
Joint Optimization for DNN Model
Compression and Corruption Robustness

Serin Varghese, Christoph Hümmer, Andreas Bär, Fabian Hüger,
and Tim Fingscheidt

Abstract Modern deep neural networks (DNNs) are achieving state-of-the-art
results due to their capability to learn a faithful representation of the data they are
trained on. In this chapter, we address two insufficiencies of DNNs, namely, the
lack of robustness to corruptions in the data, and the lack of real-time deployment
capabilities, that need to be addressed to enable their safe and efficient deployment
in real-time environments. We introduce hybrid corruption-robustness focused com-
pression (HCRC), an approach that jointly optimizes a neural network for achieving
network compression along with improvement in corruption robustness, such as
noise and blurring artifacts that are commonly observed. For this study, we primarily
consider the task of semantic segmentation for automated driving and focus on the
interactions between robustness and compression of the network. HCRC improves
the robustness of the DeepLabv3+ network by 8.39% absolute mean performance
under corruption (mPC) on the Cityscapes dataset, and by 2.93% absolute mPC
on the Sim KI-A dataset, while generalizing even to augmentations not seen by
the network in the training process. This is achieved with only minor degradations
on undisturbed data. Our approach is evaluated over two strong compression ratios
(30% and 50%) and consistently outperforms all considered baseline approaches.
Additionally, we perform extensive ablation studies to further leverage and extend
existing state-of-the-art methods.

S. Varghese (B) · C. Hümmer · F. Hüger
Volkswagen AG, Berliner Ring 2, 38440 Wolfsburg, Germany
e-mail: john.serin.varghese@volkswagen.de

C. Hümmer
e-mail: christoph.heummer@volkswagen.de

F. Hüger
e-mail: fabian.hueger@volkswagen.de

A. Bär · T. Fingscheidt
Institute for Communications Technology (IfN), Technische Universität Braunschweig,
Schleinitzstr. 22, 38106 Braunschweig, Germany
e-mail: andreas.baer@tu-bs.de

T. Fingscheidt
e-mail: t.fingscheidt@tu-bs.de

© The Author(s) 2022
T. Fingscheidt et al. (eds.), Deep Neural Networks and Data for Automated Driving,
https://doi.org/10.1007/978-3-031-01233-4_15

405

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01233-4_15&domain=pdf
mailto:john.serin.varghese@volkswagen.de
mailto:christoph.heummer@volkswagen.de
mailto:fabian.hueger@volkswagen.de
mailto:andreas.baer@tu-bs.de
mailto:t.fingscheidt@tu-bs.de
https://doi.org/10.1007/978-3-031-01233-4_15

406 S. Varghese et al.

1 Introduction

Motivation: Image classification [KBK20], object detection [YXC20], machine
translation [SVS19], and reading comprehension [ZHZ11] are just some of the tasks
where deep neural networks (DNNs) excel at. They have proven to be an effectiveway
to extract information from enormous amounts of data, and they are only expected
to become more advanced over time. Despite their rapid progress, two insufficien-
cies of DNNs need to be addressed before deployment in real-time systems. First,
in real-world applications, the edge devices on which these networks are deployed
have limited capabilities in terms of the availability of memory and computational
complexity (operations per second) that are required for neural network deployment.
Second, the DNNs suffer from being not robust to even slight changes in the input
(such as noise and weather conditions), which makes deployment in safety-critical
applications challenging (Fig. 1).

Lack of DNN efficiency: To overcome the lack of efficiency, techniques such as
pruning [HZS17, MTK+17, TKTH18], quantization [CLW+16, JKC+18, JGWD19]
including quantization-aware trainings [GAGN15], knowledge distillation [HVD14],
and encoding techniques [HMD16] are commonly used. All of these strategies seek
to take advantage of the available redundancy in large DNNs to achieve run-time
speedup.

Lack of DNN robustness: In addition to this insufficiency, recent studies [AMT18,
HD19, BHSFs19] show that DNNs are not robust to even slight changes to the input
image. These changes vary from carefully crafted perturbations called adversarial
attacks [XLZ+18, DFY+20, BKV+20], to real-world augmentations such as snow,
fog, additive noise, etc. [HD19]. The changes in the input image could vary from
changes in just a few pixels [SVS19] to more global changes such as contrast and
brightness [ZS18]. In the real world, such local or global changes are to be expected.
For example, varying lighting conditions or foggy weather conditions can cause
changes in the brightness and contrast of the input image.

Fig. 1 Automated driving functions underly the two possibly opposing goals of compression and
robustness. Approaches in the compression paradigm (left) are focused on enabling real-time effi-
cient networks and rarely consider the effect of such a compression on the robustness properties
of the network. Similarly, the robustness paradigm (right) typically does not consider real-time
properties of the network

Joint Optimization for DNN Model Compression and Corruption Robustness 407

In this chapter, we tackle the insufficiencies that were mentioned above and intro-
duce hybrid corruption-robustness focused compression (HCRC), an approach to
jointly optimize a neural network for achieving network compression along with
improvement in corruption robustness. By corruption, we refer to real-world aug-
mentations, such as noise, blur, weather conditions, and digital effects, which are
commonly occurring in the real world, and are therefore of significance. Our major
contributions in this chapter are described below.

First, HCRC focuses on real-world corruption robustness and proposes a hybrid
compression strategy, combining pruning and quantization approaches. We obtain a
more robust and compressed network and also perform comparisons with sequential
application of robustification and compression methods. Second, we approach the
problem of robustness by training with augmentations in a controlled severity fash-
ion. With our method, we show a further improvement under corruption (rPC) not
only to the corruptions used during training but also to unseen corruptions including
noise and blurring artifacts. Third, since all themethods discussed so far are only eval-
uated on small datasets for image classification, such asMNIST [LBBH98], CIFAR-
10 [Kri09], and SVHN [NWC+11], there remains the question of their transferability
to complex tasks, such as semantic segmentation [XWZ+17]. We, for the first time,
perform such a study on two road-scenes datasets (Cityscapes [COR+16] and Sim
KI-A) and a state-of-the-art semantic segmentation DeepLabv3+ [CPK+18] net-
work. sss

This chapter is structured as follows: In Sect. 3, we describe the individual compo-
nents of such a system and our HCRC methodology in detail. In Sect. 4, we describe
the corruptions that are used during training and evaluation, the datasets that are
used, and the metrics used in the experiments. In Sect. 5, we present our experimen-
tal results and observations. Finally, in Sect. 6, we conclude our chapter.

2 Related Works

It is only recently that there have been studies to investigate the interaction between
the two techniques, model compression and network robustness that tried to individ-
ually address the above-mentioned insufficiencies of DNNs.

Zhao et al. [ZSMA19] report one of the first investigations to empirically study
the interactions between adversarial attacks and model compression. The authors
observe that a smaller word length (in bits) for weights, and especially activa-
tions, makes it harder to attack the network. Building upon the alternating direction
method of multipliers (ADMM) framework introduced by Ye et al. [YXL+19], Gui
et al. [GWY+19] evaluated the variation of adversarial robustness (FGSM [GSS15]
and also PGD [MMS+18]) with a combination of various compression techniques
such as pruning, factorization, and quantization. In summary, so far we observe that
network compression affects adversarial robustness, and a certain trade-off exists
between them. The extent of the trade-off and the working mechanism behind it
remains unsolved [WLX+20].

Some works have used compression techniques such as pruning and quantiza-
tion that were traditionally used to obtain network compression, to improve the

408 S. Varghese et al.

robustness of networks. For example, Lin et al. [LGH19] use quantization not for
acceleration of DNNs, but to control the error propagation phenomenon of adver-
sarial attacks by quantizing the filter activations in each layer. On a similar line,
Sehwag et al. [SWMJ20] propose to select the filters to be pruned by formulating
an empirical minimization problem by incorporating adversarial training (using the
PGD attack [MMS+18]) in each pruning step. Very recently, in addition to proposing
the newevaluation criterionAER (that stands for accuracy, efficiency, and robustness)
for evaluating the robustness and compressibility of networks, Xie et al. [XQXL20]
describe a blind adversarial pruning strategy that combines adversarial training along
with weight pruning.

In this chapter, we focus on real-world corruption robustness as opposed to the
robustness to adversarial attacks. Additionally, we focus on the study of the inter-
actions between robustness, quantization, and pruning methods within our proposed
approach, supported by ablation studies.

3 HCRC: A Systematic Approach

Our goal is to improve the robustness of common image corruptions and at the same
time reduce thememory footprint of semantic segmentation networks in a systematic
way. In this section, we describe our systematic hybrid corruption-robustness focused
compression (HCRC) approach to achieve compressed models that are also robust
to commonly occurring image corruptions. Our proposed system can be broadly
divided into two objectives: the robustness objective and the compression objective.
Both will be described in the following subsections.

3.1 Preliminaries on Semantic Segmentation

Wedefine x ∈ I
H×W×C to be a clean image of the datasetX , with the image height H ,

image width W , C=3 color channels, and I = [0, 1]. The image x is an input to a
semantic segmentation networkF(x, θ)with network parameters θ . Further, we refer
to a network layer using an index � ∈ L = {1, . . . , L}, withL being the set of layer
indices. Within layer � we can define θ �,k ∈ R

H� × W� to be the kth kernel, where
k ∈ K� = {1, . . . , K�}, with the set of kernel indicesK� of layer �. The image input
x is transformed to class scores by

y = F(x, θ) ∈ I
H×W×S . (1)

Each element in y=(yi,s) is a posterior probability yi,s(x) for the class s ∈ S =
{1, 2, . . . , S} at the pixel position i ∈ I = {1, . . . , H · W } of the input image x, and
S denoting the number of semantic classes.A segmentationmaskm = (mi) ∈ SH×W

can be obtained from these posterior probabilities with elements

Joint Optimization for DNN Model Compression and Corruption Robustness 409

mi = argmax
s∈S

yi,s, (2)

by assigning a class to each pixel i . The accuracy of the prediction is evaluated by
comparing this obtained segmentationmaskm against the labeled (ground truth) seg-
mentation mask m ∈ M, that has the same dimensions as the segmentation mask m.
Likewise, y ∈ {0, 1}H×W×S is the one-hot encoded vector ground truth in three-
dimensional tensor format that can be retrieved from m.

3.2 Robustness Objective

Data augmentation: In Fig. 2, the green data augmentation block on the left depicts
the image pre-processing method following Hendryks et al. [HMC+20]. Here, the
input image is augmented by mixing randomly sampled corruptions. The key idea is
to introduce some amount of randomness in both, the type and the superposition of
image corruptions. To achieve this, the input image is first split into three parts and
then passed as an input to the data augmenter sub-blocks. Within a data augmenter
sub-block, initially, a uniformly sampled corruption An ∈ Atrain is applied to the
input. Here, Atrain = {A1, A2, . . . , AN } denotes a set of N pre-defined corruption
functions An() that are used during training. The corresponding corrupted image is
computed as

x̃ = An(x, �) ∈ I
H×W×C , (3)

where An(x, �) is the image corruption function and � is a parameter controlling
the strength of the applied augmentation. This random sampling and augmentation
operation is repeated consequently R = 4 times within each of the data augmenter
sub-blocks.

Fig. 2 Overview of the data augmentation strategy (left) and loss construction (right) for a semantic
segmentation DNN

410 S. Varghese et al.

The output of each of the N data augmenter sub-blocks is, therefore, an augmented
image

x̃n =
R∑

r=1

x̃(r)
n =

R∑

r=1

A(r)
n (x, �), n ∈ {1, 2, . . . , N }, (4)

that is a combination of R applications of corruptions from Atrain. Choosing N =3,
these outputs are first passed to multipliers with weights w1, w2, and w3, which
are sampled from a Dirichlet distribution PDirichlet and then added. Thereafter, the
added output is multiplied by a factor γ that is sampled from a beta distributionPBeta

with parameters α=1 and β=1. Further, this is added to the input image x, which
is multiplied by a factor 1 − γ to obtain the augmented image x̃(b), with b ∈ B =
{1, 2, . . . , B} denoting the index among the B final augmented images being used
in our proposed training method. Note that B + 1 is our minibatch size, where one
original image and B augmented images are being employed.

Construction of losses: In Fig. 2, the gray block on the right shows the strategy to
construct losses from the predictions of the semantic segmentation network. Follow-
ing (1), ỹ(b) denotes the class scores for an augmented input image x̃(b). In addition
to the aforementioned data augmentation strategy in the pre-processing stage, a loss
function with an auxiliary loss term is introduced to enforce regularization between
the responses of the semantic segmentation network to clean and augmented images
in the training stage. The total loss is defined as

J = JCE + λJ JSD, (5)

where JCE is the cross-entropy loss and J JSD is the auxiliary loss, also called the
Jenson-Shannon divergence (JSD) loss [MS99]. The λ term is a hyper-parameter
introduced to adjust the influence of J JSD on the total loss J . The cross-entropy
loss JCE is computed between the posterior probabilities y of the network conditioned
on input x and its corresponding labels y. It is defined as

JCE = − 1

|I|
∑

i∈I

∑

s∈S
αs yi,s · log(yi,s), (6)

by taking a mean over all pixels for the posterior probability y, where αs are the
weights assigned to each class during training, following [WSC+20]. The auxiliary
loss, or the Jenson-Shannon Divergence (JSD) loss, is defined as

J JSD = 1

B + 1
· (KL(y, ẙ) +

∑

b∈B
KL(ỹ(b), ẙ)). (7)

It is computed between the posterior probabilities y and ẙ or ỹ(b), where b ∈ B =
{1, . . . , B}. Note that ẙ = 1

B+1 · (y + ∑
b∈B ỹ(b)) being the mixtures of the prob-

abilities, and ỹ(b) = F(x̃(b), θ). The auxiliary JSD loss is introduced to reduce the

Joint Optimization for DNN Model Compression and Corruption Robustness 411

variation in the probability distributions of the predictions between a clean input and
an augmented input. To do this, two Kullback-Leibler (KL) divergence terms are
introduced in (7), e.g.,

KL(ỹ(b), ẙ) =
∑

i∈I
ỹ(b)
i log

(
ỹ(b)
i

ẙi

)
, (8)

defining a distribution-wise measure of how one probability distribution (here: ỹ(b))
differs from the reference mixture distribution (here: ẙi).

3.3 Compression Objective

Network pruning:We define a neural network as a particular parameterization of an
architecture, i.e., F(x, θ) for specific parameters θ . Neural network pruning entails
taking as input a model F(x, θ) and producing a new network F(x, M � θ̃). Here θ̃

is the set of parameter values that may be different from θ , but both sets are of the
same size |θ | = |θ̃ |, and M ∈ {0, 1}|θ̃ | is a binary mask that forces certain parameters
to be 0, while � is the element-wise product operator. In practice, rather than using
an explicit mask, pruned parameters of θ are fixed to zero and are removed entirely.

We focus on producing a pruned network F(x, M � θ̃) from a network F(x, θ0),
where θ0 is either sampled from an initialization distribution, or retrieved from a
network pretrained on a particular task. Most neural network pruning strategies build
upon [HPTD15], where each parameter or structural element in the network is issued
a score, and the network is pruned based on these scores. Afterward, as pruning
reduces the accuracy of the network, it is trained further (known as fine-tuning) to
recover this lost accuracy. The process of pruning and fine-tuning is often iterated
several times (iterative pruning) or performed only once (one-shot pruning).

In this chapter, we adopt the magnitude-based pruning approach [HPTD15] that
is described in Algorithm1. Although there exists a large body of more sophisti-
cated scoring algorithms, the gain with such algorithms is marginal, if at all exist-
ing [MBKR18]. Based on the number of fine-tuning iterations F iter, the number of
filter weights to be pruned Fpruned (see Algorithm1), the total number of prunable
filter weights F total, and the type of pruning (see Algorithm1, Iterative Pruning), the
function returns a sparser network θpruned and the binary weight mask M.

412 S. Varghese et al.

Algorithm 1 Magnitude-Based Filter Pruning and Fine-Tuning (Iterative Pruning)
1: Input: F iter, the number of iterations of fine-tuning,
2: X train, the dataset to train and fine-tune,
3: F total, the total number of prunable filter weights,
4: Fpruned, the number of filter weights to be pruned, and
5: IterativePruning, a boolean. If true: iterative pruning, if false: one-shot

pruning.
6: θ ← initialize() � Random/ImageNet pretrained weights initialization
7: θ ← trainToConvergence(F(x, θ)) � Standard network training
8: M ← rank(θ , Fpruned) � Filter weight rank computation (one-shot pruning)
9: for i in 1 to F iter do
10: if IterativePruning then
11: Fcurrent ← 1 − (Fpruned/F total)i/F

iter � Adapt rule of pruning to iterative pruning
12: M ← rank(θpruned, Fcurrent) � Updating M
13: end if
14: θpruned ← fineTune(F(x, M � θ)) � Network fine-tuning with sparsed weights
15: end for
16: Output: θpruned, the pruned network,
17: M, the binary weight mask vector

Quantization: Low precision fixed-point representations replace floating-point
number representations in fixed-point scalar quantization methods. Fixed-point
scalar quantization operates on single weights θ�,k, j of the network parameters,
where the floating-point format weights are generally replaced by Q-bit fixed-point
words [GAGN15],with the extreme case of binarization (Q = 1) [CBD15].We focus
on this uniform rounding scheme instead of other non-uniform schemes because it
allows for fixed-point arithmetic with implementations in PyTorch. Quantization
of network weights contributes to a large reduction in the model size and gives pos-
sibilities for acceleration on target hardware. In-training quantization (ITQ) refers to
training a network by introducing quantization errors (12) in the network weights,
and post-training quantization (PTQ) refers to quantizing the weights of a network
after the training process by calibrating on the X train and/or the X val set. Figure 3
gives an overview of the in-training quantization (ITQ) and post-training quantiza-
tion (PTQ) methods that are used in this chapter. Here, θ corresponds to the neural
network which is the input to the quantization methods, and θquant refers to the fixed-
point quantized codewords with lower precision. To do so, in the first block, the
statistics for the scale factor

ρ�,k = max j θ�,k, j − min j θ�,k, j

2Q − 1
, (9)

which defines the spacing between bins, and the bias

δ�,k = round

(
min j θ�,k, j

ρ�,k

)
(10)

Joint Optimization for DNN Model Compression and Corruption Robustness 413

Fig. 3 Overview of quantization methods used in this work. Top: Within the in-training quantiza-
tion (ITQ), for each iteration, based on the computed scale ρ = (ρ�,k) (9) and bias δ = (δ�,k) (10)
terms, the network parameters θ are first quantized to θquant (11). Thereafter, each element in θ

quant
�,k, j

is converted back to its floating-point representation based on a LUT (12). Bottom: Within the
post-training quantization (PTQ), similar statistics (ρ, δ) for a trained network are computed on the
training and validation set and the network is quantized to θquant (11)

by which the codewords are shifted, are computed. Here, j ∈ J�,k , with J�,k is the
set of parameter indices of kernel k in layer �. Thereafter, for both ITQ and PTQ,
each weight θ�,k, j is mapped to its closest codeword θ

quant
�,k, j by quantizing θ�,k, j using

θ
quant
�,k, j = min(qmax,max(qmin, round(θ�,k,j/ρ�,k + δ�,k))). (11)

Here, qmin and qmax correspond to the minimum and maximum of the range of quan-
tization levels depending on the chosen Q- bit quantization. For example, for an
8-bit quantization, qmin =0 and qmax=255. For ITQ training, the quantized param-
eters θ

quant
�,k, j are converted back to floating-point representation θ

QA
�,k, j based on an

integer-float lookup table (LUT) following

θ
QA
�,k, j = (θ

quant
�,k,i − δ�,k) · ρ�,k . (12)

This means that quantization errors are introduced within the network parame-
ters θQA, which are then used within the training process. For PTQ, the quantized
parameters θquant are directly used in the evaluation of the semantic segmentation
network.

In this chapter, we focus on the uniform rounding scheme instead of other non-
uniform schemes, because it allows for fixed-point arithmetic with implementations
in PyTorch. Throughout this chapter, we use a strong quantization of Q=8 bits to
enable higher acceleration on edge devices.

414 S. Varghese et al.

Fig. 4 Overview of our training strategy to co-optimize for corruption robustness along with
network compression by the use of augmentation training,weight pruning, and quantizationmethods

3.4 HCRC Core Method

Within the HCRC framework, we systematically combine the robustness
(Sect. 3.2), pruning, and quantization (Sect. 3.3) methods to co-optimize both robust-
ness and compression objectives. Figure 4 gives an overview of our training strategy.
The green block on the top depicts the augmentation strategy of the input image data
and the consequent construction of losses. For each input image x, the augmented
images x̃(b) are initially computed and passed to the semantic segmentation network.
The total loss (5) is then computed based on the clean and corrupted image pre-
dictions. The orange block on the bottom depicts the quantization of the network
weights and activations and the blue block contains the pruning module. We start by
initializing the network parameters. In each training iteration, the scale factor (9) and
the bias (10) are computed, and the network parameters are quantized (11). Addi-
tionally, in each training epoch, we use iterative pruning which continually prunes a
certain percentage of the weights of the network (see blue block in Fig. 4).

4 Experimental Setup

In this section, the details of the semantic segmentation network, the road-scenes
datasets, and the semantic segmentation networks that have been used in this chapter
are initially described. The image corruptions that are applied in both phases, training
and evaluation, are then introduced. Finally, the evaluation metrics are described.

Joint Optimization for DNN Model Compression and Corruption Robustness 415

4.1 Datasets and Semantic Segmentation Network

Our dataset splits are summarized in Table 1. For Cityscapes [COR+16], the base-
line networks are trained with the 2,975 images of the training set X train

CS . Due to
the Cityscapes test set upload restrictions, we split the official validation set into
two sets-a mini validation set X val

CS (Lindau, 59 images) and a mini test set X test
CS

(Frankfurt andMünster, 441 images). The images have a resolution of 2,048×1,024.
The Sim KI-A dataset is an artificially generated dataset with 4,257 training (X train

Sim),
387 validation (X val

Sim) and 387 test (X test
Sim) images. The images have a resolution of

1,920×1,080.
In this chapter, we use the DeepLabv3+ [CBLR18] semantic segmentation net-

work with ResNet-101 backbone [HZRS16]. For both datasets, the baseline net-
work, that is the network without any augmentation or compression, is trained with a
crop size of 513 × 513and abatch size of 4on anNvidia Tesla V100GPU.The
class frequency-weighted cross-entropy loss JCE (6) in combination with stochastic
gradient descent (SGD) are used as optimization criterion and optimizer, respec-
tively. During training, a polynomial learning rate scheme with an initial learning
rate of 0.01 and a power of 0.9 is applied. The network is trained to convergence
for 100 epochs on the Cityscapes dataset and 50 epochs for the Sim KI-A dataset.
For a fair comparison, all the networks are evaluated on an Intel(R) Xeon(R)
Gold 6148 CPU.

4.2 Image Corruptions

The images corruptions used in this chapter are described in Table 2. These cor-
ruptions are split into two different categories depending on their usage, i.e., either

Table 1 Details of the road-scenes datasets used in the experiments. The image resolution of the
dataset images and split into training, validation, and test sets are described

Dataset Resolution X train X val X test

Cityscapes [COR+16] 2,048 × 1,048 2,975 59 441

Sim KI-A 1,920 × 1,080 4,257 387 387

Table 2 Types of image corruptions used in this work that are arranged in two categories, based
on their usage in either the training Atrain or test Atest phases

Category Corruption type

Atrain Auto-contrast, equalize, posterize, color, sharpness, Gaussian blur, spatter,
saturation

Atest Gaussian noise, shot noise, impulse noise, defocus blur, frosted glass blur, motion
blur, zoom blur

416 S. Varghese et al.

Table 3 Corruptions and their parameterization used during training are listed. A dash (-) indicates
that the corruption function is image-dependent and does not need any parameterization. An interval
[a, b] indicates that the respective parameter is a real numberR sampled uniformly from this interval

Corruption type Auto-contrast Equalize Posterize Color

Parameterization – – [0, 4.0] [0.25, 4.0]

Corruption type Sharpness Gaussian blur Spatter Saturation

Parameterization [0.25, 4.0] 8 {0.65, 0.5, 0.3,
0.7, 0.65}

{1.5, 0.1}

during training or during test. The corruptions Atest in the test process are adopted
from the neural network robustness benchmark1 from [HD19]. The corruptionsAtrain

used in the training process are adopted following a large body of work [HMC+20,
CZM+19, TPL+19, SK19] that use these corruptions in different ways for training
with data augmentation. Table 3 gives an overview of the parameterization of each
corruption within Atrain. For spatter corruption, the list of parameters corresponds
to the location, scale, two sigma, and threshold values, respectively. For saturation
corruption, the list of parameters corresponds to the amount of saturation and the
scale. For posterize, color, and sharpness corruptions, the parameter is sampled from
within the given interval.

Definition of severities: Various kinds of data augmentations exist, and it is rather
difficult to compare between different augmentation types, although first attempts are
known [KBFs20]. Let us take an example of brightness and contrast augmentations.
We can increase or decrease the brightness and contrast values for a given input image
bymanipulating the image pixel values. An increase in the brightness and an increase
in the contrast do not necessarily correspond to the same effect on the input image.
To standardize the method of measuring the strength of augmentations irrespective
of the augmentation type, the structural similarity (SSIM) metric [WBSS04] is used.
To do this, SSIM is computed between the clean input image x and the augmented
image x̃(b). Here, SSIM(x, x̃(b))=0 indicates that the image x and the corresponding
augmented image x̃(b) are completely dissimilar. Similarly, SSIM(x, x̃(b))=1 indi-
cates that the image x and the corresponding augmented image x̃(b) are identical, or
no augmentation is applied. We define severity levels (V) to indicate the strength
of the augmentation. Severity level V =0 indicates that no type of augmentation is
applied to the input image and severity level V =10 indicates that the input image
is completely dissimilar after the augmentation. This means that for every increase
in level in V , the SSIM between the clean input image and the augmented image
reduces by 0.1. To control the severity of the data augmentation during training, the
parameters (α, β) of the γ -function are varied (see Fig. 2) by keeping the corruption
parameters constant following Table 2.

1 https://github.com/hendrycks/robustness.

https://github.com/hendrycks/robustness

Joint Optimization for DNN Model Compression and Corruption Robustness 417

4.3 Metrics

Mean intersection-over-union (mIoU) between the predictions of the semantic
segmentation network and the human-annotated ground truth labels is commonly
used for evaluating semantic segmentation networks. The mIoU is defined as

mIoU= 1

S

∑

s∈S

TP(s)

TP(s) + FP(s) + FN(s)
=mIoU(y, y), (13)

where TP(s), FP(s), and FN(s) are the class-specific true positives, false positives, and
false negatives, respectively, computed between segmentation output y and ground
truth one-hot encoded segmentation y.

Mean performance under corruption (mPC) has been introduced by [HD19]
for evaluating the robustness of neural networks under varying corruptions and vary-
ing strengths. For this purpose, the individual augmentations An ∈ Atest are further
sub-divided with respect to the strength of the augmentations. We use the augmen-
tations Atest (see Table 2) for the computation of mPC. This is computed by

mPC = 1

|Atest|
|Atest |∑

c=1

1

Nc

Nc∑

V=1

mIoUc,V , (14)

with corruption index c and Nc denoting the amount of severity conditions for a cor-
ruption c. Here, mIoUc,V denotes the mIoU (13) of the model under the corruption c
and severity V . The key factor here is choosing the severities, as this can vary on dif-
ferent datasets, and even models, depending on the selection criteria. In this chapter,
we use the SSIMmetric [HD19] as a means of finding severity thresholds. Using this
metric allows for standardized severities across a dataset, as it is task- and model-
agnostic. Thus, different robustness improvement methods can be benchmarked and
compared easily using the mPC metric.

Relative performance under corruption (rPC) is simply the ratio of the mPC and
the mIoU of the semantic segmentation under the corruptions during evaluation, and
is defined as

rPC = mPC

mIoU
. (15)

4.4 Training Framework

For the task of achieving robust and compressed semantic segmentation networks,
one can envision various different ways to approach it. An overview of all possible
approaches is given in Fig. 5. For all the reference models, we start from the pre-
trained checkpoint weights of the ResNet-101 backbone for the DeepLabv3+
architecture.

418 S. Varghese et al.

Fig. 5 The training approaches used in this work are depicted. In addition to the simple baselines
(Reference A, and Reference B), we compare our HCRC approach against sequential applications
(Reference C, and Reference D) of the individual steps in the training framework

Reference A: In this approach, the DeepLabv3+ network with the ResNet-101
backbone is trained for improving its corruption robustness. Here, no compression
techniques are applied. The network is trained using the protocol defined in Sect. 4.1
with the total loss (5) and λ=10−6.

Reference B: Here, the DeepLabv3+ undergoes one-shot pruning (see Algo-
rithm 1). First, the network is trained using the protocol defined in Sect. 4.1 with
the class frequency weighted cross-entropy loss (6). Next, the statistics (9), (10) are
computed on the X train and X val set and the network undergoes PTQ (see Fig. 3). No
robustness-related training is enforced.

Reference C: In this configuration, we perform sequential application of the robust-
ness and compression goals. In the first step, the DeepLabv3+ is trained using the
protocol defined in Sect. 4.1 with the total loss (5) and λ=10−6 (see also Reference
A) in combination with the data augmentation strategy described in Sect. 3.2 (see
Fig. 2). Next, the network undergoes iterative pruning (see Algorithm1) following
again the protocol defined in Sect. 4.1, this time with the class frequency weighted
cross-entropy loss (6). Finally, statistics (9), (10) are computed on theX train andX val

set and the network undergoes PTQ (see Fig. 3).

Reference D: In this setup, the DeepLabv3+, the network is first one-shot pruned
(seeAlgorithm1) and thenfine-tuned following the protocol defined inSect. 4.1 using

Joint Optimization for DNN Model Compression and Corruption Robustness 419

the class frequency weighted cross-entropy loss (6). In the next step, the network
is trained with the data augmentation strategy described in Sect. 3.2 (see Fig. 2)
following again the protocol defined in Sect. 4.1, however, this time the total loss J (5)
is used as the optimization criterion. Finally, statistics (9, 10) are computed on the
X train and X val set and the network undergoes PTQ (see Fig. 3).

5 Experimental Results and Discussion

5.1 Ablation Studies

In-training quantization (ITQ) vs. post-training quantization (PTQ)We hypoth-
esize that training the network with quantization errors is better than quantizing the
network after training.

In Table 4, we compare these two approaches of achieving quantized networks.
The baseline DeepLabv3+ network has an mIoU of 69.78% and mPC of 44.03%.
On one hand, we observe that mIoU drops by 5.35% and mPC by 2.76% (both:
absolute) after PTQ. On the other hand, the drop in mIoU is only 1.8% after ITQ,
within no change in mPC. This result supports the abovementioned hypothesis on
quantization, that in-training quantization is superior to post-training quantization.
Additionally, we increased the size of the calibration set used within PTQ by also
including X val along with X train. This, however, resulted in no significant changes in
the performance of the quantized networks.

Controlled severity training: The semantic segmentation network is evaluated over
various corruptions and various severity levels. From our initial experiments, we
observed that the data corruptions used during the training process [HMC+20] have
a mean severity level of V = 1. It is intuitive that a network trained on data aug-
mentations of higher severity should be, in theory, more robust to higher severity
corruptions during test. To study the effect of the training severity on the robustness
of the trained semantic segmentation network, we train the DeepLabv3+ network
with three different severities of corruption. To do this, we vary the parameters of the

Table 4 Test set X test
CS evaluation of mIoU, mPC, and rPC comparing the non-quantized

DeepLabv3+ network, and the corresponding PTQ and ITQ networks that are trained to conver-
gence for 100 epochs. Note that the inference times are computed on the Intel(R) Xeon(R)
Gold 6148 CPU. Best numbers reported in bold

Method mIoU [%] (13) mPC [%] (14) rPC [%] (15) Time (s)

DeepLabv3+ 69.78 44.03 63.09 5.23

with PTQ 64.43 41.27 64.05 2.66

with ITQ 67.98 44.04 64.78 2.66

420 S. Varghese et al.

Table 5 Test setX test
CS evaluation based onmIoU,mPC, and rPCcomparing the threeDeepLabv3+

networks trained on augmentations of three different severity levels. Note that the networks are not
subjected to any kind of compression. Best numbers reported in bold

Method mIoU [%] (13) mPC [%] (14) rPC [%] (15)

DeepLabv3+ 69.78 44.03 63.09

Trained with severity
level V = 1

69.98 53.65 76.66

Trained with severity
level V = 2

69.54 56.14 80.73

Trained with severity
level V = 3

69.44 56.27 81.03

Fig. 6 Test set X test
CS evaluation for the DeepLabv3+ network trained with different corruption

severities. Left: The four networks are evaluated over the augmentationsAtest with six severity levels
(x-axis, severities V = 0, 1, . . . , 5). Right: The bar chart shows the mIoU on clean data (V = 0),
as well as mPC and rPC, computed over the same six severity levels (V = 0, 1, . . . , 5), for four
networks trained with severity V = 0 (baseline), 1, 2, and 3

beta distribution to increase the influence of the individual corruptions. The results
are shown in Table 5.

We generally observe that training with higher severities leads to higher robust-
ness in terms of the mPC. The DeepLabv3+ network trained with a severity level
of 3 has an increase of 2.62% absolute mPC and 4.36% absolute rPC when evaluated
on X test

CS . In Fig. 6, we show the results of evaluating these networks on six different
severity values. The networks trained with higher severities show higher robustness,
especially when evaluated on higher severities (V ≥3). Training with a higher sever-
ity (V ≥4) did not show any further improvements. A drop in the mIoU indicates
a certain trade-off between an increase in the generalization (to unseen corruptions)
capability of the network to a decrease in its performance on the clean (or vanilla)
input.

Joint Optimization for DNN Model Compression and Corruption Robustness 421

Table 6 Test set X test
CS evaluation based on mIoU, mPC, and rPC comparing the one-shot and

iterative pruning approaches for the DeepLabv3+ network. All the networks are trained with
augmentations of severity level 2. A Q = 8 bits quantization is applied to all the HCRC trainings.
Best numbers reported in bold

Method Pruning
Ratio [%]

mIoU [%]
(13)

mPC [%] (14) rPC [%] (15)

DeepLabv3+ 0 69.78 44.03 63.09

HCRC with one-shot pruning 30 66.06 50.80 76.89

HCRC with iterative pruning 30 68.12 52.50 77.07

HCRC with one-shot pruning 50 64.58 49.45 76.57

HCRC with iterative pruning 50 66.84 51.95 77.72

Sensitivity of the pruning algorithm: We perform an ablation study to analyze
the effect of the types of pruning methodology within our HCRC approach. To this
end, we train the DeepLabv3+ network in a combined fashion (see Sect. 3.4) with
two different types of pruning, namely, one-shot pruning and iterative pruning. In
Table 6, we provide the evaluation results of this study over two different pruning
ratios (30% and 50%). A pruning ratio of 30% indicates that 30% of the prunable
weights are removed from the network, while 70% are remaining. For quantization,
within all our experiments, we have used a strong quantization of Q = 8 bits.

For 30% pruning ratio, we observe that the iterative pruning method shows an
(absolute) increase in mIoU (2.06%), mPC (1.7%), and rPC (0.18%), when com-
pared to the one-shot pruning method, evaluated onX test

CS . For 50% pruning ratio, we
observe similar (absolute) improvements for iterative pruning in its mIoU (2.26%),
mPC (2.5%), and rPC (1.15%), computed over X test

CS .

5.2 Comparison With Reference Baselines

In this section, we compare our HCRC method (with iterative pruning) with the ref-
erence methods (see Sect. 4.4). In particular, we compare our HCRC method against
Reference C and Reference D, which also aim to achieve robust and compressed
segmentation networks.

For the Cityscapes dataset, the results of the evaluation are shown in Table 7.
We observe that our HCRC method outperforms all the relevant reference methods
for both pruning ratios. The reference A network with a pruning ratio of 0% shows
an improvement of 11.62% absolute mPC over the DeepLabv3+ baseline network
with a slight improvement in the mIoU. For 30% pruning, the HCRC shows signif-
icant improvements over the reference methods B, C, and D. The HCRC method
shows an improvement of 3.29% absolute mIoU and 9.14% absolute mPC over the
best reference (Reference D). Additionally, HCRC improves the robustness of the
DeepLabv3+ network by 8.47% absolute mPC with a 77.67% reduction in the

422 S. Varghese et al.

Table 7 Test set X test
CS evaluation comparing HCRC to reference methods A–D. A quantization

with Q = 8 bits quantization is applied to all trainings where compression is applied. Best numbers
reported in bold

Pruning
Ratio [%]

Method mIoU [%]
(13)

mPC [%] (14) rPC [%] (15) Model Size
(MB)

0 DeepLabv3+ 69.78 44.03 63.10 237.38

Reference A 69.98 53.65 76.67 237.38

30 Reference B 62.56 35.79 57.21 52.33

Reference C 64.28 37.13 57.76 52.33

Reference D 64.83 43.36 66.88 52.33

HCRC (ours) 68.12 52.50 77.07 52.33

50 Reference B 64.48 37.50 58.16 47.47

Reference C 66.05 36.52 55.29 47.47

Reference D 66.03 48.52 73.48 47.47

HCRC (ours) 66.16 51.95 77.72 47.47

model size. For 50% pruning ratio, we observe similar improvements in HCRC over
the reference methods B, C, and D. The HCRC method shows an improvement in
mIoU (2.13%) and mPC (2.91%) when evaluated onX test

CS and when compared to the
best reference (reference D). Overall, HCRCwith pruning ratio of 50% improves the
robustness of the DeepLabv3+ network by 7.92% absolute mPC with an almost
80% reduction in the model size.

For the Sim KI-A dataset, we similarly observe that our HCRC method outper-
forms all the relevant reference baselines for both the pruning ratios, see Table 8. The
reference A network with a pruning ratio of 0% shows an improvement of 12.98%
absolute mPC over the DeepLabv3+ baseline network with a slight improvement
in the mIoU. For 30% pruning, the HCRC shows significant improvements over the
reference methods B, C, and D. The HCRCmethod shows an improvement of 2.33%
absolute mIoU and 5.09% absolute mPC over the best reference (Reference D). For
50% pruning ratio, we observe similar improvements in HCRC over the reference
methods B, C, and D. The HCRC method shows an improvement in mIoU (1.04%)
and mPC (3.68%) when evaluated on X test

Sim and when compared to the best reference
(reference D). Overall, HCRC with pruning ratio of 50% improves the robustness of
the DeepLabv3+ network by 7.60% absolute mPC with an almost 80% reduction
in the model size.

Interestingly, the clean performance of our compressed HCRC network is nearly
the same as the uncompressed DeepLabv3+ baseline, albeit with much improved
robustness. We also show qualitative results in Fig. 7 for impulse noise of severity
level V = 3, where we observe a significant improvement over the simpler reference
B baseline. In summary, our proposed HCRC approach to co-optimize for corruption
robustness and model compression outperforms all possible reference baselines and
produces a network that is heavily compressed and robust to unseen and commonly
occurring image corruptions.

Joint Optimization for DNN Model Compression and Corruption Robustness 423

Table 8 Test set X test
Sim evaluation comparing HCRC to reference methods A–D. A quantization

with Q = 8 bits is applied to all trainings where compression is applied. Best numbers reported in
bold

Pruning
Ratio [%]

Method mIoU [%]
(13)

mPC [%] (14) rPC [%] (15) Model Size
(MB)

0 DeepLabv3+ 77.57 54.42 70.16 237.38

Reference A 77.05 67.40 87.48 237.38

30 Reference B 74.19 49.78 67.10 52.33

Reference C 72.44 51.56 71.17 52.33

Reference D 73.90 58.70 79.43 52.33

HCRC (ours) 76.23 63.79 83.68 52.33

50 Reference B 75.65 47.60 62.92 47.47

Reference C 75.08 47.82 63.69 47.47

Reference D 74.38 58.34 78.43 47.47

HCRC (ours) 76.12 62.02 81.48 47.47

Fig. 7 Example segmentations on the Cityscapes dataset. We show a snippet fromX test
CS , where the

differences in the robustness of the compressed networks are more pronounced. We observe that
our HCRC method is compressed and has superior robustness to the DeepLabv3+ baseline and
the compressed network of reference B, in this example, for impulse noise corruption

6 Conclusions

In this chapter, we introduce hybrid corruption-robustness focused compression
(HCRC), an approach to jointly optimize a neural network for achieving network
compression along with improvement in corruption robustness, such as noise and
blurring artifacts, which are commonly observed. For this study, we consider the
task of semantic segmentation for automated driving and look at the interactions
between robustness and compression of networks. HCRC improves the robustness
of the DeepLabv3+ network by 8.47% absolute mean performance under corrup-
tion (mPC) on the Cityscapes dataset and 7.60% absolute mPC on the Sim KI-A
dataset and generalizes even to augmentations not seen by the network in the train-
ing process. This is achieved with only minor degradations on undisturbed data.

424 S. Varghese et al.

Our approach is evaluated over two strong compression ratios and consistently out-
performs all considered baseline approaches. Additionally, we perform extensive
ablation studies to further leverage and extend existing state-of-the-art methods.

Acknowledgements The research leading to these results is fundedby theGermanFederalMinistry
for Economic Affairs and Energy within the project “Methoden und Maßnahmen zur Absicherung
von KI-basierten Wahrnehmungsfunktionen für das automatisierte Fahren (KI Absicherung)”. The
authors would like to thank the consortium for the successful cooperation.

References

[AMT18] A. Arnab, O. Miksik, P.H.S. Torr, On the robustness of semantic segmentation models
to adversarial attacks, inProceedings of the IEEE/CVFConference onComputerVision
and Pattern Recognition (CVPR) (Salt Lake City, UT, USA, 2018), pp. 888–897

[BHSFs19] A. Bär, F. Hüger, P. Schlicht, T. Fingscheidt, On the robustness of redundant teacher-
student frameworks for semantic segmentation, in Proceedings of the IEEE/CVF Con-
ference onComputer Vision andPattern Recognition (CVPR)Workshops (LongBeach,
CA, USA, 2019), pp. 1380–1388

[BKV+20] A. Bär, M. Klingner, S. Varghese, F. Hüger, P. Schlicht, T. Fingscheidt, Robust seman-
tic segmentation by redundant networks with a layer-specific loss contribution and
majority vote, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, virtual conference (2020), pp. 1348–1358

[CBD15] M. Courbariaux, Y. Bengio, J-P. David, Binary connect: training deep neural networks
with binary weights during propagations, in Proceedings of the Conference on Neural
Information Processing Systems (NIPS/NeurIPS) (Montréal, QC, Canada, 2015), pp.
3123–3133

[CBLR18] Z. Chen, V. Badrinarayanan, C-Y. Lee, A. Rabinovich, GradNorm: gradient normal-
ization for adaptive loss balancing in deep multitask networks, in Proceedings of the
International Conference on Machine Learning (ICML) (Stockholm, Sweden, 2018),
pp. 794–803

[CLW+16] Y. Cao, M. Long, J. Wang, H. Zhu, Q. Wen, Deep quantization network for effi-
cient image retrieval, in Proceedings of the AAAI Conference on Artificial Intelligence
(Phoenix, AZ, USA, 2016), pp. 3457–3463

[COR+16] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, B. Schiele, The Cityscapes dataset for semantic urban scene understanding,
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (Las Vegas, NV, USA, 2016), pp. 3213–3223

[CPK+18] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, DeepLab: seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 40(4), 834–848
(2018)

[CZM+19] E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, AutoAugment: learning aug-
mentation strategies from data, in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (Long Beach, CA, USA, 2019), pp.
113–123

[DFY+20] Y. Dong, Q-A. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, J. Zhu, Benchmarking adversarial
robustness on image classification, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), virtual conference (2020), pp.
1322–1330

Joint Optimization for DNN Model Compression and Corruption Robustness 425

[GAGN15] S. Gupta, A. Agrawal, K. Gopalakrishnan, P. Narayanan, Deep learning with lim-
ited numerical precision, in Proceedings of the International Conference on Machine
Learning (ICML) (Lille, France, 2015), pp. 1737–1746

[GSS15] I. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples,
in Proceedings of the International Conference on Learning Representations (ICLR)
(San Diego, CA, USA, 2015), pp. 1–11

[GWY+19] S. Gui, H.Wang, H. Yang, C. Yu, Z.Wang, J. Liu, Model compression with adversarial
robustness: a unified optimization framework, in Proceedings of the Conference on
Neural Information Processing Systems (NIPS/NeurIPS) (Vancouver, BC, Canada,
2019), pp. 1283–1294

[HD19] D.Hendrycks, T. Dietterich, Benchmarking neural network robustness to common cor-
ruptions andperturbations, inProceedings of the InternationalConference onLearning
Representations (ICLR) (New Orleans, LA, USA, 2019), pp. 1–15

[HMC+20] D. Hendrycks, N. Mu, E.D. Cubuk, B. Zoph, J. Gilmer, B. Lakshminarayanan, Aug-
mix: a simple data processing method to improve robustness and uncertainty, in Pro-
ceedings of the International Conference on Learning Representations (ICLR), virtual
conference (2020), pp. 1–15

[HMD16] S. Han, H.Mao,W.J. Dally, Deep compression: compressing deep neural networkwith
pruning, trained quantization and Huffman coding, in proceedings of the international
conference on learning representations (ICLR) (2016), pp. 1–14

[HPTD15] S. Han, J. Pool, J. Tran,W.J. Dally, Learning both weights and connections for efficient
neural networks, in Proceedings of the Conference on Neural Information Processing
Systems (NIPS/NeurIPS) (Montréal, QC, Canada, 2015), pp. 1135–1143

[HVD14] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, in Pro-
ceedings of theConference onNeural InformationProcessingSystems (NIPS/NeurIPS)
Workshops (Montréal, QC, Canada, 2014), pp. 1–9

[HZRS16] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (Las Vegas, NV, USA, 2016), pp. 770–778,

[HZS17] Y. He, X. Zhang, J. Sun, Channel pruning for accelerating very deep neural networks,
in Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(Venice, Italy, 2017), pp. 1398–1406

[JGWD19] S. Jain, A. Gural, Mi. Wu, C. Dick, Trained uniform quantization for accurate
and efficient neural network inference on fixed-point hardware (2019), pp. 1–17,
arXiv:1903.08066

[JKC+18] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A.G. Howard, H. Adam, D.
Kalenichenko, Quantization and training of neural networks for efficient integer-
arithmetic-only inference, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (Salt Lake City, UT, USA, 2018), pp. 2704–
2713

[KBFs20] M. Klingner, A. Bär, T. Fingscheidt, Improved noise and attack robustness for seman-
tic segmentation by using multi-task training with self-supervised depth estimation, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops , virtual conference (2020), pp. 1299–1309

[KBK20] I. Kim, W. Baek, S. Kim, Spatially attentive output layer for image classification, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), virtual conference (2020), pp. 9533–9542

[Kri09] A.Krizhevsky,ObjectClassificationExperiments (Technical report,Canadian Institute
for Advanced Research, April 2009)

[LBBH98] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to docu-
ment recognition. IEEE 86(11), 2278–2324 (1998)

[LGH19] J. Lin, C.Gan, S. Han, Defensive quantization: when efficiency meets robustness,
in Proceedings of the International Conference on Learning Representations (ICLR)
(New Orleans, LA, USA, 2019), pp. 1–15

http://arxiv.org/abs/1903.08066

426 S. Varghese et al.

[MBKR18] D. Mittal, S. Bhardwaj, M. Khapra, B. Ravindran, Recovering from random pruning:
on the plasticity of deep convolutional neural networks, in Proceedings of the Winter
Conference on Applications of Computer Vision (WACV) (Lake Tahoe, NV, USA,
2018), pp. 848–857

[MMS+18] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning
models resistant to adversarial attacks, in Proceedings of the International Conference
on Learning Representations (ICLR) (Vancouver, BC, Canada, 2018), pp. 1–10

[MS99] D. Christopher, Manning and Hinrich Schütze (MIT Press, Foundations of Statistical
Natural Language Processing, 1999)

[MTK+17] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neural net-
works for resource efficient inference, in Proceedings of the International Conference
on Learning Representations (ICLR) (Toulon, France, 2017), pp. 1–17

[NWC+11] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, Reading digits in natural
imageswith unsupervised feature learning, inProceedings of theConference onNeural
Information Processing Systems (NIPS/NeurIPS) Workshops (Granada, Spain, 2011),
pp. 1–9

[SK19] C. Shorten, T.M. Khoshgoftaar, A survey on image data augmentation for deep learn-
ing. J. Big Data 60(6), 1–48 (2019)

[SVS19] J. Su, D.V. Vargas, K. Sakurai, One pixel attack for fooling deep neural networks.
IEEE Trans. Evolut. Comput. (TEVC) 23(5), 828–841 (2019)

[SWMJ20] V. Sehwag, S. Wang, P. Mittal, S. Jana, HYDRA: pruning adversarially robust neural
networks (2020), pp. 1–22. arXiv:2002.10509

[TKTH18] L. Theis, I. Korshunova, A. Tejani, F. Huszár, Faster Gaze Prediction With Dense
Networks and Fisher Pruning (2018), pp. 1–18. arXiv:1801.05787

[TPL+19] Z. Tang, X. Peng, T. Li, Y. Zhu, D. Metaxas, Adatrans form: adaptive data transforma-
tion, inProceedings of the IEEE International Conference on Computer Vision (ICCV)
(Seoul, Korea, 2019), pp. 2998–3006

[WBSS04] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from
error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612
(2004)

[WLX+20] S. Wang, N. Liao, L. Xiang, N. Ye, Q. Zhang, Achieving Adversarial Robustness via
Sparsity (2020), pp. 1–9, arXiv:2009.05423

[WSC+20] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, M. Yadong, M. Tan,
X. Wang et al., Deep high-resolution representation learning for visual recognition.
IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43(10), 3349–3364 (2020)

[XLZ+18] C. Xiao, B. Li, J-Y. Zhu, W. He, M. Liu, D. Song, Generating adversarial examples
with adversarial networks (2018), pp. 1–8, arXiv:1801.02610

[XQXL20] H. Xie, L. Qian, X.g Xiang, N. Liu, Blind adversarial pruning: balance accuracy,
efficiency and robustness (2020), pp. 1–12. arXiv: 2004.05913

[XWZ+17] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A. Yuille, Adversarial examples for
semantic segmentation and object detection, in Proceedings of the IEEE International
Conference on Computer Vision (ICCV) (Venice, Italy, 2017), pp. 1369–1378

[YXC20] M. Ye, S. Xu, T. Cao, HVNet: hybrid voxel network for LiDAR based 3d object detec-
tion, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), virtual conference (2020), pp. 1631–1640

[YXL+19] S. Ye, K. Xu, S. Liu, H. Cheng, J.H. Lambrechts, H. Zhang, A. Zhou, K. Ma, Y. Wang,
X. Lin, Adversarial robustness vs. model compression, or both? in Proceedings of the
IEEE International Conference on Computer Vision (ICCV) (Seoul, Korea, October
2019), pp. 111–120

[ZHZ11] M. Zhou,M.Huang, X. Zhu, Robust reading comprehensionwith linguistic constraints
via posterior regularization. IEEE/ACM Trans. Audio, Speech, Lang. Process. 20(4),
1096–1108 (2011)

[ZS18] Z. Zhang, M.R. Sabuncu, Generalized cross entropy loss for training deep neural
networks with noisy labels, in Proceedings of the Conference on Neural Information
Processing Systems (NIPS/NeurIPS) (Montréal, QC, Canada, 2018), pp. 8792–8802

http://arxiv.org/abs/2002.10509
http://arxiv.org/abs/1801.05787
http://arxiv.org/abs/2009.05423
http://arxiv.org/abs/1801.02610
http://arxiv.org/abs/2004.05913

Joint Optimization for DNN Model Compression and Corruption Robustness 427

[ZSMA19] Y. Zhao, I. Shumailov, R. Mullins, R. Anderson, To compress or not to compress:
understanding the interactions between adversarial attacks and neural network com-
pression, inProceedings of the Conference onMachine Learning and Systems (MLSys)
(Stanford, CA, USA, 2019), pp. 230–240

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	 Joint Optimization for DNN Model Compression and Corruption Robustness
	1 Introduction
	2 Related Works
	3 HCRC: A Systematic Approach
	3.1 Preliminaries on Semantic Segmentation
	3.2 Robustness Objective
	3.3 Compression Objective
	3.4 HCRC Core Method

	4 Experimental Setup
	4.1 Datasets and Semantic Segmentation Network
	4.2 Image Corruptions
	4.3 Metrics
	4.4 Training Framework

	5 Experimental Results and Discussion
	5.1 Ablation Studies
	5.2 Comparison With Reference Baselines

	6 Conclusions
	References

