale Res Lett 10(1):477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ortega MA et al (2019) Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α. Lab Chip 19(15):2568–2580

    Article  CAS  PubMed  Google Scholar 

  90. Marland JRK et al (2020) Real-time measurement of tumour hypoxia using an implantable microfabricated oxygen sensor. Sens Bio-Sens Res 30:100375

    Article  Google Scholar 

  91. Alam F et al (2018) Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens Bioelectron 117:818–829

    Article  CAS  PubMed  Google Scholar 

  92. Juska VB, Walcarius A, Pemble ME (2019) Cu Nanodendrite foams on integrated band Array electrodes for the nonenzymatic detection of glucose. ACS Appl Nano Mater 2(9):5878–5889

    Article  CAS  Google Scholar 

  93. Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors. Anal Chem 86(1):15–29

    Article  CAS  PubMed  Google Scholar 

  94. Eftekhari A (2003) pH sensor based on deposited film of lead oxide on aluminum substrate electrode. Sensors Actuators B Chem 88(3):234–238

    Article  CAS  Google Scholar 

  95. Sinha S et al (2019) Fabrication, characterization and electrochemical simulation of AlN-gate ISFET pH sensor. J Mater Sci Mater Electron 30(7):7163–7174

    Article  CAS  Google Scholar 

  96. Vivaldi F et al (2021) Recent advances in optical, electrochemical and field effect pH sensors. Chemosensors 9(2):33

    Article  CAS  Google Scholar 

  97. Castanheira A et al (2021) A novel microfluidic system for the sensitive and cost-effective detection of okadaic acid in mussels. Analyst 146(8):2638–2645

    Article  CAS  PubMed  Google Scholar 

  98. Barreiros Dos Santos M et al (2019) Portable sensing system based on electrochemical impedance spectroscopy for the simultaneous quantification of free and total microcystin-LR in freshwaters. Biosens Bioelectron 142(111550):30

    Google Scholar 

  99. Aleman J et al (2021) Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices. Nat Prot 16(5):2564–2593

    Article  CAS  Google Scholar 

  100. Weltin A et al (2014) Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14(1):138–146

    Article  CAS  PubMed  Google Scholar 

  101. Zhang Y et al (2018) Combining multiplex SERS nanovectors and multivariate analysis for in situ profiling of circulating tumor cell phenotype using a microfluidic chip. Small 14(20):1704433

    Article  CAS  Google Scholar 

  102. Farshchi F, Hasanzadeh M (2021) Microfluidic biosensing of circulating tumor cells (CTCs): recent progress and challenges in efficient diagnosis of cancer. Biomed Pharmacother 134:111153

    Article  CAS  PubMed  Google Scholar 

  103. Poudineh M et al (2017) Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat Nanotech 12(3):274–281

    Article  CAS  Google Scholar 

  104. Ahmed MG et al (2017) Isolation, detection, and antigen-based profiling of circulating tumor cells using a size-dictated immunocapture chip. Angew Chem Int Ed 56(36):10681–10685

    Article  CAS  Google Scholar 

  105. Poudineh M et al (2017) Profiling functional and biochemical phenotypes of circulating tumor cells using a two-dimensional sorting device. Angew Chem Int Ed 56(1):163–168

    Article  CAS  Google Scholar 

  106. Watson DE, Hunziker R, Wikswo JP (2017) Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med 242(16):1559–1572

    Article  CAS  Google Scholar 

  107. Markets and Markets Microfluidics market by product (devices, components (chips, sensors, pump, valves, and needles)), application (IVD [POC, clinical, veterinary], research, manufacturing, therapeutics), end user and region - global forecast to 2025. Markets and Markets

    Google Scholar 

  108. Manjrekar S, Sumant O (2020) Biosensors market by product (wearable biosensors and non- wearable biosensors), technology (electrochemical biosensors, optical biosensors, piezoelectric biosensors, thermal biosensors, and nanomechanical biosensors): global opportunity analysis and industry forecast, 2019–2026. Allied Market Research, p 163

    Google Scholar 

Download references

Acknowledgments

D.C. acknowledges the financial support from the Portuguese Foundation for Science and Technology (FCT) under the program CEEC Individual 2017 (CEECIND/00352/2017). We also thank the support from the FCT under the scope of the projects 2MATCH (PTDC/BTM-ORG/28070/2017) to D.C. and S.C.K, and BREAST-IT (PTDC/BTM-ORG/28168/2017) to S.C.K, funded by the Programa Operacional Regional do Norte supported by European Regional Development Funds (ERDF). All the authors acknowledge the financial support from the EU Framework Programme for Research and Innovation Horizon 2020 on Forefront Research in 3D Disease Cancer Models as in-vitro Screening Technologies (FoReCaST—no. 668983).

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Caballero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Caballero, D., Reis, R.L., Kundu, S.C. (2022). Current Trends in Microfluidics and Biosensors for Cancer Research Applications. In: Caballero, D., Kundu, S.C., Reis, R.L. (eds) Microfluidics and Biosensors in Cancer Research. Advances in Experimental Medicine and Biology, vol 1379. Springer, Cham. https://doi.org/10.1007/978-3-031-04039-9_4

Download citation

Publish with us

Policies and ethics