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Abstract The latest generation of safety standards applicable to automated driv-
ing systems require both qualitative and quantitative safety acceptance criteria to be
defined and argued. At the same time, the use of machine learning (ML) functions is
increasingly seen as a prerequisite to achieving the necessary levels of perception per-
formance in the complex operating environments of these functions. This inevitably
leads to the question of which supporting evidence must be presented to demonstrate
the safety of ML-based automated driving systems. This chapter discusses the chal-
lenge of deriving suitable acceptance criteria for the ML function and describes how
such evidence can be structured in order to support a convincing safety assurance
case for the system. In particular, we show how a combination of methods can be
used to estimate the overall machine learning performance, as well as to evaluate and
reduce the impact of ML-specific insufficiencies, both during design and operation.
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1 Introduction

The objective of systems safety engineering is to avoid unreasonable risk of hazards
that could lead to harm to the users of the system or its environment. The definition
of an unreasonable level of risk must be determined for the specific system context in
accordance with societal moral concepts and legal considerations regarding product
liability. This requires a careful evaluation of the causes and impact of system failures,
an evaluation of the probability of their occurrence, and the definition of strategies to
eliminate or reduce the residual risk associatedwith such failures. Current automotive
safety standards, such as ISO 26262 [ISO18] and ISO/DIS 21448 [ISO21], require
a safety case to be developed for safety-related functions that forms a structured
argument supported by systematically collected evidence that the appropriate level
of residual risk has been achieved. The term “evidence” refers to work products
created during the development, test, and operation of the system that support the
claim that the system meets its safety goals.

In comparison to previous generations of vehicle systems, automated driving sys-
tems (ADS) that make use of machine learning (ML) introduce significant new chal-
lenges to the safety assurance process. Deep neural networks (DNNs), in particular,
are seen as an enabling technology forADSperception functions due to their ability to
distinguish features within complex, unstructured data. This allows for the develop-
ment of functions, such as pedestrian detection within crowded, urban environments
that previously could not be specified and implemented based on algorithmic defini-
tions. Paradoxically, this leads to one of themain challenges associatedwith the use of
machine learning in safety-critical systems. The semantic gap [BHL+20] describes
the challenge of deriving complete and consistent technical (safety) requirements
on the system that fulfil potentially only implicitly understood, societal and legal
expectations. The semantic gap is exacerbated in ML-based ADS due to the unpre-
dictability and complexity of the operational domain and the reliance on properties of
the training data rather than detailed specifications to derive an adequate approxima-
tion of the target function. The semantic gap can in turn lead to an unclear definition
of the moral responsibility and legal liability for the system’s actions as well as an
incomplete assurance argument that the (potentially incompletely defined) safety
goals for the system are met.

Furthermore, deep learning approaches have specific properties that limit the
effectiveness of established safety measures for software. These include the inherent
uncertainty in the outputs of theMLfunction, the opaquemanner inwhich features are
learnt by the function which is often not understandable by humans and the difficulty
of extrapolating from test results due to non-linear behaviour of the function and
sensitivity to small changes in the input domain. Previous work related to the safety
assurance of machine learning has mainly focused on the structure of the assurance
case and associated processes with respect to existing safety standards [BGH17,
SQC17, GHP+20, ACP21, BKS+21]. Other work has focused on the effectiveness
of specificmetrics andmeasures on providingmeaningful statements related to safety
properties of theML function [CNH+18, HSRW20, SKR+21, CKL21]. This chapter
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complements this work by examining in more detail the role of combining various
types of evidence to form a convincing argument that quantitative acceptance criteria
as required by standards such as ISO 21448 are met.

This chapter discusses the challenge of deriving suitable acceptance criteria for
ML functions and describes how supporting evidence can be combined to provide
a convincing safety assurance case for the system. The aggregation of evidence
can be structured as an overall evidence-based safety argumentation as depicted in
[MSB+21]. In the following section, we describe the challenge of deriving a set of
technical safety requirements and associated acceptance criteria on ML functions.
In Sect. 3, we provide a categorisation of safety evidence for machine learning and
argue that an assurance case requires an appropriate combination of complementary
evidence. Section4 describes a collaborative approach between domain and safety
experts for collecting and evaluating the safety evidence. Sections5.1–5.4 provide
specific examples of each category of evidence and describe the conditions under
which they can provide a meaningful contribution to the assurance case. Section6
then demonstrates how the evidence can be combined into an overall assurance case
structure. The chapter concludes with a summary of open research questions and an
outlook for future work.

2 Deriving Acceptance Criteria for ML Functions

This section presents approaches to risk evaluation within the safety standards and
discusses how safety acceptance criteria for ML functions can be derived in line with
these approaches.

2.1 Definition of Risk According to Current Safety Standards

Current standards related to the safety of vehicle systems provide little specific guid-
ance related to the use of ML. Therefore, the approach described in this chapter will
be based upon an interpretation and transfer of the principles of ISO 26262, ISO/DIS
21448, and ISO/TR4804 to the specific task of safety assurance formachine learning-
based systems. ISO 26262 defines functional safety as the absence of unreasonable
risk due to hazards caused by malfunctioning behaviour of electrical/electronic sys-
tems. Malfunctioning behaviour is typically interpreted as either random hardware
faults or systematic errors in the system, hardware, or software design. ISO 26262
applies a predominantly qualitative approach to arguing the safety of software. Safety
goals for a system are derived according to a hazard and risk analysis that evaluates
the risk associated with each hazard according to qualitative criteria with various cat-
egories for the risk parameters: severity, exposure, and controllability. The standard
provides a method for combining these parameters to derive an overall “Automo-
tive Safety Integrity Level” (ASIL) within a range of A to D in order of increasing
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risk. Functions with no safety impact are assigned the level “QM” (only standard
quality management approaches are necessary). An ASIL is allocated to each safety
goal derived from the hazards and to the functional and technical safety requirements
derived from these until eventually software-level requirements, including associated
ASILs, are determined. The standard then provides guidance on which measures to
apply, depending on ASIL, to achieve a tolerable level of residual risk. By doing
so, the standard avoids the need to define specific failure rates to be achieved by
software but instead defines desirable properties (such as freedom from run-time
errors caused by pointer mismatches, division-by-zero, etc.) and methods suited to
ensuring or evaluating these properties (e.g. static analysis).

ISO/DIS 21448 addresses safety in terms of the absence of unreasonable risk due
to functional insufficiencies of the system or by reasonably foreseeable misuse. In
the context of ADS, this translates to a possible inability of a function to correctly
comprehend the situation and operate safely, e.g. due to a lack of robustness regarding
input variations or diverse environmental conditions. The risk model described by
ISO/DIS 21448 can be summarised as identifying as many known, unsafe scenarios
(where performance insufficiencies could lead to hazards) as possible so that miti-
gating measures can be applied, thus transforming them to known, safe scenarios. In
addition, the number of residual unknown, unsafe scenarios should be minimised by
increasing the level of understanding of properties of the environment that could trig-
ger performance deficiencies. The definition of safety of the intended functionality
(SOTIF), therefore, seems well suited for arguing the performance of the trainedML
function over all possible scenarios within the operating domain. ISO/DIS 21448
follows a similar process to identify hazards, associated safety goals, and require-
ments as ISO 26262. However, instead of using risk categories according to ASILs,
the standard requires the definition of quantitative acceptance criteria (also known
as validation targets) for each hazard, which in turn can be allocated to subsystems
such as perception functions. However, these acceptance criteria are not described in
more detail and must, therefore, be defined according to the specific system context.

ISO/TR 4804 contains a set of guidelines for achieving the safety of automated
driving systemswith a focus on the Society of Automotive Engineers (SAE) levels 3–
5 [SAE18]. ISO/TR 4804 defines safety acceptance criteria both in terms of a positive
risk balance (the system shall be demonstrably safer than an average human driver)
as well as the avoidance of unreasonable risk. In doing so, the standard recommends
a combination of both qualitative and quantitative arguments. A similar philosophy
is followed within this chapter when identifying and combining evidence for the
safety of a machine learning function.
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2.2 Definition of Safety Acceptance Criteria for the ML
Function

In order to address the semantic gap described above, a systematic method of deriv-
ing a set of technical safety requirements on an ML function is needed. This should
include an iterative and data-driven approach to analyse the societal and legal expec-
tations, operating domain, and required performance on the ML function within the
technical system context (see Fig. 1). In this chapter, we focus on steps 4 and 5, in
particular, the systematic collection of evidence regarding the performance of anML
function to support a system-level assurance case.

In [BGH17], the authors recommend a contract-based design approach to derive
specific safety requirements for the machine learning function. These requirements
are expressed in the form of a set of safety guarantees that the function must ful-
fil and a set of assumptions which can be made in the system’s environmental and
technical context. This allows for a compositional approach to reasoning about the
safety of the system where the guarantees of one function can be used to justify the
assumptions on the inputs of another. This requires a suitable definition of safety
at the level of abstraction of the ML function. For example, a superficially defined
requirement, such as “detect a pedestrian on the road”, would need to be refined
to define which characteristics constitute a pedestrian and from which distance and
level of occlusion pedestrians should be detected. This process of requirements elic-
itation should include the consideration of a number of stakeholder perspectives and
sources of data. This could include current accident statistics and the consideration
of ethical guidelines for AI as proposed by the European Commission [Ind19]. It is
to be expected that for any particular automated driving function, a number of such
contracts would be derived to define different properties of the ML function related
to various safety goals, where each contract may also be associated with different
quantitative acceptance criteria and sets of scenarios in the operating domain.

Fig. 1 Iterative steps during the systems engineering process to bridge the semantic gap associated
with the definition of technical safety requirements on ML functions
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Table 1 Example safety contract for a pedestrian detection

Input domain The set of all possible situations within an urban environment in which
pedestrians could be within the range of the vehicle’s sensors

Assumptions Safety-relevant pedestrians have a size 50 cm ≤ si ze ≤ 250 cm and are
within a range of 3m ≤ range ≤ 50m

Guarantees Bounding box accuracy per frame in the sequence shall be within 20cm of
the ground truth, and the pedestrian must be detected whenever the
occlusion through other objects is <50%. The confidence score for
successful classification per frame shall be ≥70%

Table1 contains an example of a (not necessarily complete) safety contract for a
bounding-box pedestrian detection model. This contract is defined within the scope
of a system architecture where the quality of the camera signal acting as input to the
function is either knownor can be determined during development andwhere a sensor
fusion and monitoring component receives the result of the ML-based detection
algorithm and performs time-series plausibility checks on the results and compares
with other sensor modalities such as RaDAR and LiDAR.

A qualitative approach to defining the assurance targets for theML function could
involve determining a suitable combination of development and test methods to be
applied that are assumed to lead to a correct implementation of the function.However,
due to typical failure modes and performance limitations of ML, an absolute level
of correctness in the function is infeasible. Instead, quantitative assurance targets,
in line with the requirements of ISO/DIS 21448, are required that would define
an acceptable limit to the probability that guarantees cannot be met. For example,
an acceptance criterion for pedestrian detection based on the remaining accuracy
rate (RAR) metric [HSRW20] could be formulated as “An RAR of 95% is achieved
and residual errors are distributed equally across all scenarios”, leading to the
probability of a single pedestrian being undetected by both the ML function and the
sensor fusion/monitor component being sufficiently low. The remaining accuracy
rate is defined in [HSRW20] as the proportion of inputs where a confidence score
above a certain threshold (e.g. 70%) leads to a true positive detection. Thus, the
definition of the parameters for the quantitative acceptance targets must be defined
based on a detailed understanding of the performance limits of both the ML function
and the capabilities of the sensor fusion/monitoring component.

3 Understanding the Contribution of Safety Evidence

3.1 A Causal Model of Machine Learning Insufficiencies

Ideally, to demonstrate that theML function meets its performance requirements, the
probability of failure will be directly measured, for example, based on a sufficiently
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Fig. 2 Causal model of ML-related SOTIF risks demonstrating the relationships between system
failures, machine learning insufficiencies, their causes, and exacerbating factors as well as the role
of control measures to minimise the probability of hazardous system failures

large number of representative tests.However, this approach is feasible only for trivial
examples. Therefore, multiple sources of evidence are required to reason about the
presence of performance limitations and the ability of the system to detect and control
such failures during operation.

The dependability model of Avizienis et al. [ALRL04] forms the foundation of
many safety analysis techniques. In this model, the risk of a system violating its
objectives is determined by analysing the propagation path from causes of individual
faults in the system that could lead to an erroneous system state which in turn leads
to a failure to maintain the system’s objectives. Risk can thus be controlled by either
eliminating the causes of faults or by preventing them from leading to potentially
hazardous erroneous states of the system.

Figure2 summarises how this approach to causal analysis can be applied to the
problem of determining the safety-related performance of an ML function and is
inspired by the safer complex systems framework presented in [BMGW21]. A sys-
tem failure can be defined as a condition where the safety contract as defined in
Table1 is not met. An erroneous state leading to such a failure would relate to the
presence of insufficiencies in the machine learning function which, in turn, could
be caused by either faults in its execution or limitations in the training data. Exam-
ples for the latter are scalable oversight [AOS+16], uncertainty in the input domain,
such as distributional shift [AOS+16], or the inherent inability of the ML approach
to accurately represent the target function. Measures to improve the safety of the
function can be categorised into those applied during design time to reduce the prob-
ability of insufficiencies in the trained model and those applied during operation in
order to reduce the impact of residual insufficiencies. Both types of controls may
be undermined by exacerbating factors specific to the system context, for example,
the difficulty in collecting balanced and sufficiently complete training data due to
the scarcity of critical scenarios or the difficulty of developing effective monitor-
ing approaches due to the need for safe-operational fallback concepts. This model
of causality for ML-related safety of the intended functionality (SOTIF) risks is
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now used to determine the following contributions of safety evidence that will be
illustrated in the next subsection.

3.2 Categories of Safety Evidence

Based on the causalmodel of SOTIF-related risk introduced above, the following four
categories of evidence can now be defined. This category of evidence corresponds to
development work products and results of verification and validation activities that
support the argument of an acceptably low level of residual risk associated with ML
insufficiencies:

(1) Confirmation of residual failure rates: This category of evidence provides a
direct estimate of the performance of the machine-learning component, e.g. in terms
of false negative rates, or the intersection-over-union (IoU) related to bounding box
accuracy. However, due to non-linear behaviour in the function and the limited num-
ber of samples that can be realistically tested, such evidence is unlikely to provide a
statistically relevant estimation. This category of evidencemust, therefore, be used in
combinationwith othermeasures that increase confidence in the ability to extrapolate
the results to the entire input space that fulfils the contract’s assumptions.

(2) Evaluation of insufficiencies: This category of evidence is used to directly
indicate the presence or absence of specific ML insufficiencies that could not only
lead to a violation of the safety contract, but could also undermine confidence in
the category 1 evidence. The properties that would be evaluated by this category of
evidence would include prediction uncertainty, generalisation, brittleness, fairness,
and explainability.

(3) Evaluation of the effectiveness of design-time controls: This category of
evidence is used to argue the effectiveness of design-time measures to increase the
performance of the function or to reduce the presence of insufficiencies. In many
cases, a direct correlation between the design-time measures and the performance of
the function may not be measured, leading to qualitative arguments for the effective-
ness of the measures. However, metrics can be used to measure the level of rigour
by which the measures have been applied. These could include properties of training
data and test data, or measures to increase the explainability of the trained model.

(4) Evaluation of the effectiveness of operation-time controls: This category of
evidence is used to demonstrate the effectiveness of operation-timemeasures to either
increase the performance of the function or to reduce the impact of insufficiencies.
Examples of such could be a measurement of the effectiveness of out-of-distribution
detection to identify inputs that are outside of the training distribution (and beyond
the assumptions of the safety contract) such that they can be discarded.

In the following sections, we illustrate each category with specific examples and
evaluate the conditions under which the evidence can provide a significant contribu-
tion to the assurance case.
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4 Evidence Workstreams—Empowering Experts
from Safety Engineering and ML to Produce Measures
and Evidence

In order to identify, develop, and evaluate effective evidence related to the vari-
ous categories defined above, we propose to follow the procedure of so-called evi-
dence workstreams: experts frommachine learning, safety, testing, and data working
together according to the procedure depicted in Fig. 3. The main purpose of the pro-
cess is to help demonstrate the effectiveness of the methods, metrics, and measures
to be applied more generally. Related processes are also found in current literature.
Picardi et al. [PPH+20] propose an engineering process to generate evidence at each
stage of the ML life cycle. Apart from the process in general, different patterns are
described that can be instantiated during theML life cycle. Furthermore, a three-layer
process model is described by McDermid and Jia [MJ21], featuring a collaborative
model to bring together the expertise from the ML and safety domain to generate
evidence for the assurance case. In this work, there are some case studies, but detailed
steps for the process are missing.

The evidence workstreams proposed in this chapter enable a joint cooperation of
different competencies and bring together new innovative methods and structured
approaches rather than having separate work on each topic. An important key to the
successful creation of an assurance case is the continuous interaction of the different
contributors. Before explaining the procedure, we, therefore, define four roles for the
contributors:

• The method developer is responsible to implement measures that mitigate spe-
cific insufficiencies of an ML component. In addition, this role specifies data

Start
Maintenance of

measure catalogue
Select prioritised measures

for each insufficiency

Design and implement
effectiveness tests

Determine other
criteria for evaluation

Implement
prioritised measures

Evaluation and
comparison of measures

Measures effective?

Add measures to
system development

Add test results as
evidence to assurance case

Combine or pick
new measures?

Combine different measures

Pick new measures
from catalogue

End

yes

no

combine

pick

Fig. 3 Flowchart of the evidence workstream process
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requirements for the implemented measures and defines metrics for evaluating the
effectiveness of the measure.

• Apart from the method developer specifying data requirements, a data engineer
is responsible for creating and managing the dataset throughout the development
process as well as performing data analyses to estimate the data coverage.

• In order to test the effectiveness of the measures, the test engineer develops test
specifications including required test data and metrics. These tests should then
be performed by the method developer to demonstrate the effectiveness of the
method.

• Finally, the safety engineer ensures that the developed measures and respective
test results are valid and generate the evidence for the assurance case.

The process starts by creating and maintaining a catalogue of potential design-time
and run-time measures to mitigate identified insufficiencies, which can be known
a priori (see Sect. 5.2) or identified during the development phase. Here, method
developers and safety engineers are involved in the maintenance and also perform
a prioritisation of measures for each insufficiency. After the selection of measures,
the test engineer designs and implements effectiveness tests. Furthermore, safety-
aware metrics for the test are defined by the method developer and safety engineer,
in addition to other criteria for the evaluation. Importantly, the data engineer needs
to evaluate the database in order to allow for a statistical significance analysis for the
designed tests. Afterwards, the prioritised measures are implemented following an
evaluation and comparison according to the specified tests. Once the measures show
sufficient effectiveness, they can be added to the system development and the safety
engineer can use the test results as evidence for the assurance case. If a measure was
not effective, then we propose the two following options:

• Firstly, measures can be combined and optimised to increase the effectiveness.
After combination, a re-evaluation is performed.

• Secondly, new measures can be picked from the catalogue and the test design and
implementation step is repeated.

Additionally, an iteration of the safety requirement derivation and system archi-
tecture design process could lead to recommendations for additional components or
adjusted specifications in order to mitigate remaining insufficiencies.

5 Examples for Evidence

This section discusses examples for the different categories of safety evidence intro-
duced in Sect. 3.2, which can be obtained by the process introduced in Sect. 4.
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5.1 Evidence from Confirmation of Residual Failure Rates

The quantification of model performance or residual failure rates of a machine
learning (ML) component is a crucial step in any ML-based system, especially for
safety-critical applications. Typically, the performance of ML components is mea-
sured by metrics that calculate a mean performance over a specific test dataset.
In [PNdS20] and [PPD+21], commonly used metrics for object detection are com-
pared, including mean average precision (mAP) and mean intersection-over-union
(mIoU). However, for safety-critical systems, only evaluating the mean performance
is not sufficient. On the one hand, there are unknown risks introduced by residual
failure rates, on the other hand, failures are not weighted by their relevance. To
counteract this, for example, in [HSRW20], safety-aware metrics are proposed in
the literature to incorporate uncertainty to evaluate the remaining accuracy rate and
remaining error rate. In [CKL21], safety-aware metrics for semantic segmentation
are proposed, putting emphasis on perturbation and relevance.Volk et al. [VGvBB20]
propose a safety metric that incorporates object velocity, orientation, distance, size,
and a damage potential. Furthermore, ISO/TR 4804 [ISO20] proposes a generic con-
cept, whereby safety-aware metrics need to be evaluated for perception components
realised with deep neural networks. In addition, it should be noted that the valid-
ity of metrics depends strongly on the utilised dataset. In general, the creation of
safety-aware metrics is still an open field in the domain of automated driving and for
perception components in particular. Based on the references and insights above, the
following considerations should be taken into account to use performance metrics
as evidence:

• Mean performance metrics should be evaluated within a specified input space.
• Statistical significance of the metrics value should be evaluated and shown by
measuring dataset coverage.

• The failure rate related to specific classes of errors should be evaluated, including
an analysis of their causes.

The evidence for performance or accuracy evaluation could be in the form of a test
report, where the specification of the input space and the data coverage evaluation
is defined. Apart from detection or classification accuracy, localisation precision is
also an important factor and is often dependent on the accuracy. In addition to a
summary of the safety-aware metrics, an analysis of various classes of errors, their
potential causes and impact within the system should be included in the test report,
allowing for a systematic evaluation of the residual risk associated with the function
at a system level.

The following example provides an intuition of conditions that have to be met so
that a performance metric can be used as evidence convincingly. The basis of nearly
every performance metric is the calculation of the confusion matrix, containing the
number of true positives (TP), false positives (FP), false negatives (FN), and true
negatives (TN) rates. Here, we consider the case of a 2D bounding box pedestrian
detection on images for automated driving. In this case, the number of TNs is not
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reasonable since there will be a nearly infinite amount of those bounding boxes. In
order to compute the confusion matrix, the intersection-over-union (IoU) metric is
typically used to determine if a detection can be considered as a TP, FP, or FN by
using a threshold. This threshold, on the one hand, defines the localisation error per
object which must not be exceeded for the detection to be counted as TP, and, on the
other hand, also influences the mean accuracy on a test dataset. Therefore, in the test
report, there should be an argument about why a certain threshold has been chosen.
Furthermore, typically FP and FN are weighted equally, but for a safety analysis,
FN might be more important and not all FN might be relevant. Hence, the test report
should define relevant FN or FP based on the system architecture and assigned
component requirements by introducing specific weights. Of course, performance
metrics alone cannot give enough evidence to argue the safety of a perception system
for automated driving. In addition, the performance needs to be evaluated in case of
rarely occurring situations, and also the robustness against perturbations needs to be
considered.

5.2 Evidence from Evaluation of Insufficiencies

An essential feature in the development of deep neural networks during training
lies in the purely data-driven parameter fitting process without expert intervention:
The deviation of the output (for a given parameterisation) of a neural network from
a ground truth is measured. The loss function is chosen in such a way that the
parameters depend on it in a differentiable way. As part of the gradient descent
algorithm, the parameters of the network are adjusted in each training step depending
on the derivative of the deviation (backpropagation). These training steps are repeated
until some stopping criterion is satisfied. In this procedure, the model parameters are
determined without an expert assessment or semantically motivated modelling. This
has significant consequences for the properties of the neural network:

• Deepneural networks (DNNs) are largely opaque for humans and their calculations
cannot be interpreted. This represents a massive limitation for systematic testing
or formal verification.

• Deep neural networks are susceptible to harmful interference: Perturbations could
be manually induced changes in the data (adversarial examples) or real-word cor-
ruptions (e.g. sensor noise, weather influences, certain colours, or contrasts by
sensor degeneration).

• It is unclear to which input characteristics an algorithm sensitises. The execution
of neural networks in another domain (training in summer, execution in winter,
etc.) sometimes reduces the functional quality dramatically.

This leads to DNN-specific insufficiencies and safety concerns as described in detail
by Willers et al. [WSRA20], Sämann et al. [SSH20], and Schwalbe et al. [SKS+20].
In our evidence strategy, we utilise metrics to evaluate the insufficiencies and use
specific values and justified bounds as specific evidence. In the following, this proce-
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Augmented Image Baseline Segmentation Defended Segmentation

Fig. 4 Visualisation of the robustness of a semantic segmentation model: Rain augmentation via
Hendryck’s augmentations [HD19] on Cityscapes [COR+16] (left), baseline performance on the
corrupted image (middle) and performance of a robustifiedmodel viaAugMixwith Jensen–Shannon
divergence (JSD) loss [HMC+20] (right)

dure is shortly explained for the example of brittleness of DNNs. The strategies for
the other insufficiencies follow basically the same pattern, but the elaboration would
go beyond the scope of this chapter.

Measuring robustness of deep neural networks (DNNs): Regarding brittleness,
the specific evidence that we want to define are test results achieving the required
performance even under reasonable perturbations. If the required performance is
achieved for all required conditions, we call the DNN “robust”. To evaluate the
robustness with respect to real-world corruptions, we suggest to use both, recorded
and tagged real-word effects as well as augmented perturbations such as noise, blur,
colour shift, etc., via Hendryck’s augmentations [HD19] as depicted in Fig. 4. The
required parameters for the test conditions are extracted from operational design
domain (ODD), sensor, and data analysis.

5.3 Evidence from Design-Time Controls

Design-time controls systematically complement and integrate evidence gained via
overall performance considerations or regarding specific insufficiencies. The major
goal is to integrate the various aspects and metrics that have to be considered into
a holistic view, allowing the AI developer, firstly to incorporate measures that are
overall effective, such as architectural choices, and parameter optimisations, or data
coverage measures, and secondly, to handle potential trade-offs between different
optimisation targets and requirements. It is important to note that the design-time
controls are to be applied in an iterative workflow during development, aiming to
provide sufficient evidence for the overall safety argumentation. As a specific exam-
ple of a design-time control, we sketch how developers and safety engineers can be
supported by a visual analytics tool during the design and development phase.

Understanding DNN predictions via visual analytics: An important contribution
to a complete safety argumentation can be made via methods that support humans
in understanding and analysing why an AI system is coming to a specific decision.
Insights into the inner operations of a DNN can increase trust into the entire applica-
tion of that neural network. However, in a safety argumentation, it is not sufficient to
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Fig. 5 Landscape of DNN performance over semantic and non-semantic dimensions

“explain” single decisions of a network, for example, in some kind of “post analysis”
in case of an accident, which might have been caused by a failure of a DNN-based
pedestrian detection, it should be possible to provide arguments about the under-
standing of the inner operations of a neural network considering a huge set of input
test data at design time. The obvious solution for achieving this would be completely
replacing the DNN with an interpretable model. However, this often is not feasible
considering the trade-off with overall performance of the network. Ideally, such a
“design-time understanding” of the overall behaviour of a DNN would result in an
understanding of the network performance over a complete landscape spanned by
semantic and non-semantic dimensions of the test data as illustrated in Fig. 5.

Figure5 shows an idealised view of the performance of the DNN in a selected
relevant metric, see explanations in Sect. 5.1, per input test data point over selected
semantic and non-semantic dimensions. In the case of pedestrian detection in the
automotive context, semantic dimensions may refer to the semantics of a scene
description in the operational design domain, such as pedestrian attributes or envi-
ronmental conditions, while non-semantic dimensions may refer to technical image
effects, such as blurring or low contrast, which are supposed to have an influence
on the performance of the DNN. Such a view can support the human to identify
systematic weaknesses of a DNN in terms of human-understandable dimensions. To
be able to create a view as depicted in Fig. 5, a human user, either in the role of a
DNN developer, safety engineer, or auditor, is faced with two challenges:

• The sheer amount of test data needed to reach significant insights usually exceeds
the cognitive capacity of the human brain.
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• Finding and selecting the relevant dimensions that actually influence the network
performance among all possible dimensions is far from being trivial, especially
taking into account that the performance of a DNNmostly depends on a combina-
tion of different dimensions and usually cannot be explained by considering one
dimension alone.

In order to overcome these two challenges, tool support is needed. In [SMHA21],
an approach is described to support the human user in finding and evaluatingmachine
learning models by means of visual analytics. In this approach, tool support is pro-
vided to enable the user to perform visual analyses over huge amounts of data in such
away that a quick and intuitive understanding of the nature of the underlying data and
network performance can be gained. Such an initial understanding usually enables
the user to create hypotheses about the relevance of semantic and non-semantic
dimensions, which then can be checked or refined interactively. Human understand-
ing about semantics helps in a semantic understanding of the DNN in an iterative
process.

Figures6 and 7 show a snapshot of the visual analytics tool being used to inves-
tigate the performance of a DNN for pedestrian detection based on a semantic seg-
mentation of images. The so-called metadata that indicates the values regarding a
specific dimension of an input image (such as number of pedestrians, brightness of
the image, and overall detection performance in the image) and the values regard-
ing specific pedestrians in the image (such as size, position in the image, detection
performance for this pedestrian) is listed in a tabular interface as illustrated in Fig. 6.
The user can issue arbitrary queries against this table to select interesting subsets of
the data. The plots shown in Fig. 7 give an additional overview of various attributes.
Selected images, predictions, or ground truth can be visualised as shown in Fig. 9.

Figure8 shows an exemplary scatterplot of the pixel size of a pedestrian in an
image versus the detection performance measured in IoU (intersection-over-union)
for this pedestrian. The goal is to find out whether certain aspects, such as pixel size
of the pedestrian in the image, have an effect on the detection performance of the
underlying DNN. It can be seen that there is a general tendency for pedestrians with
larger height (more to the left) to achieve higher (better) detection performance.How-
ever, there exist some large pedestrians with relatively low detection performance
(as highlighted by the selection box in Fig. 8). The visual analytics tool allows for
interactively selecting such sets of interesting points from a plot for further analysis
just by drawing a selection box around the points of interest. Selected images will
then be visualised in the drill down view of the tool shown in Fig. 9. In this particular
example, some of the selected images were showing “pedestrians” riding bicycles
as depicted in Fig. 9b). The human analyst could now use the visual analytics tool to
further investigate the hypothesis that cyclists are not detected well enough by the
DNN.
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Fig. 8 Plot of the pedestrian detection performance (IoU) in dependence of the height of the
pedestrian in the image in pixels

(a) Overlay of input image and
ground truth

(b) Overlay of ground truth (left) and predictions (right): selected
critical images often contain cyclists

Fig. 9 Visual analytic tool for analysing DNN performance and weaknesses: drill down view
showing a a sample image, and b critical images selected from the correlation plot shown in Fig. 8
(Images: BIT Technology Solutions)

5.4 Evidence from Operation-Time Controls

Operation-time controls are typically used to mitigate unacceptable risk occurring
during run-time of the system. For example, when the performance of a percep-
tion component for automated driving degenerates, controls could become active
to mitigate the degeneration by handing vehicle controls back to a human driver or
by using alternative perception components. The operation-time controls are par-
ticularly important for automated driving, since such systems operate in the real
world. As during design time, not all possibly occurring situations can be foreseen,
architectural solutions are required.

In this section, we give two examples of how evidence from operation-time con-
trols can be derived. The first example deals with out-of-distribution detection and
the second one goes into detail for uncertainty estimation.

Out-of-distribution detection: One of the major causes of ML insufficiencies is
the fact that the data distribution of an operational domain is unknown. Therefore,
it is only possible to sample from this unknown distribution and approximate this
distribution by statistical approaches or machine learning (ML) techniques. During
the construction of the safety contract, a certain input domain is defined at a semantic
level, which directly leads to a gap to the real data distribution of the operational
domain. One of the resultingML insufficiencies is that there is an unknown behaviour
when the ML function is presented with samples that are not within the training data
distribution. Therefore, a requirement could be that leaving the operational design
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domain (ODD) has to be detected at run-time. Such a requirement could introduce
a monitoring component using complementary methods. Three example methods
could be:

• When the ODD defines certain areas of operation, e.g. urban intersections, locali-
sation information in combination with map data can be utilised to detect leaving
the ODD.

• Some sensors can directly measure an environmental state, such as a rain sensor,
which can be used to set bounds according to the ODD to detect whether the ODD
is left.

• Out-of-distributionmethods [HG17, XYA20] can be used to detect a distributional
shift of the input samples during run-time with respect to the database used for
training a ML model for perception or planning.

For the last method, there could furthermore be two types of evidence. Firstly, the
effectiveness of the methods should be shown by a test report including an evaluation
of a metric that indicates the separation precision between in- and out-of-distribution
samples. Secondly, it has to be shown that the training and test data used to train the
out-of-distribution detector is sufficient.

Uncertainty estimation: Uncertainty estimation methods can also be applied as
operation-time controls. Uncertainty is an inherent property of any machine learning
model, which may result from either aleatoric sources, such as a non-deterministic
behaviour of the real world or issues in the data or labelling, or epistemic sources,
referring to the inherent limitations of the machine learning model itself. Uncertainty
estimation methods aim to enable the DNN to indicate the uncertainty related to a
specific DNN prediction given a specific input at run-time. This may also contribute
to out-of-distribution detection under the assumption that the uncertainty increases
when the DNN is applied outside of its training data distribution. This assumption
of course must be rigorously tested in order to provide the corresponding evidence.
Among popular uncertainty estimation methods, methods based on Monte-Carlo
(MC) dropout [GG16] receive particular attention in embedded applications as they
approximate the performance of Bayesian Networks and hence usually outperform
techniques purely based on post-processing calibration, and comewith an acceptable
run-time overhead (compared to, e.g. full Bayesian networks or deep ensembles).
Although originally intended for capturing epistemic uncertainty only, it can be
extended to capture aleatoric uncertainty as well [KG17, SAP+21].

6 Combining Safety Evidence in the Assurance Case

While the insights sketched above surely help to understandweaknesses and improve
the development of theDNNunder investigation, the step towards arguing evidence in
an assurance case still has to be performed. According to the principles of ISO 26262,
ISO/DIS 21448, and ISO/TR 4804, the assurance case shall state in a convincing
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Fig. 10 Assurance case development: Integration of evidence into an assurance case

way: “The system is safe because...”. However, the assurance of DNNs leads to
several problems, since this technology requires new paradigms in development.
The software is no longer explicitly developed. Instead, the neural network is trained
and the network’s behaviour is implicitly influenced by the training models and data.
The combination of safety evidence in the assurance case provides central elements
for a holistic assurance strategy.

The core aspect of safety argumentation is to show that the mitigation of insuf-
ficiencies was successful. If the insufficiency is reduced to an acceptable level, this
provides evidence to be used in the safety argumentation. As shown in Fig. 10, one
possibility to combine safety evidence in the assurance case is to start on the top
level with the definition of safety goals. These are goals that define mandatory steps
to avoid hazards. Then the safety requirements are refined step-by-step based on
the described causal model of SOTIF-related risk using the categories of evidence.
This is supported by considering DNN-related safety concerns. Moreover, several
metrics are defined to show the effectiveness of measures that mitigate the effects
of insufficiencies. The goal structuring notation (GSN) can be used to assemble evi-
dence collected from various methods as they were presented in Sects. 5.1, 5.2, 5.3,
and 5.4 to provide a structured overall safety argumentation. The GSN visualises
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the elements of the safety argumentation. An assurance case can be presented in
a clear and structured way in the GSN. A GSN tree consists of three central ele-
ments: the argumentation goal, the description of the argumentation strategy, and
the evidence. These three elements are supported by assumptions, justifications, and
context information. A central aspect is the iterative nature of this technique to refine
understanding of insufficiencies in the function. Further iterations are started on the
top level (definition of safety goals).

7 Conclusions

Machine learning is an enabler technology for automated driving, especially for,
but not limited to, the required perception components. However, assuring safety
for such components is a challenge as standard safety-argumentation concepts are
not sufficient to capture the inherent complexity and data-dependency of functions
based on machine learning. For example, a component realised with an ML function
is formally hard to describe, which in turn makes it especially difficult to define
appropriate evidence for the safety argumentation. Therefore, we introduce different
types of evidence as a structuring guidance: evidence from confirmation of residual
failure rates, evidence from evaluation of insufficiencies, evidence from design-time
controls, and evidence from operation-time controls.

In order to create appropriate evidence, a process is required to ensure that knowl-
edge from different domains (machine learning, safety, and testing) are brought
together. Therefore, we propose the process of evidence workstreams to define evi-
dence in a structured way. Furthermore, we show how to integrate evidence into an
assurance case.

One of the main questions still remains open: Can a convincing assurance case be
constructed? We argue “yes” but only by explicitly acknowledging the insufficien-
cies in the ML function within the system design, and by being able to determine the
residual failures with sufficient confidence. This implies directly defining an accept-
able residual risk that is acknowledged by social acceptance and legal conditions,
which is an open challenge.

Future research topics might be how to combine multiple quantitative and quali-
tative pieces of evidence into the safety argumentation w.r.t. a given system architec-
ture and how to balance them. Moreover, there is demand for derivation of evidence
from the appropriate coverage of all possible situations within the operational design
domain (ODD) based on a structured ground context including tests. Further, the
iterative and dynamic process of constructing the assurance case (or “continuous
assurance”) requires work on formal models of the assurance case and on the con-
tinuous evaluation of the assurance case.
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