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Abstract Although deep neural networks (DNNs) are high-performance methods
for various complex tasks, e.g., environment perception in automated vehicles (AVs),
they are vulnerable to adversarial perturbations. Recent works have proven the exis-
tence of universal adversarial perturbations (UAPs), which, when added to most
images, destroy the output of the respective perception function. Existing attack
methods often show a low success rate when attacking target models which are
different from the one that the attack was optimized on. To address such weak trans-
ferability, we propose a novel learning criterion by combining a low-level feature
loss, addressing the similarity of feature representations in the first layer of various
model architectures, with a cross-entropy loss. Experimental results on ImageNet and
Cityscapes datasets show that our method effectively generates universal adversarial
perturbations achieving state-of-the-art fooling rates across different models, tasks,
and datasets. Due to their effectiveness, we propose the use of such novel generated
UAPs in robustness evaluation of DNN-based environment perception functions for
AVs.
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1 Introduction

Reaching desired safety standards quickly is of utmost importance for automated
vehicles (AVs), in particular, for their environment perception module. Recently,
growing advancements in deepneural networks (DNNs) gave themeans to researchers
for solving real-world problems, specifically improving the state of the art in envi-
ronment perception [GTCM20, NVM+19]. These networks can help AVs in under-
standing the environment, such as identifying traffic signs and detecting surrounding
objects, by incorporating many sensors (e.g., camera, LiDAR, and RaDAR) to build
an overall representation of the environment [WLH+20, FJGN20], or even to provide
an end-to-end control for the vehicle [KBJ+20], see Fig. 1.

A large body of studies has addressed adversarial attacks [SZS+14, MDFF+18]
and robustness enhancement [GRM+19, SOZ+18] of DNN architectures. In AVs, it
was shown that adversarial signs could fool a commercial classification system in
real-world driving conditions [MKMW19]. In addition to the vulnerability of image
classifiers, Arnab et al. [AMT18] extensively analyzed the behavior of semantic
segmentation architectures for AVs and illustrated their susceptibility to adversarial
attacks. To reach the high level of automation, defined by the SAE standard J3016
[SAE18], car manufacturers have to consider various threats and perturbations tar-
geting the AV systems.

In vision-related tasks, adversarial perturbations can be divided into two types:
image-dependent (per-instance) adversarial perturbations and universal adversarial
perturbations (UAPs). In image-dependent adversarial perturbations, a specific opti-
mization has to be performed for each image individually to generate an adversarial
example. In contrast, UAPs are more general perturbations in the sense that an addi-
tive single perturbation triggers all the images in a dataset to become adversarial
examples. Therefore, they are much more efficient in terms of computation cost and
time when compared to image-dependent adversarial attacks [CAB+20]. However,
while showing a high success rate on the models they are optimized on, they lack
transferability to other models.

In this chapter, we aim to specifically address the vulnerability of image classi-
fication and semantic segmentation systems as cornerstones of visual perception in
automated vehicles. In particular, we aim at improving the transferability of task-
specific universal adversarial perturbations. Our major contributions are as follows:

First, we present a comprehensive similarity analysis of features from several
layers of different DNN classifiers.

Second, based on these findings, we propose a novel fooling loss function for
generating universal adversarial perturbations. In particular, we combine the fast
feature fool loss [MGR19], however, focusing on the first layer only, with the cross-
entropy loss, to train an attack generatorwith the help of a sourcemodel for generating
targeted and non-targeted UAPs for any other target model.

Third, we show that our UAPs not only exhibit remarkable transferability across
multiple networks trained on the same dataset, but also they can be generated using a
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reduced subset of the training dataset, while still having a satisfactory generalization
power over unseen data.

Fourth, using our method, we are able to surpass state-of-the-art performance in
both white-box and black-box settings.

Finally, by extensive evaluation of the generated UAPs on various image clas-
sification and semantic segmentation models, we demonstrate that our approach is
generalizable across multiple vision tasks.

The remainder of this chapter is organized as follows. In Sect. 2, we present
some background and related works. The proposedmethod, alongwithmathematical
notations, is introduced in Sect. 3. Experimental results on image classification and
semantic segmentation tasks are then presented in Sects. 4 and 5, respectively. Finally,
in Sect. 6 we conclude the chapter.

2 Related Works

2.1 Environment Perception for Automated Vehicles

Figure1 gives an overview of the major components comprised within an automated
vehicle: Environment perception, motion planning, and motion control [GR20]. The
environment perception module collects data using several sensors to obtain an over-
all representation of the surroundings. This information is then processed through
the motion planning module to calculate a reasonable trajectory, which is executed
via the motion control module at the end. In this chapter, we concentrate on the
environment perception of automated vehicles.

The environment perception of automated vehicles comprises several sensors,
including radiodetection and ranging (RaDAR), light detection and ranging (LiDAR),

Fig. 1 Environment perception and subsequent functions in an automated vehicle (AV), acc. to
[GR20]
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and camera [RT19]. RaDAR sensors supplement camera vision in times of low visi-
bility, e.g., night driving, and are able to improve the detection accuracy [PTWA17].
LiDAR sensors are commonly used tomake high-resolutionmaps, and they are capa-
ble of detecting obstacles [WXZ20]. The recent rise of deep neural networks puts a
high interest to camera-based environment perception solutions, e.g., object detection
and classification [ZWJW20], as well as semantic segmentation [RABA18].

In this chapter, we focus on camera-based environment perception with deep
neural networks for image classification as well as for semantic segmentation in the
context of AVs.

2.2 Adversarial Attacks

It is well known that deep neural networks are vulnerable to adversarial
attacks [SZS+14].While adversarial attacks for image classificationhavebeenwidely
studied, the influence of these attacks in other applications, such as semantic segmen-
tation, has rarely been investigated [AM18, BHSFs19, BZIK20, BKV+20, KBFs20,
ZBIK20a, BLK+21]. In this section, we review existing attack methods in both clas-
sification and semantic segmentation perception tasks.

There are several possible ways of categorizing an adversarial attack, e.g.,
targeted/non-targeted attack, and white-box/black-box attack [HM19]. In a targeted
attack, the adversary generates an adversarial example to change the system’s output
to a maliciously chosen target label. In a non-targeted attack, on the other hand,
the attacker wants to direct the result to a label that is different from the ground
truth, no matter what it is. It should be noted that in semantic segmentation, targeted
attacks can be divided into static and dynamic target segmentation [MCKBF17].
Static attacks are similar to the targeted attacks in image classification. Here, the
aim is to enforce the model to always output the same target semantic segmentation
mask. The dynamic attack follows the objective of replacing all pixels classified with
a beforehand chosen target class by its spatial nearest neighbor class. Another way of
attack categorization is based on the attackers’ knowledge of the parameters and the
architecture of the target model. While a white-box scenario refers to the case when
an attacker has full knowledge about the underlying model, a black-box scenario
implies that no information about the respective model is available. We address both
targeted and non-targeted attacks as well as white-box and black-box scenarios in
this chapter.

In the following, we will investigate two types of image-dependent and image-
agnostic adversarial perturbations in classification and semantic segmentation mod-
els. We will also review the problem of transferability in adversarial attacks.

Image-dependent adversarial perturbations: There are various iterative, non-
iterative, and generative methods for crafting image-dependent adversarial exam-
ples. Goodfellow et al. [GSS15] introduced the fast gradient sign method (FGSM),
one of the first adversarial attacks. FGSM aims at computing the gradients of the
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sourcemodel Swith respect to the (image) input x and a loss J to create an adversarial
example. Iterative FGSM (I-FGSM) [KGB17] iteratively applies FGSMwith a small
step size, while momentum iterative FGSM [DLP+18] utilizes a momentum-based
optimization algorithm for stronger adversarial attacks. Another iterative attack is
projected gradient descent (PGD) [MMS+18], where the main difference to I-FGSM
is random restarts in the optimization process. Kurakin et al. [KGB17] proposed the
least-likely class method (LLCM), in which the target is set to the least-likely class
predicted by the network. Xiao et al. [XZL+18] introduced the spatial transform
attack (STM) for generating adversarial examples. In STM, instead of changing the
pixel values in a direct manner, spatial filters are employed to substitute pixel val-
ues maliciously. Also, some works [HM19] have employed a generative adversarial
network (GAN) [GPAM+14] for generating adversarial examples.

A basic analysis on the behavior of semantic segmentation DNNs against adver-
sarial examples was performed by Arnab et al. [AMT18]. They applied three com-
monly known adversarial attacks for image classification tasks, i.e., FGSM [GSS15],
Iterative-FGSM [KGB17], and LLCM [KGB17], to semantic segmentation models
and illustrated the vulnerability of this task. There are also some works that concen-
trate on sophisticated adversarial attacks that lead to more reasonable outcomes in
the context of semantic segmentation [XDL+18, PKGB18].

Universal adversarial perturbations: Universal adversarial perturbations (UAPs)
were firstly introduced by Moosavi-Dezfooli et al. as image-agnostic perturbations
[MDFFF17]. Similar to image-dependent adversarial attacks, there are some itera-
tive, non-iterative, and generative techniques for creating UAPs. An iterative algo-
rithm to generate UAPs for an image classifier was presented in [MDFF+18]. The
authors provided an analytical analysis of the decision boundary in DNNs based
on geometry and proved the existence of small universal adversarial perturbations.
Some researchers focused on generative models that can be trained for generating
UAPs [HD18, RMOGVB18]. Mopuri et al. presented a network for adversary gen-
eration (NAG) [RMOGVB18], which builds upon GANs. NAG utilizes fooling and
diversity loss functions tomodel the distribution of UAPs for a DNN image classifier.
Moreover, Poursaeed et al. [PKGB18] introduced the generative adversarial pertur-
bation (GAP) algorithm for transforming noise drawn from a uniform distribution to
adversarial perturbations to conduct adversarial attacks in classification and semantic
segmentation tasks. Metzen et al. [MCKBF17] proposed an iterative algorithm for
semantic segmentation, which led to more realistically looking false segmentation
masks.

Contrary to the previous data-dependent methods, Mopuri et al. [MGR19] intro-
duced fast feature fool (FFF), a data-independent algorithm for producing non-
targeted UAPs. FFF aims at injecting maximal adversarial energy into each layer of
the source model S. This is done by the following loss function:

J FFF(r) =
L∑

�=1

J FFF
� (r), J FFF

� (r) = − log(‖A�(r)‖2), (1)
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where A�(r) is the mean of all feature maps of the �-th layer (after the activation
function in layer �), when only the UAP r is fed into the model. Note that usually
xadv = x + r, with clean image x, is fed into the model. This algorithm starts with
a random r which is then iteratively optimized. For mitigating the absence of data
in producing UAPs, Mopuri et al. [MUR18] proposed class impressions (CIs), a
form of reconstructed images that are obtained via simple optimization from the
source model. After finding multiple CIs in the input space for each target class,
they trained a generator to create UAPs. Recently, Zhang et al. [ZBIK20b] proposed
a targeted UAP algorithm using random source images (TUAP-RSI) from a proxy
dataset instead of the original training dataset.

In this chapter, we follow Poursaeed et al. [PKGB18] by proposing an efficient
generative approach that focuses on propagating adversarial energy in a sourcemodel
to generate UAPs for the task of image classification and semantic segmentation.

Transferability in black-box attacks: The ability of an adversarial example to be
effective against a different, potentially unknown, target model is known as trans-
ferability. Researchers have evaluated the transferability of adversarial examples on
image classifiers [MGR19, MDFFF17, PXL+20, LBX+20] and semantic segmen-
tation networks [PKGB18, AMT18].

Regarding the philosophy behind transferability, Goodfellow et al. [GSS15]
demonstrated that estimating the size of adversarial subspaces is relevant to the
transferability issue. Another potential perspective lies in the similarity of decision
boundaries. Learning substitute models, approximating the decision boundaries of
target models, is a famous approach to attack an unknown model [PMJ+16]. Wu et
al. [WWX+20] considered DNNs with skip connections and found that using more
gradients from the skip connections, rather than the residual modules, allows the
attacker to craft more transferable adversarial examples. Wei et al. [WLCC18] pro-
posed to manipulate feature maps, extracted by a separate feature network, to create
more transferable image-dependent perturbations using a GAN. Li et al. [LBZ+20]
introduced a virtual model known as a ghost network to apply feature-level perturba-
tions to an existing model to produce a large set of diverse models. They showed that
ghost networks, together with a coupled ensemble strategy, improve the transferabil-
ity of existing techniques. Wu et al. [WZTE18] empirically investigated the depen-
dence of adversarial transferability on model-specific attributes, including model
capacity, architecture, and test accuracy. They demonstrated that fooling rates heav-
ily depend on the similarity of the source model and target model architectures.

In this chapter, we increase the tranferability of generated UAPs by including a
loss term inspired by Mopuri et al. [MGR19] focusing on the adversarial energy in
early layers.
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3 Method

3.1 Mathematical Notations

We first introduce notations for image classification and semantic segmentation in a
natural domain without attacks and then extend this to the adversarial domain.

Natural Domain: Consider a classifier S trained on a training set Xtrain having
M different classes. This network assigns a label m = S(x) ∈ M = {1, ..., M} to
each input image x from training set Xtrain or test set Xtest. We assume that image
x ∈ I

H×W×C is a clean image, meaning that it contains no adversarial perturbations,
with height H , width W , C = 3 color maps, and I = [0, 1]. Each image x is tagged
with a ground truth label m ∈ M.

In semantic segmentation, given an input image x, we assign each pixel with
a class label. In this case, the semantic segmentation network S outputs a label
mapm = S(x) ∈ MI for each input image x = (x1, ..., xi , ..., xI ), with I = H × W .
Similar to before, each pixel xi ∈ I

C of an image x is tagged with a ground truth label
mi ∈ M, resulting in the ground truth label map m for the entire image x.

Adversarial domain: Let xadv be an adversarial example that belongs to the adver-
sarial space of the network; for example, for the network S this space is defined
as Xadv

S . In order to have a quasi-imperceptible perturbation r when added to clean
images to obtain adversarial examples, i.e., xadv = x + r, it is bounded by ‖r‖p ≤ ε,
with ε being the supremum of a respective p-norm ‖ · ‖p.

In case of classification networks, for each xadv ∈ Xadv
S , the purpose of non-

targeted attacks is to obtain S(xadv) �= m. In targeted attacks, the attacker tries to
enforce S(xadv) = m̊ �= m, where m̊ denotes the target class the attacker aims at.

In case of semantic segmentation networks, for each xadv ∈ Xadv
S , in non-targeted

attacks we aim at S(xadv) = m = (mi ) with mi �= mi for all i ∈ I = {1, ..., I }. On
the other hand, in static targeted attacks, the goal is S(xadv) = m̊ �= m, where m̊
denotes the target mask of the attacker.

Also, let T be the target model under attack, which is a deep neural network
(DNN) with given (frozen) parameters, pretrained on some datasets to perform a
specific environment perception task. We define z as a random variable sampled
from a distribution, which is fed to a UAP generator G to produce a perturbation
r = G(z). Also, J stands for a loss function, which is differentiable with respect to
the network parameters and the input.

3.2 Method Introduction and Initial Analysis

In order to improve the robustness of DNNs for environment perception, knowledge
of sophisticated image-agnostic adversarial attacks is needed, capable of working in
both white-box and black-box fashions.



178 A. S. Hashemi et al.

Fig. 2 Proposed training approach for a UAP generator for non-targeted attacks (label y) and
targeted attacks (ẙ)

In this section, we present our proposed approach to generate UAPs. It builds
upon the adversarial perturbation generator proposed by Poursaeed et al. [PKGB18].
Unlike [PKGB18], we focus on a fooling loss function for generating effective UAPs
in both white-box and black-box scenarios. We employ a pretrained DNN as the
source model S, which is exposed to UAPs during training the UAP generator. Our
goal is to find a UAP r by an appropriate loss function, which is able to not only
deceive the source model S on a training or test dataset Xtrain or Xtest, respectively,
but also to effectively deceive a target model T , for which T �= S holds.

Figure2 gives an overview of our UAP generator training methodology. Let
G(z) = r be the UAP generator function mapping an unstructured, random multi-
dimensional input z ∼ UH×W×C sampled from a prior uniform distributionU = I,
onto a perturbation r ∈ I

H×W×C . To obtain a p-norm scaled r, a preliminary
obtained perturbation r′ is bounded by multiplying the generator network raw out-
put r′ = G′(z) with min(1, ε

‖G′(z)‖p
). Next, the resulting adversarial perturbation r

is added to an image x ∈ Xtrain before being clipped to a valid range of RGB image
pixel values, resulting in an adversarial example xadv. Finally, the generated adver-
sarial example xadv is fed to a pretrained source model S to compute the adversarial
loss functions based on targeted or non-targeted attack types.

To increase the model transferability of the generated UAPs, we seek similar-
ities between different pretrained DNNs to take advantage of this property. For
this, we selected some state-of-the-art classifiers such as VGG-16, VGG-19 [SZ15],
ResNet-18, and ResNet-152 [HZRS16], all pretrained on ImageNet [RDS+15],
to investigate their extracted feature maps in different levels. Then, we first measure
the similarity of themean featuremaps of a layer between all networks over the entire
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Fig. 3 Mean squared error (MSE) ‖Anet1
� (x) − Anet2

� (x)‖22 between the mean of feature represen-
tationsA�(x) in layers � ∈ {1, 2, 3, 4, 5, 6} of different DNN classifiers pretrained on the ImageNet
dataset. The results are reported for images x from the ImageNet validation dataset. All networks
show a considerable similarity in terms of MSE in the first layer, whereas similarity in later layers
is only seen among VGG-16 and VGG-19 [SZ15]

Fig. 4 The layer-wise mean of feature representationsA�(x)within different pretrained classifiers,
computed for the first six layers for a random input image x taken from the ImageNet validation
dataset. High similarity is observed in the first layers, in the later layers only among the VGG-16
and the VGG-19 network

ImageNet [RDS+15] validation set, using the well-known and universally applicable
mean squared error (MSE).1 Figure3 displays the resulting heat maps. In addition,
Fig. 4 shows the mean of feature representationsA�(x) for these four pretrained clas-
sifiers computed for layer � = 1 up to � = 6 (after each activation function) for a
selected input image x. Both figures, Figs. 3 and 4, show that the respective networks
share a qualitatively and quantitatively high similarity in the first layer compared to
all subsequent layers. Only for close relatives, such as VGG-16 and VGG-19, this
similarity is found in later layers as well. We thus hypothesize that by applying the
fast feature fool loss J FFF

1 (1) only to the first layer of the source model during train-

1 We also evaluated the similarity of featuremaps in different layers by the structural similarity index
(SSIM) [WBSS04] and peak signal to noise ratio (PSNR) [HZ10]. The results are very similar to
Fig. 3.
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ing, we not only inject high adversarial energy into the first layer but also increase
the transferability of the generated UAPs.

In the following, we formulate our fooling loss and consider the non-targeted and
targeted attack cases (see Fig. 2).

3.3 Non-targeted Perturbations

In the non-targeted case, we want to fool the source model S so that its prediction
S(xadv) differs from the ground truth one-hot representation y. In the simplest and
most sensible possible way, researchers define the negative cross-entropy as the
fooling loss for non-targeted attacks, while Poursaeed et al. [PKGB18] proposed the
logarithm of this loss function.

For image classification, we define the generator fooling loss for our non-targeted
attacks as

J adv,nontargeted = −α · JCE(S(xadv), y) + (1− α) · J FFF
1 (xadv), (2)

where JCE denotes the cross-entropy loss, y = (yμ) ∈ {0, 1}M is the one-hot encod-
ing of the ground truth label m for image x, and μ being the class index, such that
m = argmax

μ∈M
yμ . Also, let J

FFF
1 (xadv) be the fast feature fool loss of layer � = 1 (see

(1)), when xadv is fed to the network S. Further, the cross-entropy loss is defined as

JCE(y, y) = −
∑

μ∈M
yμ log

(
yμ

) = − log (ym) , (3)

wherey = S(xadv) = (yμ) ∈ I
M is the network output vector of Swith the predictions

for each classμ. For optimization,we utilizeAdam [KB15] in standard configuration,
following [PKGB18].

For semantic segmentation, in (2) y = S(xadv) ∈ I
H×W×M and y ∈ {0, 1}H×W×M

holds, and the cross-entropy loss in (3) is changed to

JCE(y, y) = −
∑

i∈I

∑

μ∈M
yi,μ log

(
yi,μ

)

= −
∑

i∈I
log

(
yi,mi

)
,

(4)

with yi,μ, yi,μ being the prediction and ground truth for classμ at pixel i , respectively,
and yi,mi being the prediction at pixel i for the ground truth class mi of pixel i .
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3.4 Targeted Perturbations

Different from the non-targeted case, the goal of a targeted one is to let the DNN
output S(xadv) take on values ẙ defined by the attacker, which usually differ from the
ground truth (if source target labels align with the ground truth of a particular image,
the UAP will output that ground truth label). Hence, the attacker aims to decrease
the cross-entropy loss with respect to a target until the source model S predicts the
selected target class with high confidence. As before, we add the fast feature fool
loss in the first layer to boost the transferability of the targeted generated UAP.

For image classification, our generator fooling loss for targeted attacks is

J adv,targeted = α · JCE(S(xadv), ẙ) + (1 − α) · J FFF
1 (xadv), (5)

where ẙ ∈ {0, 1}M is the one-hot encoding of the target label m̊ �= m. Note that the
sign of the cross entropy is flipped compared to the non-targeted case (2). Then,
similar to the non-targeted attack, the Adam optimizer is utilized.

If we consider semantic segmentation, the ground truth ẙ in (5) becomes a one-hot
encoded semantic segmentation mask ẙ ∈ {0, 1}H×W×M .

4 Experiments on Image Classification

In this section,wewill first describe the dataset, network architectures, and evaluation
metrics, which are used to measure the performance of generated UAPs on image
classifiers. Afterward, we will analyze the effectiveness of the proposed fooling
method on state-of-the-art image classifiers and will compare it to other state-of-the-
art attack methods.

4.1 Experimental Setup

Dataset: We use the ImageNet dataset [RDS+15], which is a large collection of
human-annotated images. For all our experiments, a universal adversarial perturba-
tion is computed for a set of 10,000 images taken from the ImageNet training setXtrain

(i.e., 10 images per class) and the results are reported on the ImageNet validation set
Xval (50,000 images).

Network architectures: There are several design options regarding the architecture
choices for generatorG and source model S. For our generator, we follow [ZPIE17]
and [PKGB18] and choose the ResNet generator from [JAFF16], which consists
of some convolution layers for downsampling, followed by some residual blocks,
before performing upsampling using transposed convolutions. As topology for the
sourcemodel S, we utilize the same set of pretrained image classifiers as for the target
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Table 1 Fooling rates (%) of our proposed non-targeted UAPs in white-box attacks, for different
values of α and various target classifiers pretrained on ImageNet. Results are reported on a second
training set of 10,000 images. The adversarial perturbation is bounded by L∞(r) ≤ ε = 10. The
highest fooling rates (%) are printed in boldface

α Source Model S = Target Model T Avg

VGG-16 VGG-19 ResNet-18 ResNet-152

0 8.52 8.29 7.24 4.04 7.02

0.6 90.49 93.48 88.93 84.41 89.32

0.7 95.20 93.79 89.16 87.05 91.30

0.8 90.03 93.24 89.07 89.91 90.56

0.9 95.13 92.14 88.34 89.37 91.24

1 92.87 71.88 88.88 85.34 84.74

Table 2 Fooling rates (%) of our proposed non-targeted UAPs in white-box attacks, for various
target classifiers pretrained on ImageNet. Results are reported on the ImageNet validation set. We
report results for two L p norms, namely L2(r) ≤ ε = 2000 and L∞(r) ≤ ε = 10

p ε α Source Model S = Target Model T

VGG-16 VGG-19 ResNet-18 ResNet-152

2 2000 0.7 96.57 94.99 91.85 88.73

∞ 10 0.7 95.70 94.00 90.46 90.40

model T , i.e., VGG-16, VGG-19 [SZ15], ResNet-18, ResNet-152 [HZRS16],
and also GoogleNet [SLJ+15].

Evaluation metrics:We use the fooling rate as our metric to assess the performance
of our crafted UAPs on DNN image classifiers [MDFFF17, PKGB18, MUR18,
MGR19]. In the case of non-targeted attacks, it is the percentage of input images
for which T (xadv) �= T (x) holds. For targeted attacks, we calculate the top-1 target
accuracy, which can be understood as the percentage of adversarial examples, that
is classified “correctly" as the target class as desired by the attacker.

4.2 Non-Targeted Universal Perturbations

According to Fig. 2, we train our model with the non-targeted fooling loss (2). For
tuning the hyperparameter α, the weight of our novel adversarial loss components,
we utilized a second training set of 10,000 random images (again 10 images per
class) taken from the ImageNet training set which is disjoint from both the training
and the validation dataset. Table1 shows that the best α for non-targeted attacks, on
average over all model topologies, is α = 0.7.

For white-box attacks, where S = T holds, results on the ImageNet validation set
for two different norms are given in Table2. The maximum permissible L p norm of
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Table 3 Fooling rates (%) of various non-targeted state-of-the-art methods on various target clas-
sifiers trained on ImageNet (white-box attacks). The results of other state-of-the-art methods are
reported from the respective paper. +For comparison reasons, the average of our method leaves out
the ResNet-18 model results. Highest fooling rates are printed in boldface

p ε Method S = T Avg+

VGG-16 VGG-19 ResNet-18 ResNet-152

∞ *10 FFF 47.10 43.62 - 29.78 40.16

CIs 71.59 72.84 – 60.72 68.38

UAP 78.30 77.80 – 84.00 80.03

GAP 83.70 80.10 – 82.70 82.16

NAG 77.57 83.78 – 87.24 82.86

TUAP-
RSI

94.30 94.98 – 90.08 93.12

Ours 95.70 94.00 90.46 90.40 93.36

2 2000 UAP 90.30 84.50 – 88.50 87.76

GAP 93.90 94.90 – 79.50 89.43

Ours 96.57 94.99 91.85 88.73 93.43

Fig. 5 Examples of our non-targeted UAPs and adversarial examples. In a the universal adversarial
perturbation is given on the left and eight different adversarial examples are shown on the right,
where the L2 norm of the adversarial perturbation is bounded by ε = 2000, i.e., L2(r) ≤ 2000. In b
the respective original images are shown, whereas in c the L∞ norm of the adversarial perturbation
is bounded by ε = 10, i.e., L∞(r) ≤ 10, α = 0.7. In these experiments, the source model S is
ResNet-18 [HZRS16]. The pixel values in UAPs are scaled for better visibility

the perturbations for p = 2 and p = ∞ is set to be ε = 2000 and ε = 10, respec-
tively, following [MDFFF17]. As Moosavi-Dezfooli et al. [MDFFF17] pointed out,
these values are selected to acquire a perturbation whose norm is remarkably smaller
than the average image norms in the ImageNet dataset to obtain quasi-imperceptible
adversarial examples. The results in Table2 show that the proposed method is suc-
cessful in the white-box setting. For the L∞ norm, all reported fooling rate numbers
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Table 4 Transferability of our proposed non-targeted UAPs (white-box and black-box attacks).
Results are reported in the form of fooling rates (%) for various combinations of source models
S and target models T , pretrained on ImageNet. The generator is trained to fool the source model
(rows), and it is tested on the target model (columns). The adversarial perturbation is bounded by
L∞(r) ≤ ε = 10, α = 0.7. ∗The average is computed excluding the easier white-box attacks (main
diagonal)

Target model T Avg∗

VGG-16 VGG-19 ResNet-18 ResNet-152

Source
model S

VGG-16 95.70 86.67 49.98 36.34 57.66

VGG-19 84.77 94.00 47.24 36.46 56.15

ResNet-18 76.49 72.18 90.46 50.46 66.37

ResNet-152 86.19 82.36 76.04 90.40 81.53

are above 90%. To illustrate that our adversarial examples are quasi-imperceptible to
humans, we illustrate some adversarial examples with their respective scaled UAPs
in Fig. 5.

In Table3, we compare our proposed approach in generating non-targeted UAPs
with state-of-the-art methods, i.e., fast feature fool (FFF, as originally proposed, on
all layers) [MGR19], class impressions (CIs) [MUR18], universal adversarial per-
turbation (UAP) [MDFFF17], generative adversarial perturbation (GAP) [PKGB18],
network for adversary generation (NAG) [RMOGVB18], and targeted UAP-random
source image (TUAP-RSI) [ZBIK20b]. In these experiments, we again consider the
white-box setting, i.e., S = T . Our proposed approach achieves a new state-of-the-art
performance on almost all models on both L p norms, being on average 4% absolute
better in fooling rate with the L2 norm, and at least 0.26% absolute better with the
L∞ norm.

In Table4we investigate thewhite-box (S = T ) and black-box (S �= T ) capability
of our proposed method through various combinations of source and target models.
Note that the rightmost column represents an average over the fooling rates in the
black-box settings and thus indicates the transferability of our proposed method.
Overall, in thewhite-box andblack-box settings,we achieve fooling rates of over 90%
and 55%, respectively. We also compare the transferability of our produced UAPs
with the same state-of-the-art methods as before. The results for these experiments
are shown in Table5, where VGG-16, ResNet-152, and GoogleNet are used as
the source model in Table5a–c, respectively. It turns out to be advisable to choose a
deep network as the source model (ResNet-152); since then our performance on
the unseen VGG-16 and VGG-19 target models is about 12% absolute better than
earlier state of the art (L∞ norm).

For investigating the generalization power of UAPsw.r.t. unseen data, we evaluate
the influence of the size of the training dataset Xtrain on the quality of UAPs in con-
ducting white-box and black-box attacks. Figure6 shows the fooling rates obtained
for VGG-16 as the target model T , on the ImageNet validation set for different sizes
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Table 5 Transferability of our proposed non-targeted UAPs compared to other methods, i.e., FFF
[MGR19], CIs [MUR18], UAP [MDFFF17], GAP [PKGB18], and NAG [RMOGVB18], using
different source models S and target models T . The UAP is bounded by L∞(r) ≤ ε = 10. Values
of our method are taken from Table4 (except GoogleNet). *Note that the results are reported
from the respective paper. Highest fooling rates are printed in boldface

(a) S: VGG-16 [SZ15]

T Method Fooling Rate (%)

VGG-19 FFF* 41.98

CIs* 65.64

UAP* 73.10

GAP 79.14

NAG* 73.25

Ours 86.67

ResNet-152 FFF* 27.82

CIs* 45.33

UAP* 63.40

GAP 30.32

NAG* 54.38

Ours 36.34

ResNet-18 Ours 49.98

(b) S: ResNet-152 [HZRS16]

T Method Fooling Rate (%)

VGG-16 FFF* 19.23

CIs* 47.21

UAP* 47.00

GAP 70.45

NAG* 52.17

Ours 86.19

VGG-19 FFF* 17.15

CIs* 48.78

UAP* 45.50

GAP 70.38

NAG* 53.18

Ours 82.36

ResNet-18 Ours 76.04

(c) S: GoogleNet [SLJ+15]

T Method Fooling Rate (%)

VGG-16 FFF* 40.91

CIs* 59.12

UAP* 39.20

GAP 71.14

NAG* 56.40

Ours 75.35

ResNet152 FFF* 25.31

CIs* 47.81

UAP* 45.50

GAP 51.72

NAG* 59.22

Ours 61.24

ResNet-18 Ours 67.30
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Fig. 6 Fooling rates (%) of our non-targetedUAPs on the ImageNet validation set for different sizes
ofXtrain in both white-box and black-box settings. In the white-box setting, the source model S and
the targetmodel T areVGG-16, while in the black-box setting, the sourcemodel S isResNet-152
and the target model T is again VGG-16. Results are reported for L∞(r) ≤ ε = 10 and α = 0.7

Fig. 7 Fooling rates (%) of our non-targeted UAPs on the ImageNet validation set, in both white-
box and black-box attacks for L∞ and L2, for different layers � in (1) applied in the loss function
(2). In the white-box setting, the source model S and the target model T are ResNet-18. In the
black-box setting, the source model S is again ResNet-18 and the target model T is VGG-16.
Results are reported for α = 0.7

ofXtrain. The results show that by using a datasetXtrain containing only 1000 images,
our approach leads to a fooling rate of more than 60% on the ImageNet validation
dataset in both the white-box and black-box settings. Additionally, the number of
images in Xtrain turns out to be more vital for the fooling rate of black-box attacks as
compared to white-box attacks.

To examine the impact of the layer which is used in our loss function, we utilized
different layers in (1), then applied them in the loss function (2) to train the source
model for generating UAPs. In practice, we are interested in the impact the layer
position has. Figure7 shows the fooling rate in white-box and black-box settings
for L∞ and L2, when different layers from � = 1 to � = 6 are applied in (1) and
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(2). This figure shows that choosing deeper layers leads to a decreasing trend in the
fooling rate. Also, this trend is stronger in black-box attacks, where a more than 20%
drop in the attack success rate can be observed. This indicates that it is advisable to
choose earlier layers, in particular the first layer, in generating UAPs to obtain both
an optimal fooling rate and transferability.

4.3 Targeted Universal Perturbations

In this section, we apply the targeted fooling loss (5), again withα = 0.7, for training
the generator in Fig. 2. We assume the chosen α is appropriate for targeted attacks as
well and thus dispense further investigations. If results are good, then this supports
some robustness w.r.t. the choice of α. Figure8 depicts two examples of our targeted
UAPs, some original images and respective adversarial examples. In these exper-
iments, the fooling rate (top-1 target accuracy) on the validation set for the target
class m̊ = 919 (street sign) and m̊ = 920 (traffic light, traffic
signal, stoplight) are 63.2 and 57.83%, respectively, which underlines the
effectiveness of our approach.

For assessing the generalization power of our proposed method across different
target classes and comparisonwithGAP [PKGB18],we followedPoursaeed et al. and
used 10 randomly sampled classes. The resulting average top-1 target accuracy, when
the adversarial perturbation is bounded by L∞(r) ≤ ε = 10, is 66.57%, which is
significantly higher than the one reported for GAP [PKGB18] with 52.0%.

Fig. 8 Examples of our targeted UAPs and adversarial examples. In these experiments, the source
model S is VGG-16 [SZ15], with L∞(r) ≤ ε = 10, α = 0.7. The pixel values in UAPs are scaled
for better visibility
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Fig. 9 Fooling rates (%) of our targeted UAPs on the ImageNet validation set for different sizes
of Xtrain in both white-box and black-box attacks. In the white-box setting, the source model
S and the target model T are VGG-16, while in the black-box setting, the source model S is
again VGG-16 and the target model T is VGG-19. Results are reported for L∞(r) ≤ ε = 10,
α = 0.7, and target class m̊ = 847 (tank, army tank, armored combat vehicle,
armoured combat vehicle)

To demonstrate the generalization power of our targeted UAPs w.r.t. unseen data,
we visualize the attack success rate obtained by the source model VGG-16, in white-
box and black-box settings, on the Image-Net validation dataset for different sizes
of Xtrain in Fig. 9. For instance, with Xtrain containing 10,000 images, we are able
to fool the target model on over 20% of the images in the ImageNet validation set.
It should be noted that training the generator G to produce a single UAP forcing
the target model to output a specific target class m̊ is an extremely challenging task.
However, we particularly observe that utilizing 10,000 training images again seems
to be sufficient for a white-box attack.

5 Experiments on Semantic Segmentation

We continue our investigations by applying our method to the task of semantic
segmentation to show its cross-task applicability. We start with the experimental
setup, followed by an evaluation of non-targeted and targeted attacks.

5.1 Experimental Setup

Dataset: We conduct our experiments on the widely known Cityscapes dataset
[COR+16]. It contains pixel-level annotations of 5,000 high-resolution images (2,975
training, 500 validation, and 1,525 test images) being captured in urban street scenes.
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Table 6 Themean intersection-over-union (mIoU) (%)of non-targetedUAPmethods on the seman-
tic segmentation model FCN-8 pretrained on Cityscapes. Our method is compared with GAP
[PKGB18]. In these experiments, both the source model S and the target model T are either the
same, i.e., S = T = FCN-8, or different, i.e., S = ERFNet, T = FCN-8. Parameters are set to
L∞(r) ≤ ε, α = 0.7. Best results are printed in boldface

(a) S = T = FCN-8

Method ε

2 5 10 20

GAP 18.1 12.8 4.0 2.1

Ours 16.2 9.8 2.0 0.3

(b) S = ERFNet, T = FCN-8

Method ε

2 5 10 20

GAP 27.3 16.4 7.0 4.3

Ours 26.4 14.8 4.1 1.5

The original images have a resolution of 2048 × 1024 pixels, that we downsample
to 1024 × 512 for our experiments [MCKBF17, PKGB18].

Network architecture: Regarding the architecture of the source model S, we use
FCN-8 [LSD15] for white-box attacks, and ERFNet [RABA18] for the black-box
setting. FCN-8 consists of an encoder part which transforms an input image into a
low-resolution semantic representation and a decoder part which recovers the high
spatial resolution of the image by fusing different levels of feature representations
together. ERFNet also consists of an encoder-decoder structure, but without any
bypass connections between the encoder and the decoder. Additionally, residual
units are used with factorized convolutions to obtain a more efficient computation.

In our experiments, we consider FCN-8 [LSD15] as our segmentation target
model T , and use L∞ norm, to be comparable with [MCKBF17, PKGB18].
Evaluationmetrics: To assess the performance of a semantic segmentation network,
we used the mean intersection-over-union (mIoU) [COR+16]. It is defined as

mIoU = 1

|M|
∑

μ∈M

TPμ

TPμ + FPμ + FNμ
, (6)

with classμ ∈ M, class-specific true positives TPμ, false positives FPμ, and false neg-
atives FNμ. For assessing the impact of non-targeted adversarial attacks on semantic
segmentation, we compute the mIoU on adversarial examples [AMT18].
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To measure the attack success of our targeted attack, we compute the pixel
accuracy (PA) between the prediction m = T (xadv) and the target m̊ [PKGB18].
In this chapter, we restrict our analysis to the static target segmentation scenario
[MCKBF17] and use the same target mask as in [PKGB18, MCKBF17] (see also
Fig. 11).

5.2 Non-targeted Universal Perturbations

For the non-targeted case, we train our model with the non-targeted adversarial loss
function (2), where we use (4) as the cross-entropy loss. The maximum permissible
L p norm of the perturbations for p = ∞ is set to ε ∈ {2, 5, 10, 20}. We report results
for both ourmethod andGAP [PKGB18] on the Cityscapes validation set in Table6a.
It can be observed that across different values for ε our method is superior to GAP
in terms of decreasing the mIoU of the underlying target model.

We visualize the effect of the generated non-targeted UAPs in Fig. 10 by illus-
trating the original image, the UAP, the resulting adversarial example, the prediction
on the original image, the ground truth mask, and the resulting segmentation output.
Here, the maximum permissible L p norm of the perturbations p = ∞ is set to ε = 5.

For investigating the transferability of our generated UAPs, we use a UAP opti-
mized on ERFNet as the source model S and test it on the target model T being
FCN-8. Table6b reports black-box attack results for our method compared to the
attack method GAP [PKGB18]. Our non-targeted UAPs decrease the mIoU of the
FCN-8 on the Cityscapes dataset more than GAP [PKGB18] does, in all different
ranges of adversarial perturbations (ε ∈ {2, 5, 10, 20}). These results illustrate the
effectivity of the generated perturbation.

5.3 Targeted Universal Perturbations

In the targeted case, we aim at finding a UAP which forces the segmentation source
model S and the segmentation target model T to predict a specific target mask
m̊. We now train our model with the targeted adversarial loss function (5), using
JCE(y, ẙ) according to (4) for the cross-entropy loss. We apply the same target ẙ as
in [PKGB18], see m̊ in Fig. 11e.

Figure11 depicts an original image, our generated targeted UAP, the respective
adversarial example, the prediction on the original image, the target segmentation
mask, and the prediction on the adversarial example. The results show that the gen-
erated UAP resembles the target mask and is able to fool the FCN-8 in a way that it
now outputs the target segmentation mask.
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Fig. 10 An example of our non-targeted UAPs optimized for the task of semantic segmentation on
the Cityscapes dataset. Results are displayed on the Cityscapes validation set. In these experiments,
both the source model S and the target model T are FCN-8, with L∞(r) ≤ ε = 5, α = 0.7. The
pixel values in the UAP are scaled for better visibility

Fig. 11 An example of our targeted UAPs optimized for the task of semantic segmentation on the
Cityscapes dataset. Results are displayed on the Cityscapes validation set. In these experiments,
both the source model S and the target model T are FCN-8, with L∞(r) ≤ ε = 10, α = 0.7. The
pixel values in the UAP are scaled for better visibility

We compare our targeted attack with two state-of-the-art methods in Table 7.
While our method performs comparably well as state of the art for weak attacks,
in medium to strong attacks we outperform both GAP [PKGB18] and UAP-Seg
[MCKBF17].
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Table 7 Pixel accuracy (%) of targetedUAPmethods (white-box attack) on the semantic segmenta-
tion model FCN-8 pretrained on the Cityscapes training set. Results are reported on the Cityscapes
validation set. Our method is compared to UAP-Seg [MCKBF17] and GAP [PKGB18]. In these
experiments, both the source model S and the target model T are FCN-8, with L∞(r) ≤ ε,α = 0.7.
Best results are printed in boldface

Method ε

2 5 10 20

GAP 61.2 79.5 92.1 97.2

UAP-Seg 60.9 80.3 91.0 96.3

Ours 61.0 81.8 93.1 97.4

6 Conclusions

We presented a novel method to effectively generate targeted and non-targeted uni-
versal adversarial perturbations (UAPs) in both white-box and black-box settings.
Our proposed method shows new state-of-the-art fooling rates for targeted as well
as non-targeted UAPs on different classifiers. Additionally, our non-targeted UAPs
show a significantly higher transferability across models when compared to other
methods, given that we generated our UAPs on the deepest network in the inves-
tigation. This is achieved by incorporating an additional loss term during training,
which aims at increasing the activation of the first layer. Finally, we extended our
method to the task of semantic segmentation to prove its applicability also in more
complex environment perception tasks. Due to its state-of-the-art effectiveness for
object classification and semantic segmentation, we strongly recommend to employ
the proposed types of attacks in validation of automated vehicles’ environment per-
ception.
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