
Chapter 4
Data Science-Based Battery Operation
Management I

This chapter focuses on the data science technologies for battery operation manage-
ment, which is another key and intermediate process in the full-lifespan of battery.
After manufacturing, battery would be operated in various applications such as
transportation electrification, stationary energy storage and smart grid to supply or
absorb the power, where suitable management solutions are necessary to ensure its
efficiency, safety, and sustainability. In this context, numerous state-of-the-art data
science strategies have been developed to perform efficient management of battery
operation.

To systematically illustrate the data science-based strategies for benefitting battery
operation management, an overview is first given to introduce several crucial parts of
battery operation management, which includes battery operation modelling, battery
state estimation, battery lifetime prognostics, battery fault diagnosis, and battery
charging. Then the fundamentals of battery operation modelling as well as state
estimation are detailed in this chapter, while the latter three operation parts will be
described in the next chapter. Besides, case studies of deriving proper data science
methods to benefit four crucial state estimations of battery are all presented and
analysed.

4.1 Battery Operation Modelling

Establishing a suitable battery model is generally the starting point for battery opera-
tion management [1]. Over the years, numerous data science-based battery operation
models with different levels of accuracy and complexity have been designed. This
section mainly focuses on three typical types of battery operation models including
battery electrical model, battery thermal model, and battery coupled model, which
are widely adopted to capture battery operational dynamics, as detailed in Fig. 4.1.
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Fig. 4.1 Three typical and widely used battery operation models

4.1.1 Battery Electrical Model

As a fundamental battery operation model, electrical model can be mainly divided
into the electrochemical model [2, 3], reduced-order model [4, 5], equivalent circuit
model [6, 7] and machine learning model [8–10].

For the electrochemical model of battery, Rahman et al. [2] claim that this type
of battery electrical model should own the ability to describe the spatiotemporal
dynamics of battery concentration, the electrode potential of each phase, and the
Butler–Volmer kinetic for controlling intercalation reactions. Then an electrochem-
ical model is established for describing battery electrochemical behaviours while
its parameters are optimized by the particle swarm optimization (PSO) approach.
Sung et al. [3] present that the battery electrochemical model is able to provide
a highly accurate prediction performance, but it usually needs significant computa-
tional efforts formodel simulation.Then amodel implementation solution is designed
to embed this complicated model into the BMS. The main merit of adopting elec-
trochemical model is that a highly accurate description of electrochemical process
within a battery could be achieved. However, numerous parameters that reflect
battery electrochemistry such as the chemical composition require to be identified
by using data science tool, which is actually a big challenge in real battery oper-
ation applications. Moreover, many partial differential equations are involved in a
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battery electrochemical model, bringing a large computational burden to solve them.
It should be known that through making proper assumptions, the full-order electro-
chemical model could be approximated by the reduced-order model. For instance,
after capturing both solid-phase diffusion and electrolyte concentration distribution
within battery based on an approximate approach, a simplified physics-based electro-
chemical model is derived in [4]. Li et al. [5] simplify the electrochemical model with
reduced-order to predict discharging capacities of LiFePO4 battery under different
conditions. Although some information would inevitably be lost by using the simpli-
fied reduced-order model, this type of electrical model would becomemore desirable
for real operation management of battery. Here, the computational effort becomes
much lower by using a reduced-order model, while its corresponding parameters
could be identified based on the data from measured battery terminal current and
voltage.

For the equivalent circuit model of battery, battery electrical dynamics can be
captured by using a combination of circuit components including the resistance,
capacity, and voltage sources. Due to the simple structure and relatively small amount
of parameters need to be identified, equivalent circuit model has become one of the
most popular ones for battery real operation management. Figure 4.2 illustrates a
classical framework of battery equivalent circuit model with two resistance–capaci-
tance (RC)-networks. Specifically, these RC-networks could reflect battery electrical
behaviours such as the charge transfer or diffusion process. Here, the number of
RC-networks is generally treated as the order of equivalent circuit model, which
requires to be carefully chosen. According to [6], equivalent circuit model with one
or two RC-networks could provide satisfactory performance, while higher order of
RC-networks becomes unnecessary in many battery operation cases. Nejad et al.
[7] provide a critical review for widely adopted equivalent circuit model for Li-ion
batteries. Illustrative results indicate that equivalent circuit model with RC-network
presents better dynamic performance particular for the prognostics of battery state
of charge (SoC) and power.

For the machine learning-based model, various machine learning technologies
such as neural networks (NNs) [8, 9] and support vector machine (SVM) [10] have
been adopted to derive suitable data science models for capturing battery electrical
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Fig. 4.2 Typical structure of battery equivalent circuit model
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dynamics without the requirements of battery prior knowledge. The performance of
this type of battery model significantly relies on the experimental data as well as
training solutions. To achieve satisfactory prediction accuracy and good generaliza-
tion performance, experimental data should cover enough battery operation ranges,
while the parameters of machine learning models require to be carefully optimized
by using suitable training solutions. Moreover, the adaptive data science techniques
[11, 12] could be adopted to provide better modelling results.

4.1.2 Battery Thermal Model

Apart from battery electrical dynamics, battery thermal behaviour such as its temper-
ature variation is another key aspect to affect battery operation management because
it plays a pivotal role in determining battery performance and service life [13–15]. In
this context, different data sciencemodels such as heat generationmodel, heat transfer
model, reduced-order thermal model, and machine learning-based model have been
proposed to describe battery thermal dynamics. For battery heat generation model, a
great deal of solutions are designed to capture battery heat generation, such as acti-
vation, concentration, and ohmic loss, which distribute non-uniformwithin a battery.
Three popular ways to assess battery heat generation are described in Eq. (4.1), which
have been widely adopted for real battery operation management [16, 17].

⎧
⎨

⎩

Qa = R · I 2
Qb = I · (V − OCV)

Qc = I · (V − OCV) + I · T · dOCV/dT
(4.1)

where R stands for battery internal resistance. I and V represent terminal current and
voltage of battery, respectively. OCV means open-circuit voltage of battery. Qa is
the heat generation mainly caused by large currents that across battery internal resis-
tance. Qb represents heat generation caused by overpotential across RC-networks.
Qc denotes heat generation due to the entropy variation as well as Joule heating.

Besides, for the heat transfer of battery, the convection, conduction, and radiation
of heat are the three primary forms within as well as outside a battery [18, 19]. A
three-dimensional distributed-parameter heat transfer model is developed by Guo
et al. [20] to explore the geometrical currents and heat distribution within a Li-ion
battery, as described by,

∂ρCpT3C
∂t

= −∇(k3C∇T3C) + Q (4.2)

It can be also expressed by [21],
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where ρ reflects battery density, Cp stands for heat capacity of battery, k3C is a
coefficient to reflect battery thermal conductivity (along three dimensions: kx , ky ,
kz), and Q stands for the heat generation of battery.

Supposing the temperature distribution of a battery within each layer plane is
uniform, and only considering one dimension (x, y, z) of battery heat conduction,
then a one-dimensional heat conduction thermal model can be simplified as [22],

∂ρCpT1C
∂t

= − ∂

∂x

(

kx
∂T1C
∂x

)

+ Q (4.4)

The three-dimensional heat transfer model is able to describe temperature distri-
bution within a battery, which could be further adopted to detect possible hot spots,
especially for high heat generation operations. The one-dimensional heat transfer
model is capable of capturing battery temperature gradient along a direction of
interest. However, the computational efforts of these heat transfer models are usually
too large to be applied in real battery operation management, and they are primarily
adopted in offline simulation conditions.

Let heat conduction becomes the only type for heat transfer, heat generation is
evenly distributed within a battery, while the temperatures of both battery surface
and interior become uniform, then a two-stage battery thermal model [23, 24] that
has been widely used in battery operation management is derived as:

{
Cq1 · dTin/dt = k1 · (Tsh − Tin) + Q
Cq2 · dTsh/dt = k1 · (Tin − Tsh) + k2 · (Tamb − Tsh)

(4.5)

where Tin is battery internal temperature, while Tsh is battery surface temperature;
Tamb stands for ambient temperature; Cq1 is battery internal thermal capacity while
Cq2 represents battery surface thermal capacity; k1 reflects the heat conduction
between battery surface and interior, k2 is the heat conduction between battery surface
and ambient temperature.

After defining battery heat generation and transfer parts, numerous battery
thermal models with reduced order have been also successfully designed to achieve
control purposes for battery operation management [25]. After converting the one-
dimensional boundary-value issue into a linearmodel with low order in the frequency
domain, the order of a Li-ion battery thermal model can be decreased, while its
temperature prediction could match closely with the results of experiment and
three-dimensional finite-element simulations. According to the computational fluid
dynamics (CFD) model, a reduced-order state-space thermal model is proposed by
using the singular value decompositionmethod [25], while the similar results as CFD
model can be achieved but with much less computational efforts.
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4.1.3 Battery Coupled Model

In battery operation applications, there exists strong coupling among different
battery dynamics. For example, battery electrical and thermal behaviours are
strongly coupled with each other. To better capture battery electrical dynamics (e.g.
current, voltage, SoC) and thermal dynamics (e.g. surface and internal tempera-
ture), several battery coupled electrothermal models have been proposed, including
lump-parameter model and distributed-parameter model [26–28]. For example, a
three-dimensional electrothermal model is proposed by Goutam et al. [29] to predict
battery SoC and calculate its heat generation. Specifically, this electrothermal model
contains a 2D potential distribution model and a 3D temperature distribution model.
ThenbothbatterySoCand temperature distributionunder constant aswell as dynamic
currents could be effectively obtained by using this coupled model. In [30], an
electrothermal model with decreased order is designed and evaluated by batteries
with three different cathode materials. This reduced model is accurate enough for
developing quick heating and optimal charging method at low temperature cases. A
coupled electrothermal model with three-dimensional is proposed by Basu et al. [31]
to analyse the effects of different battery operations such as coolant flow-rates and
discharge currents on the variations of battery temperature, further verifying that the
contact resistance plays a pivotal role in affecting battery temperature.

4.2 Battery State Estimation

Due to the complex electrochemical characteristics and multi-physics coupling, a
trivial emulation of battery operations based on just measured voltage, current,
and surface temperature cannot lead to the in-depth understanding or monitoring
of operated batteries. In this context, performing accurate estimation of several
battery internal states is crucial for advanced battery operation management [32].
This section details the data science-based battery state estimation with a focus on
several battery fundamental but important states including the state of charge (SoC),
state of power (SoP), state of health (SoH), and joint states estimation.

4.2.1 Battery SoC Estimation

4.2.1.1 Definition of Battery SoC

SoC is a fundamental and critical factor for the operation management of battery,
which can be expressed by different formulation forms [33]. SoCgenerally represents
the battery available capacity (Ca) expressed as a percentage of its nominal capacity
(Cn) [34]. Cn is the maximum charge amount that can be stored within a battery.
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Similar to the fuel vehicle’s tank, SoC presents the same functionality as a fuel
gauge. Supposing current I is positive and negative for charging and discharging,
respectively, a common definition of battery SoC is:

SoC(t) = SoC(t0) +
t∫

t0

η · I (t)
Cn

dt (4.6)

where SoC(t) and SoC(t0), respectively, denote battery SoC values at time point t
and initial time point t0; η represents coulombic efficiency to reflect the ratio of fully
discharged energy to charged energy needed to recover the original capacity.

On the other hand, from the battery electrochemical side, SoC could represent
the charge contained in electrode particles. Specifically, the variation of battery SoC
is able to reflect the distribution of lithium concentration within electrode parti-
cles. Due to the amount of available charge highly relies on the amount of lithium
stored in electrodes, SoC can be directly obtained by considering the mean lithium
concentration Cs as:

SoC(t) = Cs(t) − Cs,min

Cs,max − Cs,min
(4.7)

where Cs(t) represents the mean surface Li-ion concentration at time point t , and
Cs,min andCs,max stand for the surface Li-ion concentrations when fully charging and
discharging a battery, respectively.

The operation management of battery requires accurate SoC information to indi-
cate the remaining available energy within a battery during its operations. In the
laboratory conditions, based upon a known initial SoC value, the referenced battery
SoC is generally obtained through a well-controlled coulomb counting approach
to accumulate charge transferred [35]. However, complex battery electrochemical
dynamics and strongly coupled characteristics make battery SoC is difficult to be
measured directly in real-world applications. In this context, reliable battery SoC esti-
mation in real time is a critical part of battery operation management, thus attracting
considerable data science research efforts.

4.2.1.2 Data Science-Based SoC Estimation Methods

To date, different data science-based methods were designed to achieve reason-
able SoC estimation for battery operation management in the literature. These data
science-based methods could be divided into three main categories including the
direct calculation method, model-based method, and machine learning method, as
shown in Fig. 4.3.
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Fig. 4.3 Data science-based battery SoC estimation methods in terms of merits and limitations,
reprinted from [32], with permission from Elsevier

For data science direct calculationmethod, two common solutions are noteworthy.
First, as there exist obvious mapping relations between battery SoC and some battery
direct factors such as the open-circuit voltage (OCV) and impedance, after obtaining
the data of these battery factors, the battery SoC could be inferred by the predefined
lookup tables that describe such a relation [36]. Besides, based upon the obtained
data of battery nominal capacity and exact current profiles, the variation of battery
SoC could be conveniently obtained by the coulomb counting approach. One obvious
superiority of these two methods is the easy way to be implemented for battery SoC
estimation. However, as battery capacity would inevitably vary with different ageing
levels, and OCV needs to be obtained after a rest period, precisely online measuring
these data is still a daunting challenge during battery operation management. In the
light of this, attempts have been made to estimate battery SoC through other data
science supporters such as model-based methods.

For themodel-basedmethod, according to a proper model such as dynamics equa-
tions, different estimation strategies together with easily collect current or voltage
data would be employed to estimate battery SoC. One popular model type is the
battery electrochemical model (EM) as battery internal mechanisms such as kinetic
and charge transfers within a battery could be described by it, further leading to an
accurate SoC estimation of battery. However, as EM-based methods involve many
parameters and partial differential equations, it generally requires a large compu-
tational burden to implement them. In order to facilitate a real-time application,
suitable simplifications are always required. Another widely used model type is
the battery equivalent circuit model (ECM) which adopts electrical circuit compo-
nents to emulate battery dynamics. Due to a relatively simple structure and reason-
able expansibility, ECM becomes a promising tool for battery real-time SoC esti-
mation. However, considering the ECMs’ parameters would vary over time, using
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the invariant parameters under different temperature, SoC or ageing levels could
cause large estimation error [37]. Great efforts are required to periodically recali-
brate ECMs’ parameters, further ensuring their extensibility. Besides, after obtaining
different battery data in real applications, it is vital to develop proper solutions such
as the joint parameter/SoC estimation tool for adjustingmodel parameters adaptively.

The machine learning method, free of understanding battery electrochemical
mechanisms, has also beenwidely adopted to estimate battery SoC. Due to the poten-
tial merits such as being flexible and highly nonlinear fitting ability, various tech-
niques including the neural network (NN) [38] and support vector machine (SVM)
[39] have been utilized to estimate battery SoC.However, these data science solutions
are very sensitive to their optimization strategies and the quality of collected data. In
addition, overfitting issues would happen if improper training modes are utilized.

4.2.1.3 Case Study: Battery SoC Estimation with RLS and EKF

In this subsection, we will introduce a data science-based SoC estimation method for
Li-ion battery with recursive least square (RLS) and extended Kalman filter (EKF).
As the most widely used model-based method, the RLS-EKF integrates the RLS-
based online model identification and the EKF-based SoC observation in a dual
sequential framework.

The estimation accuracy of this method largely depends on the accuracy of the
model. However, a model with a higher accuracy requires more parameters to be
identified, that is to say, a higher computational cost is required. Generally, a battery
model suitable for the real-time application has a simple topology while capturing
the major dynamics of Li-ion battery. In the light of this, this case study uses the
Thevenin model to verify the RLS-EKF algorithm. As is shown in Fig. 4.4, R0 is
the ohmic resistance. The single RC branch is used to simulate the polarization
effects due to passivation layers on the electrodes, charge transfer between electrode
and electrolyte, diffusion, migration, and convection processes. The dynamics of the
Thevenin model in use is written as:

{
Ut (t) = UOCV(SoC(t)) − i(t)R0 −U1(t)
U̇1(t) = −U1(t)

R1C1
+ i(t)

C1

(4.8)

Further discretizing the above formula can obtain:

{
Ut (k) = UOCV(SoC(k)) − i(k)R0 −U1(k)

U1(k + 1) = e− �t
R1C1 U1(k) + R1(1 − e− �t

R1C1 )i(k)
(4.9)

The OCV is a nonlinear function of SoC which should be calibrated accurately
to adopt the model-based estimation. In order to identify the functional relationship
between OCV-SoC, it is necessary to obtain the OCV-SoC curve through the OCV
experiment, fit the experimental curve through the empirical function, identify the
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Fig. 4.4 Data science-based battery SoC estimation method with RLS and EKF

parameters of the given function through the parameter identification method, and
finally get the OCV-SoC function relationship. It is usually possible to use higher-
order polynomial approximation as:

UOCV(z) = k0 + k1z + k2z
2 + · · · + knz

n (4.10)

where z denotes the SoC, kn (n = 1, 2, . . . , n f ) are the polynomial coefficients, and
n f is the polynomial order which is selected to be 5 in this case.

Since the sampling of current and voltage signals is discrete in the actual battery
system, the continuous-time model of SoC should also be discretized:

SoC(k + 1) = SoC(k) − η
i(k)�t

Q
(4.11)

The adoption of RLS-based online model identification necessitates formulating
a regression model. To achieve this, a new variable is defined as:

Ut (s) −UOCV(s)

i(s)
=
(

−R0 + R1

1 + R1C1s

)

(4.12)
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By applying the bilinear transform, Eq. (4.12) can be transformed to:

Ut (z) −UOCV(z)

i(z)
= c2 + c3

1 − c1z−1
(4.13)

where

c1 = 2R1C1 − �t

2R1C1 + �t

c2 = (R0 + R1)�t + 2R0R1C1

−(�t + 2R1C1)

c3 = (R0 + R1)�t − 2R0R1C1

−(�t + 2R1C1)

Then the discrete-time expression of the system can be written as:

Uq,k = θkφ
T
k (4.14)

where Uq,k = Ut,k , θk = [(1 − c1)UOC,k, c1, c2, c3], φk = [1,Ut,k−1, ik, ik−1]. The
regression model is then identifiable with the RLS method. A forgetting factor (λ)
is used to give more weight to the recently obtained data while discounting the
contribution of historical data. Once the model parameters are obtained, the system
states including polarization voltage and SoC are estimated by using EKF. Choose
SoC and U1 as the state variable, electric current as input quantity, and terminal
voltage (Ut ) as output quantity. The equation can be transformed as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
U1(k)
SoC(k)

]

=
[

e
(
− �t

R1C1

)

0
0 1

][
U1(k − 1)
SoC(k − 1)

]

+
⎡

⎣ R1

(

1 − e
(
− �t

R1C1

))

−η�t/QN

⎤

⎦i(k − 1)

+wk−1

Ut (k) = f [SoC(k)] −U1(k) + R0i(k) + vk

(4.15)

where wk−1 is the random process noise sequence, and vk is the random observation
noise sequence. Since f [SoC(k)] is nonlinear with respect to SoC, the formula is
expanded into a Taylor series around the optimal prediction estimate to linearize.
The RLS-based model identification and EKF-based SoC estimation are integrated
in a dual sequential framework as shown in Fig. 4.4.

In this case, A123 ANR26650 M1-B batteries with a nominal capacity of 2.5 Ah
are selected to verify the algorithm performance. In order to obtain the maximum
usable capacity of the battery, a constant volume experiment must be carried out at
a room temperature of 25 °C. In detail, a constant-current-constant-voltage method
with 1C rate is used to charge the batteries until the voltage reaches 3.6 V and
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then current drops to 0.05C. A constant-current method with 1C rate is used to
discharge cells until the voltage drops to 2.0 V. The battery OCV has a monotonic
mapping relationship with the SoC. Determining the OCV-SoC mapping rule is of
great significance for improving the accuracy of battery modelling and SoC state
estimation. Therefore, after the constant volume test, it is necessary to calibrate the
OCV-SoC curve. Specifically, taking the charging OCV as an example, if 10% SoC
point is used as the test point, battery is discharged to the cut-off voltage 2.75 V with
a 1C current at a constant current, and then left for 2 h as the voltage of SoC = 0%.
1C rate is utilized to charge the battery in cross-current. The cut-off condition is that
the charging time reaches 6 min, and after 2 h left, the terminal voltage is recorded
as the OCV corresponding to the current SoC, and so on, recording 10%, 20%, …,
90% OCV. The ECM shown in Fig. 4.4 is built by using MATLAB Simulink. The
model parameters are all defined according to the battery testing result. An enhanced
UDDS, DST, and FUDS profile shown in Fig. 4.5 is used to verify the feasibility of
RLS and EKF algorithms.

As shown in Fig. 4.6, the blue line is the real SoC value, and the red line is the
SoC value estimated by the RLS-EKF algorithm. The RMSE and the MAE under
different working conditions are shown in Table 4.1.

Fig. 4.5 Load profile for testing: a an enhanced UDDS profile; b an enhanced DST profile; c an
enhanced FUDS profile

Fig. 4.6 SoC estimation result: a UDDS; b DST; c FUDS
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Table 4.1 Performance of
RLS-EKF under different
working conditions

UDDS (%) DST (%) FUDS (%)

RMSE 0.27 0.87 1.04

MAE 0.75 1.23 1.33

4.2.2 Battery SoP Estimation

4.2.2.1 Definition of Battery SoP

State of power (SoP) is another critical factor for battery operation management and
usually utilized to reflect the available power that a battery could supply or absorb
over a short time horizon [40]. In theory, battery SoP could be viewed as a result of
threshold current and responded voltage, while different operation constraints also
need to be explicitly considered. Supposing that discharging power is positive while
charging power is negative, battery SoP can be generally expressed by [41]:

⎧
⎨

⎩

SoPc(t) = max
(
Pmin, V (t + �t) · I cmin

)

SoPd(t) = min
(
Pmax, V (t + �t) · I dmax

)

Subject to operation constraints
(4.16)

where SoPc(t) and SoPd(t) denote battery charging and discharging SoPs at time
point t , respectively, Pmin and Pmax represent theminimum andmaximum limitations
of battery power, �t is the specific future time period, V (t + �t) stands for battery
terminal voltage at time point t + �t , and I cmin and I dmax are minimum continuous
charging current as well asmaximum continuous discharging current from time point
t to t+�t , respectively. I cmin and I

d
max require to be obtained under the cases of battery

operation constraints are not exceeded. These operation constraints usually contain
battery voltage, current, SoC, and sometimes temperature.

For the simulation applications, battery SoP reference is generally obtained by the
high-fidelity battery model with the consideration of different operation constraints
[42]. In the laboratory conditions, battery SoP could be decided through well-
designed pulse testswith the consideration of somemodified current rate and duration
time. For real EV applications, due to the energy-flowmanagement such as the power
split and battery charging during regenerative braking highly depends on the available
power of battery, reliable battery SoP estimation could benefit not only the regulation
of vehicular power flow but also the optimization of overall powertrain efficiency.
Moreover, for battery itself, knowing its future SoP could benefit fast charging mode
and battery performance. In this context, it is vital to design effective data science
strategy for reliable battery SoP estimation that takes the highly nonlinear dynamics
and different operation constraints of battery into account.
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4.2.2.2 Data Science-Based SoP Estimation Methods

Battery SoP estimation studies are relatively scarce compared with battery SoC esti-
mation methods involving a plethora of research. According to a systematic review
in [40], data science-based SoP estimation methods can be mainly divided into two
categories, as shown in Fig. 4.7.

For characteristic map (CtM)-based method, a static interdependence between
battery SoP and other state variables such as SoC, temperature, voltage, and power
pulse duration is establishedoffline. To further enhance the estimation performance of
CtM-based method, the difference between measured battery power and estimated
SoP value is calculated. Then the reference points within CtM could be adapted
in the conditions of a huge deviation that appears [43]. CtM-based method could
be readily implemented, owing to its straightforward treatment. However, several
issues are still not addressed thoroughly: First, past and current battery information
is difficult to be considered in CtMs. As battery power dynamics strongly relies
on its operation condition, the accuracy of battery SoP estimation will be thus influ-
enced severely. Second, in order to construct a high-performanceCtMunder different
battery operating conditions, a large amount of information requires to be stored by
the multi-dimensional forms, further leading to a large computational burden on the
micro-controller. In this context, the online SoP estimation method through deriving
suitable battery model with various computational levels is explored and exploited.

For model-based approach, ECM and its variants are usually adopted to esti-
mate battery SoP. After formulating ECM with a discrete-time state-space form,
various solutions such as Kalman filter [44] and least square-based approach [42]
have been adopted to derive reasonable SoP estimators. To guarantee the estimation
accuracy of SoP, an ECM that could not only describe battery overall dynamics but
also presents proper structure and parameters becomes necessary. In this context,

Da
ta

 s
cie

nc
e-

ba
se

d
So

P 
es

�m
a�

on CtMs-based approach

Model-based approach

Sta�c interdependences 
between SoP and other 
ba�ery state variables 

ECM is the main choice

Kalman filter (EKF, UKF), 
par�cle filter, least square, 
model predic�ve control...

Methods

Easy to be implemented

Difficult to consider the
ba�ery past and current 

informa�on 

Amounts of informa�on 
require to be stored in 

mul�-dimensional form

Parameters of ECM require 
to be adapted

Hard constraints must be 
sa�sfied

SoP es�ma�on based on 
EM is s�ll scarce

Simple structure

High expansibility

Advantages
Limitations

Straight forward 
characteris�c

Fig. 4.7 Data science-based battery SoP estimation methods in terms of merits and limitations,
reprinted from [32], with permission from Elsevier



4.2 Battery State Estimation 105

ECM’s parameters need to be adapted under real-time data from different operating
SoC, temperature, and ageing states. In addition, to ensure battery operated safely,
the operating constraints of current, voltage, SoC, and/or even internal temperature
are required to be satisfied during battery SoP estimation. In addition, ECM-based
approach is difficult to depict battery’s inside electrochemical process, further leading
to poor generalization. Unfortunately, EM-based approach is still scarce in battery
SoP estimation domain.

4.2.2.3 Case Study: Battery SoP Estimation with Multi-constrained
Dynamic Method

In this subsection, we will introduce a data science-based SoP estimation method
for Li-ion battery with the multi-constrained dynamic method. This method compre-
hensively considers multiple constraint variables, such as terminal voltage, current,
SoC, etc., to predict battery SoP in real-time. At the same time, the influence of
dynamic response characteristics such as electrochemical kinetics, thermodynamics,
and hysteresis effects on the SoP prediction results are comprehensively considered.

As mentioned above, the peak power capability of Li-ion battery is affected by
the maximum charge and discharge current, the maximum and minimum cut-off
voltage, the remaining available capacity of the battery, etc. In order to estimate the
peak power capability accurately, there are multiple constraints (voltage, current,
SoC, rated power) that should be taken into consideration, which can be expressed
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Umin < U < Umax

I chgmin < I < I dismax

SoCmin < SoC < SoCmax

Pchg
min < P < Pdis

max

(4.17)

whereU , I , SoC, P represent the battery’s terminal voltage, current, SoC, and power.
For the battery charge and discharge process, the peak power capability of Li-ion
battery can be calculated as follows:

{
Pchg
min = max(Pmin,UI)

Pdis
max = min(Pmax,UI)

(4.18)

Further, the maximum discharge current and minimum charge current of the
battery need to meet the following conditions:

{
I chgmin = max(Imin, I

chg,U
min , I chg,SoCmin )

I dismax = min(Imax, I dis,Umax , I dis,SoCmax )
(4.19)
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Based on the combination of the three constraints, the peak power capability of
the battery is finally expressed as follows:

{
Pchg
min = max(Pmin, P

chg,U
min , Pchg,C

min , Pchg,SoC
min )

Pdis
max = min(Pmax, Pdis,U

max , Pdis,C
max , Pdis,SoC

max )
⇒
{
Pchg
min = max(Pmin,U (I chgmin)I

chg
min)

Pdis
max = min(Pmax,U (I dismax)I

dis
max)

(4.20)

This case continues to use Thevenin equivalent circuit model to estimate SoP.
Similarly, A123 ANR26650 M1-B batteries with a nominal capacity of 2.5 Ah are
used to verify themulti-constraint algorithm. In particular, by consulting the battery’s
usermanual, it is necessary to pay attention to the battery-related limit parameters. As
shown in Table 4.2, the parameters that need to be paid attention to in SoP estimation
are listed. The discharge current is artificially specified as positive.

An enhanced DST profile shown in Fig. 4.8a is used to verify the algorithms. In
order to accurately obtain the peak current under the SoC constraint, the RLS-EKF
algorithm is first used to estimate battery SoC. Parameter identification and SoC
estimation have been introduced in detail in Sect. 4.2.1.3 and will not be repeated
here. As shown in Fig. 4.8b, the root-mean-square error (RMSE) is 0.87%, while the
mean-absolute error (MAE) is 1.23%.

Next, derive detailed expressions of peak discharge and charge currents under
SOC and voltage constraints. The load current is assumed to be constant between the
k sampling time and the (k + L) sampling time, where L represents the prediction
time horizon. Under the excitation of peak discharge current, the terminal voltage
would drop to the lower cut-off voltage, so that the following equation can be drawn:

Table 4.2 Upper and lower
cut-off thresholds for SoC,
voltage, and current

SoC (%) Voltage (V) Current (A)

Maximum 96 3.6 120

Minimum 5 2 −25

Fig. 4.8 SoC estimation: a an enhanced DST profile; b SoC estimation results
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Ut,min = UOCV(k + L) −U1(k + L) − I dis,voltL ,max R0 (4.21)

The polarization voltage at the (k + L) can be expressed with the battery model
as:

U1(k + L) = e
−L�t
R1C1 U1(k) + (1 − e

−L�t
R1C1 )R1

L∑

j=1

e
−( j−1)�t

R1C1 I dis,voltL ,max (4.22)

In order to derive UOCV(k + L), the SoC recurrent relationship is defined as:

SoC(k + L) = SoC(k) − ηI dis,voltL ,max L�t

Q
(4.23)

So that,

UOCV(k + L) = UOCV(k)

(

SoC(k) − ηI dis,voltL ,max L�t

Q

)

≈ UOCV(k) − ηI dis,voltL ,max L�t

Q

∂UOCV

∂SoC SoC(k)
(4.24)

The final expression of the voltage-constrained peak discharge current is:

I dis,voltL ,max (k) = UOCV(k) − e
−L�t
R1C1 U1(k) −Ut,min

ηL�t
Q

∂UOCV
∂SoC SoC(k)

+
(
1 − e

−L�t
R1C1

)
R1
∑L

j=1 e
−( j−1)�t

R1C1 + R0

(4.25)

The voltage-constrained peak charge current is:

I dis,voltL ,min (k) = UOCV(k) − e
−L�t
R1C1 U1(k) −Ut,max

ηL�t
Q

∂UOCV
∂SoC SoC(k)

+
(
1 − e

−L�t
R1C1

)
R1
∑L

j=1 e
−( j−1)�t

R1C1 + R0

(4.26)

SoC has to bemaintainedwithin a certain range to improve the battery’s efficiency
and extend the calendar life. The peak discharge and charge current constrained by
SoC limit can be derived as:

{
I dis,SoCL ,max (k) = Q(SoC(k)−SoCmin)

ηL�t

I chg,SoCL ,max (k) = Q(SoC(k)−SoCmax)

ηL�t

(4.27)

So that multi-constrained peak discharge and charge currents are:
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⎧
⎨

⎩

I disL ,max(k) = min
{
I dis,voltL ,max (k), I dis,SoCL ,max (k), I dis,currentL ,max (k)

}

I chgL ,min(k) = max
{
I chg,voltL ,min (k), I chg,SoCL ,min (k), I chg,currentL ,min (k)

} (4.28)

After the peak discharge/charge current is determined, the discharge/charge
voltage during the prediction time horizon can be derived as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ut (k + i) = UOCV(k) − e
−i�t
R1C1 U1(k)

−
[

ηi�t
Q

∂UOCV
∂SoC SoC(k)

+ (1 − e
−�t
R1C1 )R1

∑i
j=1 e

−( j−1)�t
R1C1 + R0

]
I disL ,max(k)

Ut (k + i) = UOCV(k) − e
−i�t
R1C1 U1(k)

−
[

ηi�t
Q

∂UOCV
∂SoC SoC(k)

+ (1 − e
−�t
R1C1 )R1

∑i
j=1 e

−( j−1)�t
R1C1 + R0

]
I chgL ,max(k)

(4.29)

Based on the above derivations, the power sequence under the peak current for
the whole prediction time horizon can be expressed as:

{
Pdis(k + i) = I disL ,max(k)Ut (k + i)
Pchg(k + i) = I chgL ,min(k)Ut (k + i)

(4.30)

where i = 1, 2, . . . , L .
And the final expression of peak power with multi-constrained algorithm can be

drawn as:
⎧
⎨

⎩

Pdis
peak(k) = min

i=1,2,...,L
[Pdis(k + i)]

Pchg
peak(k) = max

i=1,2,...,L
[Pchg(k + i)] (4.31)

Here, this case choose the charging and discharging time as 10 s to verify the
multi-constraint algorithm. As shown in Fig. 4.9, the change curve of peak charge
and discharge current value under different constraint conditions (voltage, SoC, and
current) and the change curve of peak charge and discharge current value under
multiple constraint conditions are given.

According to the value of the above-mentioned current, the terminal voltage is
further calculated, and then the peak charge–discharge common rate is calculated.
The result of SoP estimation is shown in Fig. 4.10.

4.2.3 Battery SoH Estimation

4.2.3.1 Definition of Battery SoH

Battery would inevitably experience gradual performance fading during its lifetime,
owing to its side reaction [45]. In general, battery SoH could be described by its
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Fig. 4.9 a Peak discharge current; b peak charge current

Fig. 4.10 SoP estimation results: a peak discharge power; b peak charge power

capacity or internal resistance status as:

{
SoHC = Ca

Cn
× 100%

SoHR = Ra−Rr
Rr

× 100%
(4.32)

where Ca denotes battery actual capacity and Cn is the nominal capacity, and Ra

reflects battery actual internal resistance and Rr is the rated internal resistance.
In real applications such as EVs, a 20% capacity degradation and 100% internal

resistance increase are generally considered as the end-of-life (EoL) of a battery.
In this context, SoH becomes a key factor to underline effective, safe operation
management of battery [46]. As it is difficult to directly measure battery capacity and
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internal resistance with commercially available sensors in real applications, online
battery SoH estimation based on the low-cost suite of sensors is crucial for obtaining
accurate battery SoH information.

4.2.3.2 Data Science-Based SoH Estimation Methods

Agreat deal of efforts based on data science techniques has been done for battery SoH
estimation,which could be roughly divided into four categories including the physics-
based model, empirical model, differential voltage analysis (DVA)/incremental
capacity analysis (ICA)-based method [47], and machine learning method. A
schematic of available data science-based battery SoH estimation methods is illus-
trated in Fig. 4.11. Physics-based model adopts partial differential equations (PDEs)
to describe battery dynamics of internal physicochemical reactions that are highly
related to battery ageingdynamics. This type ofmodel is able to provide clear physical
meaning and highly accurate performance. Nevertheless, it faces some challenges in
terms of simplifying model and identifying its numerous parameters before it can be
fully eligible for real-time implementations [48].

For the empirical model-based approach, after fitting battery degradation data
under specific conditions, it could present a light computational burden and provide
acceptable SoH estimation accuracy when a battery is operated under similar condi-
tions as the training case [49]. In general, systematical battery degradation tests
with laborious and time-consumed efforts require to be performed for establishing
an empirical model for SoH estimation. Besides, a derived empirical model would
exhibit a poor robustness to the unseen operating conditions and bad generalization
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ability to batteries with different chemistry or even the dis-similar batch of same
chemistry. Therefore, regular model recalibration is vital to increase the related time
and cost for developing model. On the other hand, with the rapid development of
advanced embedded systems with light computation effort, the physics-based SoH
estimation method could be utilized in real battery operation management in future.
Then the corresponding simplification and parameterization solutions could become
a focus in this direction.

Besides, ICA is also an efficient data science tool to estimate battery SoH [50].
According to the differentiation of charged capacity over battery voltage in the condi-
tions of constant-current charging, the voltage plateaus on battery voltage curve could
be transformed into easily identifiable peaks of the IC curve. In this context, the peak
position, amplitude, and envelope area of IC curves at different cycles could be
utilized to estimate battery SoH [51]. Through using the signal filtering technologies
to procure smooth IC curves, the SoH estimation result can be compromised as the
peak amplitude is significantly sensitive to the measurement noise. In addition, the
voltage range of the voltage curve should cover the voltage corresponding to the peak
of the IC curve, which may reduce its feasibility in actual implementation.

Due to the superiority of the mechanism-free nature, advanced machine learning
methods such as support vector machine (SVM) and Gaussian process regression
(GPR) also become popular for battery SoH estimation [52]. First, a professional
battery test that includes all SOH impact factors is carried out, and then the battery
SOHmodel will be synthesized through using machine learning to map these impact
factors to the battery SOH. However, the effectiveness of machine learning-based
methods largely depends on both the quality and quantity of test data, and the derived
models are often affected by the intensity of heavy calculations.

4.2.3.3 Case Study: Battery SoH Estimation with Optimized Partial
Voltage Profile

In this subsection, we will introduce a data science-based SoH estimation method for
Li-ion battery with optimized partial charging voltage profiles [53]. With a certain
amount of dataset from the battery cells, non-dominated sorting genetic algorithm II
(NSGA-II) is applied to automatically select the optimal multiple voltage ranges for
battery SoH estimation.We can then directly calculate the battery capacity according
to the optimized charging voltage profiles.

Normally, the discharging profile of the battery is determined by the load. The
charging profile is usually a constant-current constant-voltage (CCCV) process,
which is a relatively fixed procedure. Thus, the partial voltage profiles are selected
to derive the SoH information in the proposed method.

The battery SoC is defined as,

SoC = Qt

Qav
× 100% (4.33)
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where Qt is the energy left in the battery, and Qav is the maximum available battery
capacity at present. The energy left can be known by the integration of the current
flowing in and out of the battery. Thus, we can obtain the Coulomb counting equation
as follows,

SoC(k + 1) = SoC(k) + η · I (k) · Ts
Qav

(4.34)

where Ts is the sampling interval. Considering that the Coulombic efficiency is
usually above 99.6% for LiFePO4 battery and NMC cell, η is defined as 100% in the
rest of the derivation.

According to Eq. (4.34), the following equation can be obtained,

Qav =
∑A2

k=A1
η · I (k) · T s

SoC(A1) − SoC(A2)
(4.35)

where A1 and A2 are the start and termination of the partial voltage profile,
respectively.

Generally, the voltage and current are always monitored by a battery management
system to ensure the safety of the battery during battery operation management
process. It is possible to find a specific voltage ranges from the battery charging
process for SoH estimation. Figure 4.12 shows the voltage curve of an NMC-based
battery during the charging process. Thus, if the current between UA1 and UA2 is
integrated as

∑A2
k=A1

η · I (k) · Ts and the SoC variation (SoC(A1) − SoC(A2)) has
already known, the battery capacity can be directly calculated from Eq. (4.35).

Now, we can deduce that a proper voltage range (UA1 ∼ UA2 ) should be chosen
before estimating the battery SoH during the degradation process. From [53], we
know that arbitrarily choosing a voltage profile may not always receive the same
good accuracy for SoH estimation. Therefore, it is critical to select the optimal
voltage range of the battery capacity prediction when Eq. (4.35) is used. In addition,

Fig. 4.12 Voltage charge curve of NMCbattery, reprinted from [53], with permission fromElsevier
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the partial voltage range is also easier to be obtained in the daily usage of the EV
compared with the full voltage charging profile. The proposed method is able to
effectively compute the Li-ion battery SoH online during the EV charging process.

In this subsection, we plan to propose a methodology to find the optimal voltage
range for the battery SoH estimation with data science technique. A single voltage
range is firstly considered to predict the battery capacity. Grid search is proposed
to optimize a single voltage range with best prediction accuracy. MSE is used to
evaluate the accuracy of the estimation and act as the objective function for the grid
search optimization. Grid search is an exhaustive searching algorithm, which can
select the optimal single voltage range as illustrated in Fig. 4.13. Grid search starts
from point As and ends at point Ae, the minimal step is Smin, and the maximal step is
defined as Lmax. Based on the above definitions, the entire charging voltage curve can
be divided into pieces. In this way, grid search can evaluate all the voltage segments
and their combinations. The iteration of the grid search will not stop until all the
possible voltage ranges are crossed.

Three NMC batteries designed for a market available EV are used to validate
the proposed method. The nominal capacity is 63 Ah, and the nominal voltage is
3.7 V, and the voltage ranges from 3 to 4.15 V. The three NMC batteries are aged
at accelerated calendar ageing condition illustrated in Table 4.3. The cells are stored
in the thermostat at 35, 40 and 45 °C, while the SoC is set to 50% for each battery
during the calendar ageing. The accelerated calendar ageing test lasted for 360 days,
and a performance test was carried out every 30 days to measure the battery capacity
at present. During the performance test, the ambient temperature is set to 25 °C and
the sampling time is 1 s.

Fig. 4.13 Optimal signal voltage selection with grid search, reprinted from [53], with permission
from Elsevier

Table 4.3 Accelerated
calendar ageing condition

Temperature (°C) 35 40 45

SoC = 50% Cell 1 Cell 2 Cell 3
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Fig. 4.14 The voltage curves of Cell 1 during the calendar ageing, reprinted from [53], with
permission from Elsevier

The voltage profile of Cell 1 during the degradation test is shown in Fig. 4.14. The
voltage measurement from Cell 2 and 3 shows a similar result. The voltage profiles
gradually shift to the vertical axis because less energy can be stored in an aged cell.

Once grid search is used, one optimal voltage range can be found. We set the
search step Smin to 0.1 V. Then, we find the optimal voltage ranges of the three NMC
cells as shown in Fig. 4.15. According to these selected voltage ranges, the estimation
results of the three cells are obtained as illustrated in Fig. 4.16.

The effectiveness of battery capacity estimation with one optimal voltage profile
is proved by the results in Fig. 4.17. The estimation results are very close to the
reference during the degradation procedure. The MSE is 2.5227 × 10–5 for Cell 1,
2.3441 × 10–5 for Cell 2 and 1.5151 × 10–5 for Cell 3. The optimal voltage range of
Cell 1 in the first month of the calendar ageing is taken as an example in Fig. 4.17.
The length of the voltage range is 12,669 s.

Notably, grid search can only provide one specific optimal solution for the SOH
estimation.Although theEVusers definitely charge their battery pack [54], it does not
mean that the variation of the voltage profile will cover the specific optimal voltage
range each time.Moreover, the width of the voltage ranges should also be considered
in reality. A shorter voltage range means a higher efficiency. The two requirements
conflict with each other in most situations. For instance, collecting measurement
of the voltage profile as much as possible enhances the estimation accuracy, while
deteriorating the overall efficiency. On the contrary, using limited data is easy for the

Fig. 4.15 Optimal voltage ranges of the three NMC cells, reprinted from [53], with permission
from Elsevier
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Fig. 4.16 Estimation results of the three cells, reprinted from [53], with permission from Elsevier

Fig. 4.17 Optimal voltage range of Cell 1, reprinted from [53], with permission from Elsevier

measurement, but the estimation accuracy may not be guaranteed. Hence, we need
to solve a bi-objective optimization problem here for the best trade-off solutions. In
order to conveniently obtain the voltage range in real applications, NSGA-II is used to
choose two optimal voltage ranges considering both the length of the voltage profile
and the accuracy of the capacity estimation. In addition, a series of non-dominated
solutions fromNSGA-II provide more freedom for BMS to estimate the battery SOH
at various ageing stages.

The procedure ofNSGA-II finding the two optimal voltage intervals are illustrated
in Fig. 4.18. The voltage curve during the battery degradation is collected to form the
original dataset. Afterwards, the initial populations are created by NSGA-II, which
can reach multiple optimal solutions within one iteration. After evaluating the fitness
of each individual, a fast non-dominated sorting algorithm is applied to assign the
non-dominated level of each candidate solution. Additionally, the crowding distance
is given to each individual. The new populations are selected from the best non-
dominated set, and the solutions in the same non-dominated level are evaluated by
the crowded comparison operator. Selection, crossover, and mutation are used to
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Fig. 4.18 Procedure of two voltage ranges selection with NSGA-II, reprinted from [53], with
permission from Elsevier

generate the offspring from the current populations. Once the stop criteria are met,
the partial charging voltages are found by NSGA-II.

In NSGA-II, each individual is encoded into a chromosome-like structure as
shown in Fig. 4.19. The chromosome-like structure in Fig. 4.19a consists of four
numbers UA1, UA2, UB1, UB2. From Fig. 4.19b, we know that UA1 and UA2 are the
start and end points of the first voltage range, UB1 and UB2 are the corresponding
points for the second voltage range.

The cost function of NSGA-II is well designed to evaluate the fitness of each
individual. As the main purpose of the proposed method is the estimation accuracy,
MSE of the estimation is used as one of the cost functions in Eq. (4.36).

f1 = 1

n

n∑

i=1

(
Qi − Q̂i

)2
(4.36)

(a) The chromosome-like structure

(b) The voltage ranges

Fig. 4.19 Individual representation, reprinted from [53], with permission from Elsevier
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where Qi is the reference capacity and Q̂i is the estimated capacity, and n is number
of the reference values during the degradation test. Thus, a smaller f1 means a more
accurate estimation. For the two voltage ranges condition, the battery capacity can
be calculated as,

Q
∧

i =
∑A2

k=A1
η · I (k) · Ts +∑B2

k=B1
η · I (k) · Ts

[SoC(A2) − SoC(A1)] + [SoC(B2) − SoC(B1)]
(4.37)

The above equations mean that the SOC variations and the current integration
of the two voltage ranges are accumulated, respectively. From the practical point of
view, the length of the voltage ranges (UA1 ∼ UA2 and UB1 ∼ UB2 ) should be as
small as possible for the purpose of conveniently obtaining the measurement from
real applications. Thus, the cost function f2 is defined as,

f2 = 1

n

n∑

i=1

(
LUA1−UA2 + LUB1−UB2

)
(4.38)

where LUA1−UA2 is the length between UA1 and UA2, and LUB1−UB2 is the length
between UB1 and UB2. Because the length of the voltage charging profile changes
fromweek to week, the average length is chosen to calculate the f2 during the battery
degradation. Thus, a smaller f2 is preferred because less voltage measurement is
needed in this condition.

In practical, the two voltage ranges are time series measurement, and UA2 may
not less thanUA1 in a single range. Therefore, the constraints of the proposed method
can be expressed as,

UA2 > UA1 and UB2 > UB1 (4.39)

In this data science-basedmethod, a special designed operator is applied to discard
those illegal solutions in the selection operation. That is, a new solution will be
selected only if the condition [Eq. (4.39)] is fulfilled. Otherwise, this solution has
to be discarded, and the variation will be repeated until the new created solution is
suitable for the constraints.

The value of f1 and f2 are in different ranges, and they are normalized between
0 and 1 for a better illustration, as shown in Fig. 4.20. All the solutions in the Pareto
front of Fig. 4.20 are the optimal choice from a specific point of view. In Fig. 4.20, 50
non-dominated solutions form the Pareto front. Hence, various candidate solutions
can be used to estimate battery SoH at different charging stages.

In this subsection, we only choose to show three typical solutions of Cell 1 in
Fig. 4.21. The MSEs of each typical solution are listed in Table 4.4. The three
typical solutions include two long voltage ranges (Solution A) and two short voltage
ranges (Solution B and C). In Fig. 4.21, the two voltage ranges have some overlap
for Solution A, while the two voltage ranges are separated and much shorter for
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Fig. 4.20 Non-dominated solutions from NSGA-II, reprinted from [53], with permission from
Elsevier

(a) Solution A (b) Solution B

(c) Solution C

Fig. 4.21 Three typical solutions of Cell 1, reprinted from [53], with permission from Elsevier

Table 4.4 MSEs of the three
typical solutions

Solution A B C

MSE 1.75 × 10–5 6.97 × 10–4 8.96 × 10–2
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Fig. 4.22 Starting points of the non-dominated solutions of each cell, reprinted from [53], with
permission from Elsevier

Solutions B and C. Compared with single voltage range, two voltage ranges provide
more flexibility to estimate the SoH with partial charging profile.

The non-dominated solutions in different cells have some similarities as shown
in Fig. 4.22. We can find that the starting points of the three cells are quite close to
each other. For the starting points of one cell, there are always a starting point nearby
for the other two cells. This indicts the generalization of the solutions from Cell 1 to
Cells 2 and 3.

In order to further verify the generalization of the proposed method, the optimal
voltage ranges from Cell 1 are directly applied to estimate the capacity of Cells
2 and 3. The three typical solutions of Cell 1 in Fig. 4.21 are validated by Cells
2 and 3. We can see the three typical solutions from Cell 1 also receive accuracy
capacity estimation of Cells 2 and 3 in Fig. 4.23, which proves the generalization of
the proposed method.

In the previous validation of this section, the SoC in the calculation comes from
the Coulomb counting method with a known initial value. The reason is that the
NMC batteries are always fully charged or discharged in our life time test. However,
an initial SoC is hardly to be known in the real applications. The most popular
estimation method in this area is the model-based SoC estimation methods, which
can only provide less than ±2% error band. A ±5% error band is added to the SoC
for verifying the accuracy of the proposed method. The denominator of Eq. (4.35) is
the subtraction of SoC(A1) and SoC(A2), and the maximum and minimum of�SoC
is expressed as:

{
�SoCmin = SoC−5%(A2) − SoC+5%(A1)

�SoCmax = SoC+5%(A2) − SoC−5%(A1)
(4.40)

where SoC−5%(·) is the SOC including −5% error, and SoC+5%(·) is the SoC with
+5% error.
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(a) Solution A                                                      (b) Solution B

(c) Solution C

Fig. 4.23 Validation of three typical solutions from Cell 1 on Cells 2 and 3, reprinted from [53],
with permission from Elsevier

In order to verify the effect of SoC estimation error on the performance of the
proposed method, the voltage range [3.127 V, 4.027 V] is applied to estimate the
capacity of Cell 1. The estimation results in Fig. 4.24 give the error band of the
proposed method. Although ±5% SoC estimation error is added, the maximum
absolute error of the estimation results is 3.2539 Ah, which is 5.16% of the battery

Fig. 4.24 Effect of SOC estimation error on the proposed method, reprinted from [53], with
permission from Elsevier
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nominal capacity as shown in Fig. 4.24. Thus, we can ensure the capacity estima-
tion error of the proposed method is still in a small limited range when large SoC
estimation error exists.

4.2.4 Joint State Estimation

Currently, there are a great deal ofworks focus on battery single state estimation in the
literature, whereas the researches of joint estimation (co-estimations of at least two
states) of battery multi-states are limited. It should be known that during operations,
battery states would be coupled and interact with each other. Estimating just one state
without considering others would cause only relatively satisfactory results under a
certain constraint. In this context, for better operation management of batteries, the
joint state estimation of battery considering the effects of different internal states is
urgently required.

4.2.4.1 Definition of Battery Joint State Estimation

Figure 4.25 illustrates the relations of several strong-coupled battery critical states.
Specifically, due to the fast-variations of battery electric dynamics, battery SoC and
SoP would rapidly change with a short-term timescale. According to the battery
physics structure and heat transfer nature, battery macroscopic states such as state

Battery electric model
(Fast level)

Battery thermal model
(Intermediate level)

Battery ageing model
(Slow level)

T

T
T

I

...

SoC,SoP

SoT

SoH

V

SoC

SoP

SoT

SoH

Timescale illustrations
Short-term scale
Intermediate scale
Long-term scale

Symbol illustrations
fj Local transfer current density,A m

Q
R SEI resistance,

Heat generation,W
T Temperature, 
eR Equivalent resistance,

fj

R

Q

eR

Ω

Ω

Fig. 4.25 Several battery key internal states with different timescale (here I, V, and Tf represent
battery terminal current, voltage and surface temperature, respectively), reprinted from [32], with
permission from Elsevier
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of temperature (SoT) would change with an intermediate timescale [55]. For battery
SoH, as it is manifested by several slow-variation factors such as internal impedance
or resistance increase and capacity degradation, this state would change slowly with
a long-term timescale during battery operations.

To date, just a few existing data science researches focus on double-states co-
estimations of battery. Among these researches, the joint estimation of both battery
SoC and SoH plays a dominant position. This is primarily caused by the fact that
updating battery SoH information (capacity or resistance) periodically is crucial for
enhancing the estimation performance of battery SoC. Based upon the equivalent
circuit models or electrochemical models, various data science observers including
the Kalman filter (KF) [46], adaptive filter [56], and their variants, such as the
extended KF (EKF) [57], dual-fractional-order extended KF (DEKF) [46], have been
designed to effectively co-estimating battery SoC and SoH simultaneously. Besides,
apart from joint-estimating battery SoC and SoH, limited data science research has
been also done to estimate other battery double-states, such as the co-estimations
of battery SoC and SoP [58], SoC and SoT [59]. Furthermore, compared with only
one battery state estimation, larger computational burden is generally required for
joint state estimation applications. In this context, to widen battery joint state esti-
mations, state-of-the-art data science solutions such as the fractional order calculus
[46] and multi-timescale estimators [60] that could enhance co-estimation accuracy
and provide a satisfactory computational effort are becoming a promising research
direction.

4.2.4.2 Case Study: Battery SoC and SoH Co-estimation
with Enhanced Electrochemical Model

In this subsection, a data science case study through developing an enhanced elec-
trochemical model to achieve the high-fidelity co-estimation of SoC and SoH is
presented [61]. To be specific, the full-order battery Pseudo-two-dimensional (P2D)
model is first simplified based on the Padé approximation while ensuring precision
and observability.Next, the feasibility and performance of SoC estimator are revealed
by accessing unmeasurable physical variables, such as the surface and bulk solid-
phase concentration. To well reflect battery degradation, three key ageing factors
including the loss of lithium ions, loss of active volume fraction, and resistance
increment are simultaneously identified, leading to an appreciable precision improve-
ment of SoC estimation online particular for aged cells. Finally, extensive verification
experiments are carried out over the cell’s lifespan to demonstrate the performance
of this SoC/SoH co-estimation scheme.

Figure 4.26 illustrates the schematic of the typical battery P2D model, where the
Li-ions are assumed to diffuse with the directions of x and r.Here, the particle would
be uniformly distributed with a radius of Rs. In general, four governing equations
including the conservation of Li+ and charge in both solid as well as electrolyte
phases are adopted to formulate a battery electrochemical model. The diffusion of
Li+ within a single particle is generally captured by the Fick’s law as [62]:
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Fig. 4.26 Schematic of the typical battery P2D model, reprinted from [61], with permission from
IEEE

∂cs
∂t

= Ds

r2
∂

∂r

(

r2
∂cs
∂r

)

(4.41)

whereDs is a coefficient to reflect solid diffusion, and cs represents the concentration
of Li+ within solid phase. css means the concentration of particle surface at r = Rs.
css(t) = cs(Rs, t). The bulk concentration c±

s in the anode/cathode can be obtained
by:

∂cs
∂t

= I

FAcellδεs
(4.42)

where I reflects input current. F and Acell are Faraday constant and electrode surface
area, respectively. δ stands for electrode thickness, while εs means the active mate-
rials’ volume fraction. The lithium concentration ce of electrolyte can be expressed
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by:

εe
∂ce
∂t

= Deff
e

∂2ce
∂x2

+ as
(
1 − t0+

)

F
j (4.43)

where Deff
e reflects the diffusion coefficient of effective electrolyte. εe means the

electrolyte’s volume fraction, while t0+ stands for the transference number of Li+.
j is the lithium flux density. Conservation of charge in the solid phase generates a
governing equation of potential in the solid phase φs as:

σ eff ∂
2φs

∂x2
− as j = 0 (4.44)

where σ eff and as are specific interfacial surface area and effective electrode conduc-
tivity, respectively. Conservation of charge in the electrolyte phase generates the
equation to reflect the potential of electrolyte phase φe as:

keff
∂2φe

∂x2
+ keffd

∂2 ln ce
∂x2

+ as j = 0 (4.45)

where keff and keffd are the effective ionic and diffusion conductivities, respectively.
Here, the Butler–Volmer equation is adopted to control the electrochemical kinetics
as:

j = i0

(

exp

(
αa F

RT
η

)

− exp

(

−αcF

RT
η

))

(4.46)

where i0 is the exchange current density. αa and αc are coefficients to reflect anode
and cathode charge transfer, respectively. R and T are universal gas constant and
temperature, respectively. Overpotential η is the extra force needed to overcome
surface reaction by:

ηp(t) = φs(L , t) − φe(L , t) −Up(c
+
ss)

ηn(t) = φs(0, t) − φe(0, t) −Un(c
−
ss) (4.47)

where Up is cathode open-circuit potential, and Un is anode open-circuit potential.
Here the cell terminal voltage could be described by:

V (t) = φs(L , t) − φs(0, t) − R f I (4.48)

where R f stands for the summation of solid electrolyte interface (SEI) resistance
and ohmic resistance [63].
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Fig. 4.27 Diagram of simplified battery electrochemical model, reprinted from [61], with permis-
sion from IEEE

The final expression of terminal voltage could be obtained by substituting
Eq. (4.47) into Eq. (4.48):

V (t) = (Up(c
+
ss) + ηp(t) + φe(L , t))

− (Un(c
−
ss) + ηn(t) + φe(0, t)) − R f I (t) (4.49)

Based upon the above discussion, Fig. 4.27 illustrates the block diagram of battery
reduced-order electrochemical model as:

To simplify electrochemical model, Eq. (4.41) could be further modified after
taking Laplace transform as:

Css(Rs, s)

J (s)
= Rs

as FDs

tanh
(√

s
Ds
Rs

)

tanh
(√

s
Ds
Rs

)
−
√

s
Ds
Rs

(4.50)

where as , F, and Ds are the specific interfacial area, Faraday constant, and diffusion
coefficient of solid-phase Li+, respectively.

Then a third-order Padé approximation [64] is adopted to convert Eq. (4.50) into
a polynomial transfer function as:

Css(s)

J (s)
= ±

3
RS

+ 4RS
11DS

s + R3
S

165D2
S
s2

as F(s + 3R2
S

55DS
s2 + R4

S

3465D2
S
s3)

(4.51)

Equation (4.51) can be further transformed into a state-space equation with the
controller canonical form as:
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ẋi = Ai xi + Biu

Ai =
⎡

⎢
⎣

0 1 0
0 0 1

0 − 3465D2
s

R4
s

− 2079
11R2

s

⎤

⎥
⎦, Bi =

⎡

⎢
⎣

0
0

± 3465D2
s

as F R4
s

⎤

⎥
⎦

css =
[

3
Rs

4Rs
11Ds

R3
s

165D2
s

]
xi

cs =
[

3
Rs

9Rs
55Ds

R3
s

1155D2
s

]
xi (4.52)

where i = {p, n}, xi = [ x1 x2 x3 ]T , u is the input current. Here, x1, x2, and x3 are
utilized to describe the surface css and bulk cs lithium concentration in the electrodes
without physical meanings.

According to the Taylor expansion, the Butler–Volmer equation could be
linearized by:

η(s) = RT

Fi0(αa + αc)
J (s) (4.53)

where αa is the symmetric anodic reaction charge transfer coefficient, and αc the
symmetric cathodic one. i0 stands for the exchange current density that is correlated
with ion concentrations by: i0 = k(Ce)

αa (Cs,max − Css)
αa (Cs,max − Css)

αc .
Here, the intercalation current density of electrode is proportional to battery

current as:

J (s) = I

AcellFδas
(4.54)

After adopting the analytical solution with first-order Padé approximation [45],
electrolyte potential difference from Eq. (4.45) could be derived by:

Ce(L , s)

Jp(s)
= 1

b1,ps + b2,p
(4.55)

Ce(0, s)

Jn(s)
= 1

b1,ns + b2,n
(4.56)

Here, b1,p, b2,p, b1,n, and b2,n are all constant parameters. Equations (4.55) and
(4.56) could be expressed by state-space form as:

ẋe = Axe + Bu

A =
[− b2,p

b1,p
0

0 − b2,n
b1,n

]

, B =
[

1
b1,p
1

b2,n

]
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[
ce,L
ce,0

]

= [1 1
]
xe (4.57)

where u stands for battery current, xe is a vector with one-dimension to represent the
electrolyte concentration at x = 0/L.

Next, the derived data science observer for the co-estimation of battery SoC and
SoH is proposed in detail. Specifically, after the above simplification of P2D model,
battery terminal voltage from Eq. (4.49) can be described by:

V (t) = Up(c
+
ss) −Un(c

−
ss)

+ ηp(i0,p(c
+
ss, ce,p)) − ηn(i0,p(c

−
ss, ce,n))

+ φe(ce,L) − φe(ce,0) − R f I (4.58)

To decrease the condition number for battery SoC estimator, one effective data
science solution through estimating the lithium concentration of negative electrode
with the open-loop simulations of positive electrode aswell as liquid phase is adopted.
In this context, the positive electrode and liquid potentials subtracted from battery
terminal voltage could be utilized as the feedback of anode observer. According to
Eq. (4.52), the model formulation of SoC estimation part is:

ẋn = f (xn, u) = Axn + Bu

A =
⎡

⎢
⎣

0 1 0
0 0 1

0 − 3465D2
s,n

R4
s,n

− 2079
11R2

s,n

⎤

⎥
⎦, B =

⎡

⎢
⎣

0
0

− 3465D2
s,n

as,n FR4
s,n

⎤

⎥
⎦

g(xn, u) = φ−
s = Un + ηn + R f I (4.59)

where xn = [ x1 x2 x3 ]T , u represents the input current.
For battery SoH estimation part, the recyclable lithium loss caused by the side

reaction of anode would lead to the shift of θ100%,n (upper voltage limits) and θ0%,n

(lower voltage limits), respectively. In this context, lithium ions loss could be deter-
mined through estimating the concentration of normalized anode bulk with the fully
charging or discharging state. Here, the analogical open-loop framework would be
adopted to facilitate anode observer. With regard to active material loss and internal
resistance increase, the estimation of these two ageing factors becomes the moni-
toring of εs,neg and R f within the model. Therefore, εs,neg and R f are treated as
another states within anode observer in the designed joint estimation framework. In
the light of this, equations to describe state dynamics of anode are expressed as:

ẋθ = f (xθ , u) = Axθ + Bu
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A =
⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦, B =
⎡

⎢
⎣

−1
FAcellδ−εs,n

0
0

⎤

⎥
⎦

g(xθ , u) = φ−
s = Un + ηn + R f I (4.60)

where xθ = [ θ1 θ2 θ3 ]T , u represents battery current. Here, θ1 would determine bulk
concentration of graphite electrode. The time derivatives of anode’s bulk concentra-
tion have been shown in Eq. (4.60). θ2 and θ3 represent the active material volume
of anode εs,n and interior resistance Rf , respectively. The time derivatives of εs,n
and Rf are set to zero. Afterwards, the observability of derived SoC and SoH co-
estimator could be described by the Lie derivatives. Here, the simplified battery
model equations is reformulated by:

ẋn/θ = f (xn/θ , u) + w

y = g(xn/θ , u) + v (4.61)

where x and u represent state and input, respectively. w is system noise while v is
measurement noise. The N − 1 order Lie derivatives of g is expressed by:

L0
f (g) = g(xn/θ , u)

...

LN−1
f (g) = gN−1(xn/θ , u, u̇, . . . , u(N−1)) (4.62)

According to the Jacobian of Lie derivatives set [23], the observability matrix
could by expressed as:


 =

⎡

⎢
⎢
⎢
⎣

∂L0
f (g)

∂xn/θ,1
. . .

∂L0
f (g)

∂xn/θ,N

...
. . .

...
∂LN−1

f (g)

∂xn/θ,1
. . .

∂LN−1
f (g)

∂xn/θ,N

⎤

⎥
⎥
⎥
⎦

(4.63)

where xn/θ,N represents the N th element of xn/θ .
To simultaneously estimate both battery states and parameters of the simplified

electrochemical model, a dual extended Kalman filter (DEKF) is adopted. To be
specific, SoC estimation under a fast timescale is realized by one filter based on the
known ageing parameters, while SoH estimation under slow timescale is realized by
using another filter to identify related ageing parameters online. Figure 4.28 details
the whole scheme for battery SoC and SoH co-estimation, where the corresponding
parameters are described in Table 4.5. Here, Q and R are the covariance matrixes of
process and sensor noises. All four ageing parameters θ100%,n, θ0%,n, εs,n and Rf in
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Fig. 4.28 Schematic of joint estimation of battery SoC and SoH, reprinted from [61], with
permission from IEEE

Table 4.5 EKF parameters and procedure, reprinted from [61], with permission from IEEE

EKF for SoC estimation EKF for SoH estimation

A
∧

k
∂ f (xn,k ,uk)

∂xn,k

∣
∣xn,k = x̂+

n,k
∂ f (xθ,k ,uk)

∂xθ,k

∣
∣xθ,k = x̂+

θ,k

C
∧

k
∂g(xn,k ,uk)

∂xn,k

∣
∣xn,k = x̂−

n,k
∂g(xθ,k ,uk)

∂xθ,k

∣
∣xθ,k = x̂−

θ,k

Q 10−9 × diag(4, 2, 27) 10−16 × diag(4, 2800, 9000)

R 4 × 10−3 6 × 10−2

Initialization for k = 0

x̂+
n/θ,0 = E

[
xn/θ,0

]

P+
0 = E[

(
xn/θ,0 − x̂+

n/θ,0

)(
xn/θ,0 − x̂+

n/θ,0

)T ]
Iteration for k = 1, 2,…

State-prediction time update: x̂−
n/θ,k = f

(
x̂+
n/θ,k , uk−1

)

Error-covariance time update: P−
k = A

∧

k P
+
k−1A

∧+
k−1 + Q

Output estimate: ŷ−
k

= g(x̂−
n/θ,k , uk−1)

Estimator gain matrix: Kk = P−
k ĈT

k (C
∧

k P
−
k C
∧T
k + R)−1

State-estimate measurement update: x̂+
n/θ,k = x̂−

n/θ,k + Kk(yk − ŷ−
k

)

Error-covariance measurement update: P+
k = (Id − KkC

∧

k)P
−
k
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battery SoC estimation block would be periodically updated from related predictions
of SoH estimation block, further benefitting the accuracy of SoC estimator over time.

Next, the effectiveness of the proposed co-estimation scheme is verified against
the experimental results of battery cycling tests. A series of characterization tests,
including a dynamic stress test (DST) cycle and an Urban Dynamometer Driving
Schedule (UDDS) cycle, are performed on the NCM/graphite18650 batteries every
two weeks. The cycling test schedule is depicted in Fig. 4.29.

Before implementing the SoC/SoH co-estimation algorithm, it is necessary to
validate the accuracy of electrochemical model. Figure 4.30 illustrates the voltage
responses of the developed model with both static load (1C CCCV charging, CC
discharging) and dynamic load (UDDS, DST cycles with 3Cmaximum current). The
predicted voltage shows good agreement with the measured voltage. The simplified

Fig. 4.29 Cyclic test process to generate battery experimental data, reprinted from [61], with
permission from IEEE

Fig. 4.30 Experimental validation of enhanced electrochemical model: a 1C CCCV charging and
CC discharging, b UDDS cycles with 2C maximum current, and DST cycles with 3C maximum
current, reprinted from [61], with permission from IEEE
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model achieves a voltage RMSE of {10.52, 11.85, 23.25, 21.34 mV} for these cases
of CCCV charge, CC discharge, UDDS cycles, and DST cycles, respectively. The
results indicate that the model parameters are initialized properly.

To verify the effectiveness of proposed data science method for SoH estimation,
a single CC discharging and CCCV charging cycle is adopted. Here, the state and
parameter estimates are randomly initialized as: θ̂n(0) = 0.7θ∗

n (0), ε̂s,n(0) = 0.5ε∗
s ,

and R
∧

f (0) = 2R∗
f . After inputting the measured voltage and current, the evolutions

of both state and parameter estimates are illustrated in Fig. 4.31. It can be seen that
although there exists large initial errors, θ̂n , ε̂s,n , and R

∧

f could converge to their
nominal values within 3000 s of discharging process.

Figure 4.32a–d illustrates the capacity estimation results of four cells with
different ageing levels. For fresh cell in Fig. 4.32a, the capacity estimates with CD-
CCCV, UDDS, and DST tests all converge to the measured capacity gradually even
these estimates are initializedwith incorrect values, indicating the effectiveness of the
observer. Similar estimation performance can be achieved at ageing levels 2, 3, and
4, as shown in Fig. 4.32b–d. Figure 4.33a and b shows the capacity estimation perfor-

Fig. 4.31 Evolution of estimated parameterswithCCdischarging-CCCVcharging cycle:a θ100%,n ,
θ0%,n , b εs,n , and c R f , reprinted from [61], with permission from IEEE
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Fig. 4.32 Battery SoH estimation results with CD-CCCV, UDDS, DST tests at different ageing
levels, a 100% SoH, b 86% SoH, c 78% SoH, and d 71% SoH, reprinted from [61], with permission
from IEEE

mance of the derived estimator across 400 cycles under CC-CCCV scenario. Here,
the capacity is predicted at each CC-CCCV cycle. Figure 4.33a plots the values of
estimated capacities with blue plus symbols. The red dot symbols represent capacity
measurements and the red dotted line is the interpolated curve using the measured
data. It can be noted that the capacity estimates over 400 cycles could follow the
red curve closely. Figure 4.33b summarizes the related capacity estimation error.
Here, the mean error is 0.0241 Ah, which is within 1% of the cell nominal capacity.
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Fig. 4.33 Battery capacity estimation results: a results against reference values, b estimation error,
reprinted from [61], with permission from IEEE

The statistical results reveal that the SoH estimations with the presented algorithm
achieve agreeable precision over the cell lifespan.

Apart from battery SoH estimation, another key task is to estimate the varia-
tions of model parameters that relate to the dominant ageing mechanisms within a
battery (loss of recyclable ions, loss of active materials, and resistance increase),
thereby ensuring an accurate SoC estimate overtime. To examine the robustness of
the proposed co-estimation scheme against battery ageing, the cells at four various
ageing levels with the capacity of 3.088, 2.658, 2.406, and 2.199 Ah are examined.
Both UDDS and DST cycles in the characterization tests are carried out to simulate
the operating load profiles of dynamic EV applications. The cyclic data with CC
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Fig. 4.34 Battery SoC estimation results with CD-CCCV (upper), UDDS (middle) and DST
(bottom) cycles, a 100% SoH, b 86% SoH, c 78% SoH, and d 71% SoH, reprinted from [61],
with permission from IEEE

discharging and CCCV charging is utilized. The proposed dual EKF (DEKF) SoC
estimation performance is compared to the data-driven joint SoH/SoC estimation
for CC-CCCV, UDDS, DST tests at four different ageing levels. The framework
of the data-driven joint estimation is inspired by Refs. [65–67]. The obtained SoC
estimation results under CC-CCCV, UDDS, and DST profiles with electrochemical
model-based DEKF and data-driven method are shown in Fig. 4.34a–d. All the SoC
estimations with DEKF are initialized with an error of 10%. For the fresh cell in
Fig. 4.34a, although large initial errors of 10% are imposed, the online estimation
of SoC can still quickly converge and show good agreement with the referenced
SoC. According to Fig. 4.34b, when the battery parameters decay to 2.658 Ah (71%
SoH), the DEKF SoC estimation performance outperforms the data-driven method.
For DEKF SoC estimation, the estimation error with CC-CCCV test drops below 1%
after 98 s and then converges towards less than 0.44% in a steady state. It can be noted
that the SoC estimation results with UDDS and DST tests demonstrate fast conver-
gence and high precision as well. However, the SoC estimation errors of data-driven
SoC estimation are unable to converge to the true values with battery degradation.
The maximum absolute errors reach 1.95%, 1.73%, and 2.28% with CC-CCCV,
UDDS and DST tests, respectively. For cells with 2.406 and 2.199 Ah, similar trends
can be observed as well. The data-driven SoC estimation steadily drifts away from its
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Fig. 4.35 RMSE errors of battery SoC estimation, reprinted from [61], with permission from IEEE

initial values. This leads to large errors beyond the accurate starting value of 100%.
In contrast, the DEKFSoC estimation quickly converges to the reference and steadily
finds its way back to a close neighbourhood of the reference value.

Figure 4.35 illustrates the RMSEs of SoC estimation at these ageing levels. Even
for cells at the most degraded level 4, the corresponding RMSEs of SoC estimation
with the proposed method are all within 0.48%. However, the data-driven SoC esti-
mation results increase over 1.20%, indicating that the robustness of the data-driven
SoC estimator should be strengthened by considering measurement noise and error
compensation for aged cells.

Figure 4.36 shows the RMSEs of DEKF SoC estimation across 400 cycles under
CC-CCCV scenario. The estimated θ0%,n, θ100%,n, εs,n and Rf from the SoH observer
are used to update the SoC estimator after each CC-CCCV cycle. The SoC estimate
RMSE over a given CD-CCCV cycle almost remains constant near the averaged
RMSEs throughout the life of the cell. The maximum SoC RMSE is less than 0.7%.
This implies that the model is updated correctly with the estimates of θ0%,n, θ100%,n,
εs,n and Rf . It is clear that the co-estimation of SoC/SoH could not only provide
electrochemical-mechanism enhanced SoH prediction at relatively slow timescale
but also improve its real-time resilience to disturbance caused by battery degradation.
Therefore, the SoC estimation performance is well sustained over the cell’s lifespan.
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Fig. 4.36 RMSEs for battery SOC estimation versus 400 cycles, reprinted from [61], with
permission from IEEE

4.3 Summary

This chapter mainly focuses on the data science-based battery operation modelling
and state estimation, two basic parts for battery operation management. Specifically,
three typical types of battery operation models including battery electrical model,
battery thermal model, and battery coupled model are first described. Then, the
fundamentals of battery SoC, SoP, SoH, and joint states estimations are introduced.
The advantages and limitations of each mainstream type of state estimation method
are compared and discussed. For SoC estimation, a data science-based case study
using RLS and EKF is introduced. Then based upon the estimated SoC informa-
tion, another data science-based case study of using the multi-constrained dynamic
method to estimate battery SoP is also given. For SoH estimation, after using NSGA-
II to select the optimal multiple voltage ranges, a data science-based case study is
introduced to estimate SoH based on the optimized partial charging voltage profiles.
After that, a data science-based case study through developing an enhanced electro-
chemical model to achieve high-fidelity co-estimation of SoC and SoH is presented.
All these case studies could give reasonable and effective estimation results, while
co-estimation is able to present better performance. These results indicate that battery
states are coupled and interact with each other during operations. Satisfactory battery
operation modelling and state estimations can be achieved with suitable data science
solutions.
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