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Abstract. The distributed denial of service (DDoS) attack is an
attempt to disrupt the proper availability of a targeted server, service
or network. The attack is achieved by corrupting or overwhelming the
target’s communications with a flood of malicious network traffic. In the
current era of mass connectivity DDoS attacks emerge as one of the
biggest threats, staidly causing greater collateral damage and heaving a
negate impacting on the integral Internet Infrastructure. DDoS attacks
come in a variety of types and schemes, they continue to evolve, steadily
becoming more sophisticated and larger at scale. A close investigation
of attack vectors and refining current security measures is required to
efficiently mitigate new DDoS threats. The solution described in this
article concerns a less explored variation of signature-based techniques
for DDoS mitigation. The approach exploits one of the traits of modern
DDoS attacks, the utilization of Packet generation algorithms (PGA) in
the attack execution. Proposed method performs a fast, protocol-level
detection of DDoS network packets and can easily be employed to pro-
vide an effective, supplementary protection against DDoS attacks.

Keywords: Network security · DDoS · Signatures · Detection ·
PGA · eBPF

1 Introduction

The detection of distributed denial-of-service (DDoS) attacks is a process that
involves distinguishing malicious and normal network traffic in order to perform
effective attack mitigation. The primary goal of a DDoS attack is to either limit
or totally block the access to an application or network service, thereby deny-
ing legitimate users access to the service. Nowadays, an array of DDoS attack
vectors has been recognized and studied [5,14,17]. Nonetheless, the principal
of operation stays predominately the same i.e. to overwhelm targeted network
resources with traffic coming from a mass of different sources. A seemingly simple
problem of identifying and blocking specific malicious IP address proves to be a
non-trivial task. Mainly due to the sheer distribution of attacking sources, which
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makes distinguishing the legitimate user traffic from attack traffic increasingly
difficult, when spread across so many points of origin.

Consequently, original and more advanced DDoS mitigation techniques are
being investigated. Solutions inspired by the control theory [7] or machine learn-
ing [3,4,12] that are able to recognize attack patterns in captured network traffic
or aggregated traffic statistics are considered a next step in successful DDoS pre-
vention. However, such methods have their limitations. Putting aside the costs
and complexities of proper learning and tuning stages, for the pattern in network
traffic to be recognized some amount of malicious traffic must pass through the
protected network. In other words, DDoS can be detected only when the attack
reaches proper scale inside the network. Solution described in this paper adopts
the signature-based approach of DDoS detection. While this method lacks the self-
learning aspect, signature-based DDoS detection methods can provide a effective,
supplementary protection against DDoS attacks. Their main advantage being the
ability to detect and block malicious network packets as soon as they arrive at the
edge of protected network, practically mitigating the attack in its tracks.

In this paper we present our novel approach to signature-based detection of
cyperthreats. PGA Filter is a prototype of a self-contained IDS system targeting
botnet originating denial-of-service attacks by employing botnet fingerprinting
techniques; packet generation algorithm (PGA) signatures. To our knowledge,
this is the only complete ecosystem of this kind providing a full IDS experience.
Our contribution includes definition of a new signature paradigm and description
of a signature generation process. The core of the solution consists of the mod-
ule responsible for the translation of signatures into packet filtering rules, and
applying those rules to network traffic. The implantation leverages the enhanced
Berkeley Packet Filter (eBPF) Linux kernel technology (since kernel ver. 4.9)
that enables the augmentation of kernel logic with custom procedures. eBPF is
currently considered a state-of-the-art for all packet processing requirements of
networking solutions due to it’s high efficiency and programmability. Our proof
of concept study is finalized by the integration and tests of PGA Filter as a part
of GUARD1 cypersecurity framework.

The rest of the paper is organized as follows. In Sect. 2 the concept of PGA
signatures is explained. We provide a brief understanding of the context required
i.e. the principle of operation for network telescopes, the characteristics of bot-
nets and botnet denial-of-service attacks and how we are able to identify them.
Next, in Sect. 3 we describe the PGA Filter, its implementation and technologies
employed. Finally, we give our conclusion in Sect. 4, which includes the overview
of future plans.

2 PGA Signatures

Successful signature-based detection of DDoS attacks requires a source of special-
ized, high quality, up to date network traffic signatures. The proposed solution
1 https://guard-project.eu/, Guarantee Reliability and trust for Digital service chains

(GUARD).
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integrates with the infrastructure built around the Network telescope (dark-
net) [2] developed under the SISSDEN project2. Network telescope provides the
access to valuable and hard to come by data about ongoing mass-scale cyber-
attack campaigns. By analyzing said data we are able to extract and generate
specific, network packet level, DDoS attack signatures. The above-mentioned
signatures, dubbed as PGA signatures advance a novel approach of depicting
the patterns in malicious network packet headers. The idea of PGA signatures
was previously investigated in SISSDEN project. The solution described in this
paper builds on this knowledge to offer a prototype concept of PGA signatures
defined by an explicit signature syntax.

2.1 Network Telescope

Network telescope (known also as a black hole, an Internet sink, darkspace, or a
darknet) is an unused space of IP addresses that are used solely for the purpose
of passive monitoring [2,16]. Unused IP addresses should receive no legitimate
network traffic. In practice, however many packets are observed arriving at this
IP space. This continuous view of anomalous unsolicited traffic is by definition
classified as suspicious. This observed traffic is a result of a wide range of events,
such as backscatter from randomly spoofed source denial-of-service attacks, scan-
ning of address space by attackers or malware looking for vulnerable targets, the
automated spread of Internet worms and viruses and various misconfigurations
(e.g. mistyping an IP address or deprecated DNS records). In general, mali-
cious activities observed in a form of victims’ echo responses in darknet fall into
following categories:

– backscatters from denial-of-service attacks,
– scanning activities,
– exploitation attempts.

Network telescopes are a valuable source of information about ongoing events
in the whole Internet Infrastructure. However, access to this data is rather
restricted. First of all, network telescopes are usually managed by the institu-
tion responsible for the administering of IP addresses for the given regions of the
world. The list of unused IP addresses is a closely guarded secret, which should
remain undisclosed to cyber-criminals. Also, there are serious privacy and secu-
rity concerns associated with network telescope datasets. Viruses and worms
may involve the installation of backdoors which provide unfettered access to
infected computers. Therefore telescope data may inadvertently advertise these
vulnerable machines. Additionally, while the source of some types of telescope
traffic, including denial-of-service attacks and worms, is readily apparent, a sig-
nificant volume of traffic is of unknown origin. Without identifying the causes
of this traffic, the security and privacy impact of releasing these data cannot be
categorically assessed.
2 https://sissden.eu, Secure Information Sharing Sensor Delivery Event Network

(SISSDEN).
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For our purposes the access to network telescope data is granted thanks to
the fact that NASK, as an institution governing the Polish IP address space,
has established a darknet infrastructure. Network telescope at NASK is a time-
tested, working system integrated with security incident exchange platforms
(n63) and actively used by Polish CERT. It passively observes and analyzes
network traffic that reaches NASK sinkhole, which consists of over 250 thou-
sands IPv4 addresses. Network telescopes at NASK is used internally by many
cybersecurity teams and sends reports to external organizations, including Shad-
owserver4. All of the traffic reaching NASK darknet (around 10 000 network
packets per second) is being captured and analyzed. On the basis of this data,
it is possible to:

– collect intelligence regarding new threats and trends (also DDoS)
– detect both large-scale and targeted attacks,
– fingerprint actors responsible for those events.

2.2 DDoS Seen Through Network Telescope

Despite medium resolution of NASK’s network telescope (resolution corresponds
to the number of IP addresses the telescope monitors), it is “precise” enough to
serve its purpose in our scenario, that is to monitor the spread of random-source
distributed denial-of-service attacks.

To make it difficult for the attack target (and the target’s ISPs) to block an
incoming attack, the attacker may use a fake source IP address (similarly to a
fake return address in traditional mail) in each network packet sent to the victim
1 as shown in Fig. 1.

Fig. 1. The attacker sends packets with spoofed source addresses to the denial-of-
service attack victim

This technique is known as IP spoofing in the trade. Because the victim of
the denial-of-service attack can’t distinguish between incoming requests from
an attacker and legitimate inbound traffic, the victim tries to respond to every
received request (see Fig. 2).

When the attacker spoofs a source address monitored by network telescope,
we observe a response destined for a host that doesn’t exist (and therefore could
not sent the initial query), this effect is also know as a backscatter and is shown
in Fig. 3.
3 https://n6.cert.pl/en/.
4 https://shadowserver.org.

https://n6.cert.pl/en/
https://shadowserver.org
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Fig. 2. The denial-of-service attack victim cannot differentiate between legitimate traf-
fic and the attack packets, so the victim responds to as many of the attack packets as
possible.

Fig. 3. Because the NASK’s network telescope composes of 250 000 IPv4 addresses
there is a chance that some of the responses to spoofed packets generated by the
denial-of-service attack victim will be received.

By following these unsolicited responses, researchers can identify denial-of-
service attack victims and infer information about the volume of the attack, the
bandwidth of the victim, the location of the victim, and the types of services the
attacker targets. Moreover, a deeper inspection of backscatter packets can lead
to the discovery of certain characteristics and similarities between the values in
the packet headers. This is the backbone of our approach.

2.3 Botnets

During recent years, traffic destined to darknet has been gradually evolving
due to the growing numbers of rapidly expanding bot networks (botnets). The
considerable impact of their operations is clearly mirrored by the network tele-
scope observations; firstly through the presence of longer-duration, low-intensity
events intended to establish and maintain botnets; secondly, by the dominating
aftermath effects of well orchestrated, large-scale DDoS attacks.

Botnet [15,18,21] are collections of devices infected with a bot program
which allows an attacker to control them. They range in size from only a few
hundreds to millions of infected devices. Attackers typically use the collective
resources of the botnet to perform various disruptive or criminal activities, such
as sending vast amounts of spam emails, distributing malware and launching
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denial-of-Service attacks [6]. Botnets are considered one of the biggest threats
to the Internet Infrastructure. The growing number of smart and connected but
weakly secured and easy to compromise devices [9] (smartphones, IoT, etc.. . . )
indicates that this threat will remain significant.

Network telescope proves a valuable asset in monitoring and disabling bot-
nets [1,13,20]. Tracking of botnet activities is made possible through the process
of fingerprinting. As described in the next section, the information required to
identify (fingerprint) specific botnet packets can be extracted by analyzing net-
work telescope data.

2.4 Packet Generation Algorithm

As mentioned in previous sections, botnets are mainly used by attackers to
perform denial-of-service and scanning attacks. When the command is issued
infected bots start to generate network traffic directed at the attack victims.
The logic of the attack itself is usually an integral part of the bot malware.
Malicious packets are constructed depending on the kind of attack performed.
Often some additional logic is employed to speed up this process. The procedure
behind packet generation is know as packet generation algorithm (PGA). Every
PGA has some unique characteristics, packet generation rules are attack specific.
Most relevant is also the fact that PGA are typically botnet specific, hence they
can be used to identify the entity behind the attack (fingerprinting).

The malicious packets of botnet generated attacks usually include fixed pat-
terns. Patterns occur when a single or multiple bytes of particular protocol
specific parameters (e.g. TCP sequence number or IP destination address) are
deterministically dependent on each other. A simple example of a fixed pattern
is an equality of TCP sequence number and destination IP address, which is
often observed during port scanning. In this case the PGA copies bytes from the
address into the sequence number instead of generating a random one. The moti-
vation behind this additional operations is to optimize computation complexity
and memory usage of the algorithm. Botnet malware often targets devices with
limited computing power (legacy PCs, IoT, etc.. . . ), also botnet attack capabili-
ties scale with the number of infected devices. Therefore every small improvement
in packet generation speed greatly impacts the attack effectiveness.

Presented example of PGA for scanning purposes is of course a simple form
of optimization. The authors of malicious software may include more sophisti-
cated rules using logical shift, negations, incrementation, decrementation, bytes
swapping etc. It all comes to a trade-off between computational simplicity and
amount of effort required to detect a pattern.

2.5 Generating PGA Signatures

With the data provided by the darknet infrastructure, the main aim of the PGA
analysis is the detection of packet generation rules in traffic generated by botnets
and other malware. During online analysis of malicious network traffic the detec-
tion and documentation of packet generation rules used during particular network
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activity (e.g. TCP SYN scan or flood) is performed. The practical aspects of PGA
signatures are described in [11,19]. Methods for extraction of PGA signatures can-
didates vary in nature. From the simplest, like deterministic conditions on header
fields - PGA headers often defy RFCs guidelines, which makes resulting traffic
stand out from legitimate one, to more sophisticated ones based on statistical,
hierarchical analysis and machine learning. Constant monitoring of the incom-
ing traffic by the network telescope helps maintain situational awareness with
the proper collection of details about current threats and signatures for botnet
fingerprinting.

The process of extracting PGA signatures from suspicious traffic involves
reverse engineering of packet generation algorithm by analyzing the headers of
packets arriving at darknet. First, packets sharing the same source and close
arrival times are grouped together to establish a backscatter of possible DDoS
attack (victims response to packets with spoofed source address). By inspecting
such packets we are able to partially recreate the original DDoS packet that was
sent to the victim (see Sect. 2.2). Finally, the most challenging part is determining
whether recreated packets could be generated by the same packet generation algo-
rithm, and if so, what are the steps and operations performed by said algorithm.

An example TCP/IP packet which could be a part of a DDoS backscatter
observed by network telescope is shown in the Fig. 4. To recreate the original
DDoS packet the following operations are performed:

1. Swap source and destination fields:
IP: Source IP Address ←→ Destination IP Address
TCP: Source TCP port number ←→ Destination TCP port number

2. Set the value of TCP Sequence Number to decremented TCP Acknowledg-
ment Number

The result of those operations is presented in the Fig. 5, limited to only the
key header fields. The A, B and C denote some specific byte values, in case
of A and B a 4-byte value, and C a 1-byte value. It would be plausible that
this example packet is a result of a packet generation algorithm. Such algorithm
would reuse the first two bytes of source IP address, and copy it over to first
two bytes of TCP sequence number. Next, the last two bytes of destination IP
address would be copied over to the last two bytes of TCP sequence number.
The signature of such PGA would state:

“The first two bytes (0, 1) of Source IP Address are equal to the first two bytes
of TCP Sequence Number and the last two bytes (2, 3) of Destination IP

Address are equal to the last two bytes of TCP Sequence Number”

or in our less verbose signature naming syntax:

ip-src:0:1_is_tcp-seq:0:1_and_ip-dst:2:3_is_tcp-seq:2:3

Presented principle of operation is part of semi-automated service running
as a part of NASK’s network telescope system. The algorithms are still being
refined new reverse engineering methods are research. Currently supported inter-
net protocols are: Ethernet, IPv4, IPv6, UDP, TCP, ICMP.
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Fig. 4. TCP/IP packet observed by darknet.

3 PGA Filter

The main challenge is the implementation of mechanisms able to interpret said
data to translate it into system-comprehendible set of rules, which in turn, can be
deployed in client’s network security infrastructure. Since the standard signature
IDS/IPS solutions (Snort, Suricata, etc.) focus on analyzing the patterns in the
payload data, rather than the dependencies between values in protocol headers,
new solutions have to be developed.

3.1 Extended Barkeley Packet Filter

Proposed implementation makes use of eBPF (extended Berkeley Packet Filter),
a robust, highly flexible and efficient virtual machine-like construct that allows
for extending standard kernel in Unix-like systems with custom functionality by
executing bytecode at various hook points in a safe manner. It is applicable in a
number of Linux kernel subsystems, most prominently networking, tracing and
security.
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Fig. 5. Header fields of an original TCP/IP DDoS packet based on observed response
packet.

BPF, as a concept, does not define itself by only providing its instruction set,
but also by offering further infrastructure around it such as maps which act as
efficient key/value stores, helper functions to interact with and leverage kernel
functionality, tail calls for calling into other BPF programs, security harden-
ing primitives, a pseudo file system for pinning objects (maps, programs), and
infrastructure for allowing BPF to be offloaded, for example, to a network card.

The kernel subsystems making use of BPF are part of BPF’s infrastructure.
The subsystem utilized for the purposes of PGA signature rule-based detection
is XDP (eXpress Data Path). XDP is a framework that makes it possible to
perform high-speed packet processing within BPF applications. To enable faster
response to network operations, XDP runs a BPF program as soon as possible,
usually immediately as a packet is received by the network interface. However,
since this processing occurs so early, full network stack is yet to be established,
the packets’ metadata extracted and parsed (Fig. 6).

BPF is a general purpose RISC instruction set and was originally designed
for the purpose of writing programs in a subset of C which can be compiled into
BPF instructions through a compiler back end (e.g. LLVM), so that the kernel
can later on map them through an in-kernel JIT compiler into native opcodes for
optimal execution performance inside the kernel. Among other use-cases, BPF as
a technology, is a perfect candidate for the implementation of DDoS mitigation
software. It provides the compromise between the efficiency of execution - inside
the kernel, and the extensibility and programmability - subset of C programming
language. Until recently similar results were possible only with custom compiled
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Fig. 6. (e)BPF lifecycle (https://www.brendangregg.com/).

kernels. Preparing a custom kernel is a cumbersome process, which requires a
great deal of attention, as a simple mistakes can make the target system unstable.
Understandably, such solutions are adopted with great deal of restraint and are
rather unwelcome in third-party software. However, in contrast to custom kernel
approach, BPF gives guarantees for safety and predictability of execution, also
can easily be loaded and unloaded from the target system. By employing BPF as
a main technology in our signature-based DDoS mitigation solution we are able
to directly translate DDoS signatures in to sets of instructions executed inside
system’s network stack. The advantages for pushing these instructions directly
into the kernel include5:

1. Making the kernel programmable without having to cross kernel/user space
boundaries. For example, BPF programs related to networking, can imple-
ment flexible networking policies (firewall), load balancing and other means
without having to move packets to user space and back into the kernel. State
between BPF programs and kernel/user space can still be shared through
maps whenever needed.

2. Given the flexibility of a programmable data path, programs can be heavily
optimized for performance also by compiling out features that are not required
for the use cases the program solves. For example program can support only
required set of network protocols: TCP/IP, UDP, ICMP, etc.

3. In case of networking (e.g. XDP), BPF programs can be updated atomi-
cally without having to restart the kernel, system services or containers, and
without traffic interruptions. Furthermore, any program state can also be
maintained throughout updates via BPF maps. That means that programs
logic (e.g. traffic filtering rule-set) can be modified on the go and hot-deployed
without stopping the service.

4. BPF provides a stable ABI towards user space, and does not require any third
party kernel modules. BPF is a core part of the Linux kernel that is shipped
everywhere, and guarantees that existing BPF programs keep running with
newer kernel versions. This guarantee is the same guarantee that the kernel
provides for system calls with regard to user space applications. Moreover,

5 Cilium project documentation (https://cilium.io/).

https://www.brendangregg.com/
https://cilium.io/
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BPF programs are portable across different architectures, which makes our
solution available for any up-to-date Linux systems.

5. BPF programs work in concert with the kernel, they make use of existing
kernel infrastructure (e.g. drivers, netdevices, tunnels, protocol stack, sock-
ets) and tooling (e.g. iproute2) as well as the safety guarantees which the
kernel provides. Unlike kernel modules, BPF programs are verified through
an in-kernel verifier in order to ensure that they cannot crash the kernel,
always terminate, etc. XDP programs, for example, reuse the existing in-
kernel drivers and operate on the provided DMA buffers containing the packet
frames without exposing them or an entire driver to user space as in other
models. Moreover, XDP programs reuse the existing stack instead of bypass-
ing it. BPF can be considered a generic “glue code” to kernel facilities for
crafting programs to solve specific use cases.

3.2 PGA Filter Architecture

PGA filter runs as a system daemon. The tasks performed by this daemon are:

– parsing configuration and rules,
– generating BPF bytecode based on configuration and rules,
– loading or unloading BPF bytecode to kernel,
– accumulating and sending packet statistics to Kafka.

The architecture of PGA Filter is presented in the Fig. 7. The whole imple-
mentation resides in pgafitler.py Python script responsible for parsing configu-
ration, generating and loading of BPF code, gathering and sending results. The
configuration is split between two files in YAML format: rules.yml and config.yml
for convenience. The rules.yml file is dedicated for the declaration of available
PGA signatures. It can be edited by hand by the administrator or downloaded
from the signature sharing service. The general configuration resides in con-
fig.yml file. Besides the standard configuration parameters, i.e., the name of the
inspected network interface or the desired logging level, this file contains the list
of currently enabled PGA signatures from the rules.yml file.

The most crucial operation is translating chosen PGA signatures into valid
BPF code. Generated BPF program performs packet inspection operations and
gathers data regarding signature matches. The moment a new PGA filter con-
figuration is applied, updated BPF program is generated and swapped with the
previous one. During the update phrase, the BPF infrastructure ensures the
atomic operation of swapping BPF code (unloading the previous program code
and loading the new one). The inspection of network packets is performed con-
tinuously and without delay through the whole process.

Below, in Listings 1 and 2 two examples of configuration rules (in YAML
format) corresponding to PGA signatures are presented. Each rule can be iden-
tified by a unique name (e.g. ‘‘tcp-sport_is_tcp-seq:0:1’’ ) or numerical
id (sid – signature id). Each rule also has a revision number (rev) which should
be incremented every time said rule is modified. The content filed contains the
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Fig. 7. Architecture of the PGA Filter framework.

representation of the PGA signature itself. In order to allow for high degree of
flexibility, signatures are represented in valid C programming language syntax.
Code can span across multiple lines of code separated by the semicolon (‘;’),
but the last line must always evaluate to boolean (true or false) value. Standard
syntax is extended with some helpful macros and function described bellow. The
args filed declared which protocol headers should be passed to signature function.
Multiple headers can be passed, each header corresponds to protocols supported
by PGA filter, i.e.: ethhdr, iphdr, ip6hdr, udphdr, tcphdr, icmphdr. Headers are
in fact structures defined in Linux Kernel User API source code [8,10].

1 "tcp -sport_is_tcp -seq:0:1":
2 sid: 1003
3 rev: 1
4 args:
5 - tcphdr
6 content: "tcphdr ->source == pga_2_byte32(tcphdr ->

seq, 0, 1)"
7 comment: "TCP SOURCE PORT is equal to TCP SEQ

bytes 0:1"

Listing 1. Simple PGA signature for TCP
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1 ip1:
2 sid: 1
3 rev: 2
4 args:
5 - iphdr
6 content: "iphdr ->saddr == bpf_htonl(16843009)"
7 comment: "SOURCE IP is 1.1.1.1"

Listing 2. PGA signature blacklisting a specific source IP address

The process of generating BPF code is simplified due to the architectural
decision to represent signatures in C programming language code. An example of
the conditional function generated based on a signature is presented in listing 3.
The function is executed for every packet arriving TCP packet, and evaluates to
“true” if given packet matches signature.

1 static __always_inline int tcp -sport_is_tcp -seq_0_1(
2 struct tcphdr *tcphdr)
3 {
4 /* some additional operations are possible */
5 return tcphdr ->source ==
6 pga_2_byte32(tcphdr ->seq , 0, 1);
7 }

Listing 3. PGA signature translated into code for BPF compiler

All helper BPF functions and macros are available for use in signature rep-
resentation, e.g.:bpf_htons, bpf_htonl, bpf_ntohs, bpf_ntohl macros which
translate short and long integers to network byte representation and back to
host representation. Additionally, dedicated macros that allow for more com-
prehensive translation of signatures to C code are provided, i.e. pga_1_byte16,
pga_2_byte16, pga_1_byte32, pga_2_byte32 are used for extracting specific
byte values from integers. Library of convenient helper functions and macros
can easily be extended.

3.3 PGA Filter Integration in the GUARD Framework

PGA filter, as one of GUARD’s Agents, is deployed inside use-case owner infras-
tructure, preferably at the edge of the local network. Agent is listening on the
network interface at which all the incoming network traffic should be arriving.
Each packet is analyzed and validated against the set of loaded DDoS signatures.
If no signature is detected no actions are taken. However if packet matches one
or more signatures, information about the possible malicious packet is recorded,
i.e., source/destination IP address, source/destination port, timestamp, etc...
and sent to the Kafka bus.

Data is placed in two channels: Results channel for GUARD Dashboard to
visualize the information, and Network-Data channel that any GUARD Security
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Service can subscribe to. Data is also dumped to Elasticsearch and can possible
be used for detecting attack correlation and attack campaigns. Set of currently
enabled signatures is a part of PGA filter configuration and can be modified on
the go without letting a single packet through. Set of available PGA signatures
is also a part of agent’s configuration. Signature set is periodically updated by
Security Controller service, which inquires NASK’s database about newly gen-
erated PGA signatures. PGA signature database is semi-automatically (requires
human input) updated with new signatures based on information coming from
darknet traffic analysis (Fig. 8).

Fig. 8. Integration of PGA filter in the GUARD framework.

4 Conclusion

In conclusion, this work contributes to existing knowledge of denial-of-service
prevention. It is our hope that presented approach will prove useful in develop-
ing new security solutions in the face of the growing threat posed by botnets.
Although the concept of PGA signatures requires further development, this pro-
totype shows the potential behind converting botnet fingerprints into rules for
network traffic filtration. Based on the results achieved, levering the eBPF tech-
nology is a step in the right direction. Indeed, this solution provides a lightweight
and portable approach, yet extensible enough for our use case while still allowing
to operate on network packet at the lowest possible level in operating system.
Improvements in the implementation of our module are however necessary to
unlock the full potential of eBPF and XDP (cross-compiling, modularity). Future
development should consider improving the overall experience and availability
of our solution. Well-known, full-fledged IDS/IPS solutions like Snort6 Suricata7

6 https://www.snort.org/.
7 https://suricata.io/.

https://www.snort.org/
https://suricata.io/
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should be taken as a point of reference to make our system more applicable
in practice. Possibly, a way for integrating our concepts with above-mentioned
platforms should be considered. Extending proved solutions seems like the most
suitable way to integrate our approach in a common security ecosystem.
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