
Chapter 1
Introduction to Battery Full-Lifespan
Management

As one of the most promising alternatives to effectively bypass fossil fuels and
promote net-zero carbon emission target around the world, rechargeable lithium-ion
(Li-ion) batteries have become a mainstream energy storage technology in numerous
important applications such as electric vehicles, renewable energy storage, and smart
grid. However, Li-ion batteries present inevitable ageing and performance degrada-
tion with time. To ensure efficiency, safety and avoid potential failures for Li-ion
batteries, reliable battery management during its full-lifespan is of significant impor-
tance. This chapter first introduces the background and motivation of Li-ion battery,
followedby the description ofLi-ion battery fundamentals and the demands of battery
management. After that, the basic information and benefits of using data science
technologies to achieve effective battery full-lifespan management are presented.

1.1 Background and Motivation

1.1.1 Energy Storage Market

According to the statistics from the CNESA Global Energy Storage Projects
Database, the global operating energy storage project capacity has reached 191.1GW
at the end of 2020, a year-on-year increase of 3.4% [1]. As illustrated in Fig. 1.1,
pumped storage contributes to the largest portion of global capacity with 172.5GW, a
year-on-year increase of 0.9%. Electrochemical energy storage becomes the second-
largest portion with a total capacity of 14.1GW. Among different electrochemical
energy storage solutions, Li-ion batteries reach the capacity of 13.1GW, exceeding
10GW for the first time.
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Fig. 1.1 2020 global energy storage market classification share, reprinted from [1], open access

China, the USA, Europe, and Australia are the leaders of the energy storage
market. The new operating capacity of these countries accounted for over 86%,
which has exceeded the GW-level new operating capacity.

China: Driven by the Chinese policies to encourage and require storage alloca-
tion in the energy, the largest installed capacity of new energy power generation in
China exceeds 580MW, a rapid increase of 438%. Furthermore, the establishment of
“Carbon Peak” and “Carbon Neutral” targets in China also significantly boosts the
leapfrog development of renewable energy and related battery-based energy storage.

InApril 2021, theNational Development&ReformCommission and theNational
Energy Administration issued the “Guiding Opinions on Accelerating the Develop-
ment of New Energy Storage (Draft for Comment)” [2]. For the first time, the docu-
ment clarifies the development goals of the energy storage industry. By 2025, the
installed capacity of new energy storage capacity will reach more than 30 million
kilowatts (30 GWh). As of 2020, the cumulative installed capacity of new electric
energy storage in China has reached 3.28Gwh [3], a year-on-year increase of 91.2%,
which also means that by 2025, the scale of the Chinese new energy storage market
will be about 10 times larger than the level at the end of 2020.

USA: A breakthrough has been made in the deployment before the schedule in 2020,
and the newly added operating capacity in the USA has doubled in comparison with
that in 2019. The newly installed capacity is mainly concentrated in California, while
LS Power and Vistra Energy added 250 MW/250MWh and 300 MW/1200MWh
projects, respectively. The latter is the largest battery-based energy storage project
in the USA and even the world. Besides, the deployment of large-scale 100 MW
battery-based energy storage projects in Texas, New York, Florida, and other states
has been accelerated.

The National Renewable Energy Lab uses the Regional Energy Deployment
System (ReEDS) capacity expansion model to understand the complex dynamics
involved with the future market potential for utility-scale energy storage in the
contiguous USA [4]. The battery storage mandates enacted in Oregon, California,
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Fig. 1.2 Cumulativemodel-deployed battery storagewithHigh,Reference, andLowbattery capital
costs. All scenarios show here use the dynamic assessment of storage capacity credit, reprinted from
[4], with permission from Elsevier

New Jersey, New York, and Massachusetts are included. In total, these mandates
require the model to build 1775 MW of batteries by 2020, 4685 MW by 2025,
and 6555 MW by 2030. As illustrated in Fig. 1.2, the results of the “Reference” and
“Low” battery cost scenarios generated by the ReEDS show a significant new battery
storage deployment, with the deployment levels of 125 GW and 208 GW in 2050,
respectively.

Europe: The implementation of the “Clean Energy for All” program has sent a
significantly positive signal for the European energy storage market. This is reflected
in the strong performance of the front-end energy storage market for electricity
meters in the UK and the strong performance of the home energy storage market in
Germany. The UK has cancelled project capacity restrictions, allowed more than 50
and 350MWprojects in England andWales, and officially launched the construction
of large-scale energy storage projects in the UK. With more than 300,000 household
battery systems installed in Germany, COVID-19 has further stimulated consumer
demand for energy flexibility, safety, and independence.

The European Union (EU) energy and climate policy aims to significantly cut
CO2 emissions in the power sector by 2030 and to establish a nearly carbon-free
electricity sector by 2050. The role of transmission and energy storage in European
decarburization towards 2050 provides support to the hypothesis that the EU energy
and climate targets for 2050 will increase the capacity of intermittent power, storage
technologies and international transmission lines, as illustrated in Fig. 1.3. In 2050,
the investment in electric battery capacity will range from 80 to 351 GWh [5].

An assessment of European electricity arbitrage using storage systems shows
that, in the near future, the most attractive European countries for the electricity
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Fig. 1.3 Battery energy capacity per average hourly electricity demand in 2050 for the European
countries, reprinted from [5], open access

arbitrage business are the UK and Ireland, with current Net Present Value close to
−400,000 V, while Spain and Portugal might show the worst performances, their
current Net Present Value are close to −800,000 V.

United Kingdom: The UK was the country with the largest new operating energy
storage capacity in the European market, accounting for 44.6% of the total European
continent in 2019. In 2019, the UK government signed a legally binding commit-
ment to bring all greenhouse gas emissions to net-zero by 2050. Batteries will play
a significant part in this transition, both in transport and renewable energy storage.
Improving understanding of how batteries will age and how to design more effi-
cient battery management system will aid the net-zero transition and reduce waste.
Batteries and electric vehicles also represent part of the government’s industrial
strategy for the future of mobility and the mission to “Put UK at the forefront of
the design and manufacturing of zero-emission vehicles” [6]. The UK automotive
industry adds £18.6 billion to the UK economy, employees 823,000 people, and
accounts for 14.4% of all UK goods exports [7]. To facilitate the transition to electri-
fication, £1 billion is being invested in the Advanced Propulsion Centre (APC) and
£246 million in the Faraday battery challenge.

Australian: The Australian Energy Market Operator (AEMO) reports that there are
85 big batteries with a total capacity of 18,660MW in the planning pipeline [8]. How
many of these projects can be realized will be a function of battery cost development,
as well as the development of different revenue streams that batteries are enabled to
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provide. In Australia, batteries can provide revenue-generating services in various
markets, most of which are ancillary and wholesale markets [9]. Virtual transmission
lines, or avoided transmission investment, are emerging as a potential income stream
for batteries.

1.1.2 Li-Ion Battery Role

Demand for Li-ion batteries to power electric vehicles and energy storage has seen
exponential growth, increasing from just 0.5 gigawatt-hours in 2010 to around 526
gigawatt hours a decade later. Demand is projected to increase 17-fold by 2030.

According to the commissionedmanufacturing capacity of Li-ion battery by plant
location in Fig. 1.4, Asia dominates the Li-ion battery supply chain, especially China
[10], where Chinese Li-ion battery manufacturer CATL is one of the world leaders
in battery manufacturing in 2020, as illustrated in Fig. 1.5. China’s success results
from its sizeable domestic battery demand, control of more than 70% of the world’s
graphite raw material refining, and massive cell and cell component manufacturing
capacity. Korea and Japan rank number two and three in the Li-ion battery supply
chain. While both countries are among the leaders in battery and cell component
manufacturing (LGEnergy Solution, Samsung SDI, SK Innovation, Panasonic), they
do not have the same influence in raw materials refining and mining as China.

Figure 1.6 illustrates the Li-ion battery cell manufacturing capacity by country or
region. Obviously, China is the largest batterymanufacturing country with 567GWh,
which is nearly ten times larger than the second one-the United States. Europe owns
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the third-largest battery manufacturing capacity. Apart from China, two Asian coun-
tries includingSouthKorea and Japanpresent the fourth andfifthLi-ionbatterymanu-
facturing capacity with 37 GWh and 30 GWh, respectively. The detailed percentages
of total manufacturing capacity for various battery components by country are listed
in Table 1.1.

As analysed by Yole’s team in the new Status of the Rechargeable Li-ion Battery
Industry 2021 report, Li-ion battery has become the technology of choice for many
applications. As a result, it attracts numerous players: R&D labs, cell component
manufacturers, cell and battery pack manufacturers, and system integrators. Li-ion
battery market is composed of multiple applications of battery technology, with
slightly different targets and roles, further resulting in each application being best
served by the specific Li-ion battery technology. Three real applications including
electric vehicles, electronic devices, and stationary battery-based energy storage
comprise the bulk of the current Li-ion battery market, as shown in Fig. 1.7.

Different electric vehicles (xEVs): The rapidly growing xEVs market consists of
different types of EVs such as hybrid electric vehicle (HEV), plug-in hybrid electric
vehicle (PHEV), full electric vehicle (EV), and commercial electric vehicle (CEV),
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Table 1.1 Percentage of totalmanufacturing capacity of different countries for various components
of Li-ion battery (data from [10], open access)

Country Cathodes
manufacturing
(3 M tons) (%)

Anode
manufacturing
(1.2 M tons) (%)

Electrolyte
solution
manufacturing
(339,000 tons)
(%)

Separator
manufacturing
(1987 M m2) (%)

United States – 10 2 6

China 42 65 65 43

Japan 33 19 12 21

Korea 15 6 4 28

Rest of World 10 – 17 2

PHEV EV

Fuel Tank Engine

MotorBattery

HEV CEV
(a)

Cell phone(b) Laptop Laptop BES(c)

Fig. 1.7 Main applications of Li-ion battery: a different electric vehicles, b electronic device, c
stationary battery-based energy storage

as illustrated in Fig. 1.7a, where Li-ion battery plays specific roles in different appli-
cations. For HEV, as it belongs to the traditional internal combustion engine-based
vehicle, its propulsion system is combined with a small electric motor driven by
batteries and these batteries are usually charged through regenerative braking. In
this context, the capacity of the Li-ion battery is relatively smaller, further making
its energy density and capital cost become less relevant. However, due to frequent
braking of HEV, battery here requires to be charged and discharged powerfully.
Therefore, Li-ion battery needs to have high power density, quick charging speed and
long lifetime over thousands of cycles in HEV. In comparison with HEV, batteries
within PHEV could be also charged through plugging into an external electricity
source. The battery here generally presents much larger capacity to enable PHEV to
drive fully electric for a short distance. In this context, Li-ion battery requires better
energy density and lower capital cost, while its power density as well as lifetime
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become of less concern. For a full EV without any internal combustion engine, in
order to deliver enough ranges for drivers, Li-ion battery generally needs low capital
cost and high energy density. Besides, as EV could not fall back on the internal
combustion engine anymore, Li-ion battery also needs to present high reliability
and long service life over 1000 cycles. For CEV such as e-bus that battery systems
are relatively larger and the effects of battery fault such as thermal runaway would
become more severe, Li-ion battery here has increased safety requirements. Besides,
as e-buses generally need to be charged frequently, the service life of Li-ion battery
here also becomes more important than other xEV cases.

Electronic device: Li-ion battery is also widely used to support power/energy for
electronic devices such as cell phones, laptops, and tablets, as shown in Fig. 1.7b.
Li-ion battery presents the similar roles in all these electronic device applications
to provide as much energy as possible in a compact form, so the volumetric energy
density becomes the most crucial element. Besides, the cost of Li-ion battery in
electronic devices is relatively smaller and users are generally willing to pay for
high-performance Li-ion battery, cost here thus becomes the secondary important
element. Furthermore, as electronic device application usually presents low drain,
the power density of Li-ion battery here becomes less of concern.

Stationary battery-based energy storage (BES): BES is becoming a vital part to
smooth the supply and demand of power generated from renewable energy such
as wind sources and solar sources, as illustrated in Fig. 1.7c. In real applications,
BES ensures the electricity transferred from renewable energy could be stored for
further reutilization. Besides, it is able to also ensure that the peak in consumption
is absorbed while backup could be provided without having to temporarily rely
on fossil fuel power plants, further bringing positive environmental and economic
impacts. There are different types of operating models for Li-ion batteries in BES
applications. Based upon the requirements of Li-ion battery, these operating models
could be divided across two axes as the frequency of discharge and the length of
discharge, where the applications and key needs of Li-ion battery in four related
quadrants of BES are illustrated in Fig. 1.8.

1.2 Li-Ion Battery and Its Management

1.2.1 Li-Ion Battery

Li-ion battery belongs to an electrochemical energy storage system, which generates
a potential difference and allows current to flow through the circuit until the energy is
exhausted. The first Li-ion batterywas commercially introduced by Sony company in
1991. As illustrated in Fig. 1.9, Li-ion battery consists of three components including
anode (negative electrode), cathode (positive electrode), and electrolyte. The active
material is bonded to the metal fluid at both ends of the cell and electrically isolated
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with a microporous polymer separator or gel polymer. Liquid or gel polymer elec-
trolytes allow lithium ions (Li+) to diffuse between the positive and negative elec-
trodes. Li-ions are intercalated or deintercalated from the active material through an
intercalation process.

The anode here mainly contains graphite. Besides, Li-Titanate anode combined
with any other cathode is also developed to provide better safety and battery perfor-
mance at the sacrifice of energy density. For cathode, it mainly consists of a metal
oxide. Among different types of the cathode, lithium cobalt oxide (LCO) is able to
offer higher energy density but presents a higher safety risk level, especially when it
is damaged. In this context, this chemical composition has been widely adopted in
consumer electronics. In contrast, lithium iron phosphate (LFP), lithium manganese
oxide (LMO), and lithium nickel manganese cobalt oxide (NMC) batteries would
offer lower energy densities, but become inherently safer. The electrolyte mainly
consists of a lithium salt in an organic solvent.

Table 1.2 illustrates and summarizes various chemical compositions that are
adopted for battery cathode electrode. It can be noted that for Li-ion battery with
different materials, its performance such as the voltage, energy density, service life,
and safety level could become significantly different. Most metal oxide electrodes
are thermally unstable and could decompose at high-temperature conditions, further

Table 1.2 Rechargeable Li-ion batteries with various cathode compositions

Name LCO LMO NMC NCA LFP

Full name Lithium
cobalt oxide

Lithium
manganese
oxide

Lithium nickel
manganese
cobalt oxide

Lithium nickel
cobalt
aluminium
oxide

Lithium iron
phosphate

Cathode LiCoO2 LiMn2O4 LiNiMnCoO2 LiNiCoAlO2 LiFePO4

Cell voltage
[V]

3.7 3.6 3.8 3.6 3.3

Cut-off
voltage [V]

4.2 4.2 4.1–4.3 4.3–4.5 3.6

Energy
density
[Wh/kg]

150–250 100–170 150–220 200–250 80–140

Thermal
runaway
temperature
[°C]

150 250 200 175 250

Common
applications

Cellphone,
camera,
laptop

Hand tool,
medical
equipment

Hand tool,
medical
equipment

Vehicle Hand tool,
medical
equipment

Comments High energy
density

Low internal
impedance

High energy
density
Withstands
rapid charge

High energy
density
High cell
voltage

Long charge
lifetime
Withstands
rapid charge
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Fig. 1.10 Li-ion cell designs with various shapes

releasing oxygen to result in thermal runaway conditions. Among all these elec-
trode chemical compositions, lithium manganese oxide (LMO) and lithium nickel
manganese cobalt oxide (NMC) become the best candidates to compromise between
performance and safety levels currently available on the Li-ion battery market.

Besides, Li-ion battery could be designed with different shapes including pris-
matic, pouch, and cylindrical, as shown in Fig. 1.10. Among these three designs,
the prismatic battery cell design becomes the safest one because it is equipped with
some mechanisms, such as safety functional layers, multi-layer partitions, safety
vents, safety fuses, and overcharge safety devices.

1.2.2 Demands for Battery Management

(1) Battery management system market

Due to the dramatically increased requirements of battery being used in numerous
applications such as transportation electrifications and smart grid energy storage, the
global market of battery management system also grows rapidly with a compound
annual growth rate of over 10%. Here the transportation sector is leading the main
market growth of battery management system as a great number of EVs being manu-
factured and sold annually. For example, the global EV fleet stock was around 10.2
million in 2020, an increase of over 43% in comparison with that in 2019. Battery
management plays a pivotal role in determining battery efficiency, performance and
safety, especially for EV applications. Therefore, battery management system must
be well equipped in an EV.

Figure 1.11 illustrates the growth rate of battery management system market
around the world from 2021 to 2026 estimated by the Mordor Intelligence [11]. It
can be seen that Asia–Pacific owns the biggest market share for battery management
system, mainly due to the dramatically rising sale of EVs in countries like China and
Japan. This dramatic increase of EVs is mainly caused by the extensive efforts of the
governments to decrease greenhouse gas emissions. For example, China has become
the biggest EV market around the world. The market share of Chinese EVs has risen
from about 23% in 2015 to 44% in 2020, and by the end of 2020, about 4.5 million
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Fig. 1.11 Estimated growth rate of battery management system market around world from 2021
to 2026, reprinted from [11], open access

EVs have been deployed. Besides, the growth in demand for consumer electronic
products would further increase the demand for batterymanagement, because battery
management system is increasingly integrated into consumer electronic products for
security purposes. In this context, effective and reliable battery management systems
or solutions are urgently required to meet the requirements of these battery-based
electronic products.

(2) Battery management system basic functions

In Li-ion batteries, the key to longevity, efficiency, reliability and safety lies in the
efficient management of battery under various operating levels. For transportation
electrification applications such as EV, the main basic functions of battery manage-
ment include: battery data acquisition, battery modelling, battery states estimation,
battery ageing prognostics, battery fault diagnosis, battery charging, etc. [12, 13].
In general, all battery management solutions first rely on the quality of collected
battery data. The sampling speed, measurement accuracy, and data pre-filtering are
initial key elements to determine battery management performance. In this context,
battery management system typically requires various types of sensors to measure
the data of battery current, voltage and temperature. Furthermore, several battery
internal state information such as the state of charge (SoC), state of power (SoP),
and state of health (SoH) are difficult to be measured directly; therefore, various
filtering and estimation algorithms such as Kalman filter and its variants, particle
filter (PF), and neural network (NN) are employed to obtain information of these
states [14, 15]. Besides, battery ageing information such as further capacity degra-
dation trajectory and remaining useful life need to be predicted for reducing EV
users’ mileage anxiety [16]. Another high priority of battery management is fault
diagnosis to ensure battery safety, which means that any critical failures must be
detected or battery system must be shut down if a fault occurs [17]. To achieve fast,
safe, and efficient charging management, battery charging strategies with the ability
to handle various conflicting objectives and satisfy battery operating constraints also
need to be carefully designed [18]. The current battery management system mainly
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monitors and controls batteries with fixed structures, which cannot provide full play
to the optimal performance of battery systems. Han et al. designed a reconfigurable
battery management system to allow the dynamic battery reconfiguration [19]. Dai
et al. proposed a three layers-based battery management framework, including the
foundation layer, algorithm layer and application layer [20]. These advanced battery
management solutions are able to significantly improve battery safety, performance,
and efficiency under various transportation electrification applications.

(3) Battery management system challenges

Nowadays, due to transportation electrification being the broadest application
scenario for Li-ion battery, battery management solutions are mainly designed for
EV applicationswhere the battery capacity ages from 100 to 80%. To ensure effective
battery performance under complex, volatile, and extreme operating cases, various
battery operation management strategies have been designed to protect electrical
vehicle battery against faulty operations and to optimize its charging or discharging
dynamics. However, in comparison with battery operation management area with
fruitful solutions, fewer works have been done so far on applying data science-based
strategies to benefit battery manufacturing and reutilization.

For battery manufacturing, as battery initial performance would be directly deter-
mined by each intermediate stage within the manufacturing line, an effective battery
management solution that can analyse the effects of manufacturing parameters on
battery properties and optimize the manufacturing line is crucial. Besides, the battery
could make up to 30% weight and cost of an EV [21], while contributing to more
than 40% CO2 emissions during the production of EV [22]. In light of this, efficient
management of battery manufacturing towards high-quality battery and economic
targets such as high manufacturing yield, low manufacturing cost, and less pollution
is crucial and plays a pivotal role in the acceptance of battery. Currently, as battery
manufacturing generally contains a number of chemical, mechanical, and electrical
operations, and also generates numerous strongly coupledmanufacturing parameters
in the order of tens or hundreds, engineers often rely on the experiment experience,
expert advice, trial and error solutions to analyse and manage their battery manu-
facturing line. These solutions would result in huge laborious and time consump-
tions, slow battery product development, inaccurate quality control, and difficulty in
generating sustainable business cases for the technological introduction. Therefore,
it is imperative to introduce advanced and smart solutions to manage battery manu-
facturing, and explore the correlation, interaction, interdependency of all relevant
parameters, to improve battery manufacturing performance.

For battery utilization, on the one hand, a Li-ion battery is usually determined to
be unsuitable for EV applications when its real capacity becomes less than 80% of its
nominal value [23]. As a result, a large number of automotive batteries will be retired
in the comingyears [24]. For example, 250,000metric tons of automotive batteries are
predicted to hit their end-of-life (EoL) by 2025 [25]. The second-life battery has the
potential to generate more than 200 GWh by 2030, with a global value of more than
$30 billion, according to another report [26]. Again, even under the most optimistic
estimates, 3.4 million kg of automotive batteries cells might end up in the waste
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stream by 2040 [27]. These numerous retired batteries containing volatile chemical
elements would be released into the atmosphere if reutilization is not performed
which will undergo both environmental and economic harm. On the other hand, in
response to global climate change, many renewable and sustainable energy sources
such as solar and wind have been adopted. However, due to the intermittent and time-
varying existence of renewable energy sources, power fluctuates would be generated.
This would significantly affect the grid performance, voltage stability, and reliability,
making them become difficult to be processed into the grid. Based upon suitable
battery reutilization solutions, this can be effectivelymitigated if the generated energy
from a renewable source is first deposited in a battery, and then converted by an
appropriate power electronic converter topology to achieve the necessary grid voltage
and frequency. In this context, giving such retired batteries a suitable reutilization
solution, which is the management of batteries after they have reached 80% capacity
would not only support the economy but also help to minimize total battery demand,
resulting in a substantial reduction in the use of extracted chemical materials and
significantly benefitmanybattery second-life applications such as grid energy storage
[28].

Based upon the above discussions, battery full-lifespan frommanufacturing, oper-
ation, and reutilization as awhole need to be carefullymanaged.With the rapid devel-
opment of artificial intelligence andmachine learning technology, data science-based
tools stand out as the promising solutions for battery full-lifespanmanagement, hope-
fully enabling us to overcome the major challenges dealing with different types of
data from battery manufacturing, operation and reutilization. On the basis of this,
a brand-new hologram to make full use of battery during full-lifespan could be
formulated, further boosting the advancement of low-carbon technologies.

1.3 Data Science Technologies

To move data science-based tools applied to battery full-lifespan management effi-
ciently, the systematic understanding and exploration of data science technology are
required. In this context, data science-based tools must be properly explained and
discussed in a way suitable for a broad audience.

1.3.1 What is Data Science

Data science is a practice ofmining rawdatasetswith both structured andunstructured
forms to identify specific patterns and extract meaningful insights from these data. It
belongs to an interdisciplinary field, whichmainly involves statistics, automation and
engineering, computer science, machine learning, and new data-based technology to
obtain insights from real data.
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Fig. 1.12 Typical data science lifecycle

Figure 1.12 illustrates the typical lifecycle of data science, which includes seven
main parts: business understanding, data mining, data cleaning, data exploration,
feature engineering, predictive modelling, and data visualization. Business under-
standing mainly refers to the definition of relevant questions and objectives from the
applications that require to be explored. For data mining, the necessary data needs
to be gathered and scraped. Data cleaning involves the solutions to fix the incon-
sistencies within data and handle their missing values. For data exploration, data
would be analysed visually to form the hypotheses of defined data science problem.
For feature engineering, the importance and correlations of feature variables from
data would be quantified and analysed. For predictive modelling, data science tools
such as the machine learning models would be trained, validated, and adopted to
make new predictions. For data visualization, conclusions will be reported to key
stakeholders through various plots and interactive visualization tools.

In order to define data science task and clearly manage data science-based project,
four main stages need to be carefully considered as:

Data architecture: The first stage in the data science pipeline workflow is to define
data architecture. This requires data scientists to think through in advance how data
users could make full use of data. Then data scientists also need to think about how
to organize data to support different analyses and visualizations.

Data acquisition: The next stage is data acquisition which focuses on how to
collect data from different sources such as experiments or real applications. Besides,



16 1 Introduction to Battery Full-Lifespan Management

various representing, transforming, and grouping solutions are all needed to help
data scientists understand how the data could be represented before analysis.

Data analysis: Data analysis is the core stage during data science workflow. In this
stage, data scientists would use various technical, mathematical, and statistical tools
such as AI and machine learning to conduct exploratory and confirmatory analysis
works such as classification, regression, predictive analyses, and qualitative analyses.

Insight conclusion: After data analysis, data scientists would communicate the
obtained insights through data visualization and reporting in this stage. These could
benefit the stakeholders to obtain useful conclusions, readjust their strategies, and
generate new plans for evaluation again.

In addition, numerous data science technologies need to be involved in the data
science pipeline workflow. It should be known that all these data science technolo-
gies are designed by the programming language. Nowadays, the widely utilized
programming language mainly includes:

(1) Python: Based upon some specifical and easy-to-implement libraries, Python
becomes a popular open-source language, which has been widely used by
academia and industries particular in AI community. After being created in
1989, Python became a feasible programming language to offer numerous
tools for manipulating datasets and analyse data science results easily and
conveniently [134]. Besides, there exist some Python libraries that specifically
focus onmachine learning algorithm development, including and not limited to
Scikit-Learn, Keras, and TensorFlow.Due to numerous programming language
forums and websites having published many topics on the implementation of
Python, popularity becomes another merit of Python [131, 132]. In general,
Python-based data science solutions need to be executed under a cross-platform
named integrated development environment (IDE) including Pycharm, Spyder,
and Jupyter Notebook, where the friendly interface and the possibility of inter-
acting Python with other programming languages become key elements that
need to be considered.

(2) MATLAB: As an efficient programming language for technical computing,
MATLAB is able to integrate computation, visualization, and programming
in an easy-to-implement condition where data science issues and approaches
could be expressed in the familiar mathematical notations. The basic data
element ofMATLAB is just an arraywithout the need for dimensioning, further
benefitting the computational effort of numerous data science computing issues
particular for those with the formulation of matrix or vector. After being devel-
oped over a period of years, MATLAB has become a standard instructional
tool for several introductory and advanced courses in automation engineering
and data science particular in an academic environment. Besides, MATLAB
features a family of toolboxes for users to explore and apply different tech-
nologies for their specific applications. For data science, many toolboxes such
as the neural network toolbox, deep learning toolbox, optimization toolbox,
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and statistics and machine learning toolbox have been widely used to solve
particular classes of issues.

(3) R language: After being developed around the last decade of the twentieth
century, R language also becomes particularly popular in the field of statistics
science. In comparison with Python and MATLAB, R language is less applied
to develop data science solutions. However, it is able to provide fully dedicated
statistical libraries including theMASS, stats, fdata, and glmnet. Besides, users
could conveniently search the details regarding how to apply each library and
package based on the Comprehensive R Archive Network (CRAN).

(4) C++ and Fortran: C++ and Fortran belong to the modern pioneers of
programming languages,which have beenwidely adopted as high-performance
language. For the data science applications, several C++ libraries including the
SHARK andMLPACK can be used to design machine learning. In comparison
with Python, MATLAB, and R language, the implementation of data science
code through C++ and Fortran would become more difficult as the necessary
memory management is usually required.

1.3.2 Type of Data Science Technologies

Data science technologies mainly contain the types of supervised, unsupervised,
and semi-supervised approaches. For the supervised ones, certain variables need to
be defined as input and output terms before a related dataset is employed. On the
contrary, the definition of input and output terms is missing for the unsupervised data
science methods, whose target is to automatically discover patterns in the dataset.
Semi-supervised methods are somewhere in between supervised and unsupervised
ones, which would apply datasets containing both labelled and unlabelled data.

Supervised data science approaches could be further divided into two main cate-
gories including regression methods and classification methods. The data science
regression model analyses and outputs data in terms of continuous values, while the
data science classification model will analyse and output classes in terms of discrete
values. These classes utilized for supervised data science approaches can come from
the operator or from the unsupervised data sciencemethods. For batterymanagement
applications, apart from the type adopted, classical data science approaches heavily
depend on the data and are quite unrelated to physics, which means that they can be
aimed at, for example, determining the underlyingmapping among various variables,
rather than providing any physical explanation of such mapping. However, through
coupling battery physical elements, physical-driven data science methods also exist.

Figure 1.13 shows several most utilized data science methods in battery research
and development. It should be known that all these methods have been adopted in
the applications of battery full-lifespan management.

Neural network (NN): As illustrated in Fig. 1.13a, NN is proposed to mimic human
brain activities through using the processing unit of artificial neurons arranged in
the input layer, output layer as well as hidden layers. After a pre-processing stage,
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(a) (b)

(c) (d)

Fig. 1.13 Several typically utilized data science methods in battery research and development: a
neural network, b support vector machine, c Gaussian process regression, d tree-based solution

data will be inputted into the input layer with a predefined input matrix. Then the
neurons in hidden layers contain the mathematical function to generate output across
neurons and could be expressed through using a weighted linear combination being
wrapped in the activation functions [29]. In theory, The larger the neuron weight,
the sensitivity to this specific input would become higher. Finally, the output layer
would output the predicted values of NN. For theNN training process, the parameters
here are mainly optimized by considering the amount of hidden layers, the number
of neurons within each layer, the interconnected neuron weights, and the activation
function types.

To date, two different types of NNs are widely utilized in battery management
applications, including the feedforward-neural network (FNN) and recurrent-neural
network (RNN). In the former, the data would travel in one direction only. After
equipping feedback connection with FNN, RNN is derived. By involving the recur-
rent links, RNN is capable of keeping and updating the previous information for a
period of time, making it a promising tool to capture the sequential correlations in
battery management applications. For example, as battery ageing process usually
contains hundreds of cycles, while the ageing information among these cycles is
highly correlated. It is thus meaningful to extract and store these correlations for
accurate battery lifetime prognostics. Besides, as it is able to capture the long-term
dependency of data, RNN thus becomes an effective tool for capturing and updating
sequential information during battery management.



1.3 Data Science Technologies 19

One obvious benefit of NN is its capability of studying from experience and can
adapt to varied situations.However,NN requires a large amount of battery application
data to train and verify, and its accuracy would be heavily influenced by the training
way and data quality. Furthermore, the computational effort is still a bottleneck for
its large-scale application in battery management and NN structure also plays a
pivotal role in determining its performance. In this context, NN optimization still
remains an open technical problem. In general, the NN structure is determined by
time-consuming trial and error. In light of this, some optimization approaches such
as the two-stage stepwise identification method [30] could be adopted to optimize
the NN structure for battery management applications.

Support vector machine (SVM): According to the kernel functions, SVM belongs
to a supervised data science tool. It could perform both classification and regression
tasks by searching the hyperplane separating classes with a maximal margin, as
shown in Fig. 1.13b. SVM could adopt kernels to handle nonlinear problems by
transforming the nonlinear issue with a low-dimensional space into a linear problem
with a higher-dimensional space [31]. In theory, the prediction of SVM is based on
several functions defined over the input space, and learning is a process to infer this
function’s parameters. SVM could make predictions with the function as:

y(x) =
N∑

n=1

ωnK (x, xn) + ε (1.1)

where ωn represents the weights to connect feature space into output, K (·) stands
for kernel function, and ε represents the independent noise.

SVM is particularly appealing for its ability to handle training datasets with small
size. Here the number of support vectors would increase when the size of the training
dataset becomes larger. To enhance the stability and robustness of SVM under large-
scale training dataset size, decremental and incremental solutions [32] could be
adopted by integrating relevant data samples for SVM training and ignoring irrelevant
parts. However, the computational effort would be also increased in this process.

Gaussian process regression (GPR): Deriving from the Bayesian framework, GPR-
based data science models have been widely adopted in battery prognostic applica-
tions due to their superiority in terms of being flexible, nonparametric, and prob-
abilistic [33]. GPR is also a kernel-based data science approach, which is capable
of realizing predictions combined with prior knowledge as well as providing vari-
ance around its mean prediction point to express the associated uncertainties, as
shown in Fig. 1.13c. Here the Gaussian process can be regarded as the collection
of a limited amount of random variables that present the joint multi-variate Gaus-
sian distribution. In theory, the performance of GPR is significantly sensitive to the
kernel functions, so the kernel functions need to be carefully designed for achieving
high prediction accuracy. Battery application is usually complicated and would be
affected by many impact elements. The single kernel function will easily lead to
unreliable predictions for nonlinear mappings with multi-dimensional input terms.
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In this context, an isotropic kernel with advanced structures such as the automatic
relevance determination could be utilized. Furthermore, hyperparameters optimiza-
tion of kernel functions within GPR is crucial as improper hyperparameters are easy
to lead overfitting issue. To ameliorate this, minimizing the negative log marginal
likelihood is generally adopted [34].

Tree-based solutions: Tree-based solutions are the decision-support data science by
adopting the flowchart-like model to achieve classification or regression, as illus-
trated in Fig. 1.13d. Many tree-based solutions such as decision tree (DT), random
forest (RF), and boosting-based approaches have been successfully utilized in the
applications of battery management. The basic idea of DT is to divide a compli-
cated prediction issue into many smaller ones based on a tree structure. In this way,
each node within a DT could represent a small subissue, while DT as a whole could
constitute a solution to the overall issue [35]. For DT training, data would be first
injected in a root (i.e. the first node of DT). After that, the input term which could
best discriminate between the output would be searched. That is, which value (Vi )
of which input terms could split the initial dataset in such a way to separate as many
outputs as possiblewould be searched tominimize related errors. This would result in
the node being divided into two paths: one for values of the selected input items lower
than Vi while another for values larger than Vi . The iteration of this process would
result in a series of paths linking possible inputs to a certain output. One obvious
benefit of DT is that an easy-to-understand representation of the links between input
and output items could be generated. However, due to the too simple structure, DT is
difficult to achieve high performance particularly for highly nonlinear applications.
To handle this, many ensemble learning solutions such as RF are designed through
combining DTs to improve overall prediction performance. The logic of RF can
be summarized as that if the single DT cannot provide results with enough accu-
racy, the result through averaging all outputs from numerous DTs with a bagging
solution would result in more accurate predictions [36]. This could bring signifi-
cant improvement of prediction performance, further making RF become competent
to solve highly nonlinear issues. Besides, boosting-based approaches also adopted
some DTs to decrease both bias and variance of derived data science models, while
the related prediction accuracy could be improved. The main difference here is the
adopted sampling approach, where bagging and boosting solutions are differentiated
by the procedure utilized for the training process.

1.3.3 Performance Indicators

After establishing data science-based solutions for different battery management
applications, a key task is to adopt suitable performance indicators for evaluating the
performance of these data science-based solutions. These performance indicators
can be divided into two main categories to evaluate the regression and classification
results, respectively.
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(1) Data science regression model

To quantify and evaluate the accuracy of devised data science-based regression
models in various batterymanagement cases, the following three typical performance
indicators are usually utilized.

Mean absolute error (MAE): Supposing N is the total number of regression
samples, Yi represents the actual reference value while Ŷi stand for the output
predicted from data science regression models, then the MAE could be obtained
to evaluate the repression accuracy as:

MAE = 1

N

N∑

i=1

∣∣∣Yi − Ŷi
∣∣∣ (1.2)

Root mean square error (RMSE): According to the same character definition,
RMSE is another typical performance indicator to present the deviations between
the predicted output and actual reference value as:

RMSE =
√√√√ 1

N

N∑

i=1

(
Yi − Ŷi

)2
(1.3)

R2 value: Supposing Y i is the mean value of all response outputs, R2 value is also
a typical performance indicator to reflect how closely the outputs from regression
model could match well with the actual reference values as:

R2 = 1−
N∑

i=1

(
Yi − Ŷi

)2
/

N∑

i=1

(
Yi − Y i

)2
(1.4)

For the regression applications, when the outputs predicted frommodels get close
to the real experimental ones, MAE and RMSE present to be close to 0, while R2

would get close to 1, indicating that a data science regression model is capable of
explaining all the variability of target outputs.

(2) Data science classification model

For the classification cases, to quantify and evaluate the performance of the designed
data science classification model, several performance indicators including the
confusion matrix, macro-precision, macro-recall, and macro-F1-score are generally
adopted.

Precision rate (Prate): Supposing positive corresponds to the class of interest while
negative corresponds to other classes, four basic measures including the true posi-
tive (TP), false positive (FP), true negative (TN), and false negative (FN) could be
formulated for each class. Then for the class of interest Ci (i = 1, . . . , Nc, Nc is the
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number of classes), its Prate could be obtained to quantify the correct classification
result of this class as:

Prate = TP/(TP+ FP) (1.5)

Recall rate (Rrate): Rrate is able to quantify the rate of all fraud cases of this class as:

Rrate = TP/(TP+ FN) (1.6)

F-measure (F-measure): F-measure can reflect the harmonic mean of precision as
well as recall of this class as:

F-measure = 2× Prate × Rrate

Prate + Rrate
(1.7)

Overall correct classification rate (OCCrate): OCCrate that reflects the proportion
of correctly classified observations out of all the observations could be obtained by:

OCCrate = TPall + TNall

N
(1.8)

where TPall + TNall stands for all the correctly classified outputs from data science
classification model, N represents the total amount of observations.

Confusionmatrix (CM): According to the aforementionedmetrics, aCMwithM+1
rows and M + 1 columns can be formulated to reflect the performance of multiple
class-based classification model. Here each row within CM is able to reflect the
predicted output classes while each column stands for the actual target classes. The
elements on the primary diagonal of CM reflect the correctly classified results, while
other elements stand for the incorrectly classified conditions. The M + 1th column
and M + 1 th row stand for the Prate(Ci ) and Rrate(Ci ) of each class, respectively.
The last element in the right-bottom corner is the OCCrate.

macroP , macroR, and macroF1: Supposing each class has a Prate(Ci ), Rrate(Ci ),
and F-measure (Ci ), then various overall performance indicators including the
macro-precision (macroP), macro-recall (macroR), and macro-F1-score (macroF1)
could be obtained to evaluate the overall classification performance of data science
classification model as:
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macroP =
Nc∑
i=1

Prate(Ci )/Nc

macroR =
Nc∑
i=1

Rrate(Ci )/Nc

macroF1 =
Nc∑
i=1

F-measure(Ci )/Nc

(1.9)

For the classification applications, when the classes outputted from amodel match
observations as much as possible, macroP , macroR, and macroF1 would get close
to 1, indicating that the data science classification model is able to perform high
accurate classification.

Based upon the aforementioned classical performance indicators, the performance
of data science-based battery management solutions can be quantified and evaluated.

1.4 Summary

This chapter first introduces the background and motivation of Li-ion battery. It
outlines the role of Li-ion battery in the energy storage market of several leading
countries. Three applications to comprise the bulk of the current Li-ion batterymarket
including the electric vehicle, electronic device, and stationary battery-based energy
storage are also introduced. Then, it describes the fundamental of Li-ion battery
and the demands of battery management. Apart from battery operation management
with fruitful solutions, the management of both battery manufacturing and reutiliza-
tion is still in its infancy. In this context, with the rapid development of artificial
intelligence and machine learning, data science-based solutions become a promising
way to handle various key challenges of battery full-lifespan management. After
that, this chapter reviews the basic information on data science lifecycle and widely
utilized programming language and outlines the popular data science technologies
used in battery full-lifespan management and corresponding performance indicators
for result evaluation. It emphasizes the necessity and benefits of using data science
technologies to manage batteries, while also guiding the design and development of
data science-based tools for effective battery full-lifespan management.
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