Skip to main content

Similarity-Aware Collaborative Learning for Patient Outcome Prediction

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13246))

Included in the following conference series:

Abstract

The rapid growth in the use of electronic health records (EHR) offers promises for predicting patient outcomes. Previous works on this task focus on exploiting temporal patterns from sequential EHR data. Nevertheless, such approaches model patients independently, missing out on the similarities between patients, which are crucial for patients’ health risk assessment. Moreover, they fail to capture the fine-grained progression of patients’ status, which assist in inferring the patients’ future status. In this work, we propose a similarity-aware collaborative learning model SiaCo for patient outcome prediction. In particular, we design two similarity measurers and two global knowledge matrices to separately calculate the similarity of patients with different information levels and support collaborative learning between patients. To capture the more fine-grained progression of patients’ status, we design a parallelized LSTM to model the temporal-dependent patterns of patient status. Finally, SiaCo integrates the information learned from two measures and the parallelized LSTM to predict patient outcomes. Extensive experiments are conducted on two real disease datasets. The experimental results demonstrate that SiaCo outperforms the state-of-the-art models for two typical tasks of patient outcome prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baytas, I.M., Xiao, C., Zhang, X., Wang, F., Jain, A.K., Zhou, J.: Patient subtyping via time-aware LSTM networks. In: SIGKDD, pp. 65–74 (2017)

    Google Scholar 

  2. Bhattacharya, S., Rajan, V., Shrivastava, H.: ICU mortality prediction: a classification algorithm for imbalanced datasets. In: AAAI, pp. 1288–1294 (2017)

    Google Scholar 

  3. Cai, X., Gao, J., Ngiam, K.Y., Ooi, B.C., Zhang, Y., Yuan, X.: Medical concept embedding with time-aware attention. In: IJCAI, pp. 3984–3990 (2018)

    Google Scholar 

  4. Cheng, Y., Wang, F., Zhang, P., Hu, J.: Risk prediction with electronic health records: a deep learning approach. In: SIAM, pp. 432–440 (2016)

    Google Scholar 

  5. Choi, E., et al.: Multi-layer representation learning for medical concepts. In: SIGKDD, pp. 1495–1504 (2016)

    Google Scholar 

  6. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: GRAM: graph-based attention model for healthcare representation learning. In: SIGKDD, pp. 787–795 (2017)

    Google Scholar 

  7. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.F.: RETAIN: an interpretable predictive model for healthcare using reverse time attention mechanism. In: Advances in Neural Information Processing Systems, vol. 29, pp. 3504–3512 (2016)

    Google Scholar 

  8. Choi, E., Schuetz, A., Stewart, W.F., Sun, J.: Medical concept representation learning from electronic health records and its application on heart failure prediction. arXiv (2016)

    Google Scholar 

  9. Choi, E., Xiao, C., Stewart, W.F., Sun, J.: MiME: multilevel medical embedding of electronic health records for predictive healthcare. In: Advances in Neural Information Processing Systems, vol. 31, pp. 4552–4562 (2018)

    Google Scholar 

  10. Gao, J., Xiao, C., Wang, Y., Tang, W., Glass, L.M., Sun, J.: StageNet: stage-aware neural networks for health risk prediction. In: Proceedings of the Web Conference (WWW), pp. 530–540 (2020)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  12. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 1–9 (2016)

    Article  Google Scholar 

  13. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: Proceedings of the 2001 SIAM International Conference on Data Mining, pp. 1–11. SIAM (2001)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015)

    Google Scholar 

  15. Liu, L., Shen, J., Zhang, M., Wang, Z., Tang, J.: Learning the joint representation of heterogeneous temporal events for clinical endpoint prediction. In: AAAI, pp. 109–116 (2018)

    Google Scholar 

  16. Liu, N., Lu, P., Zhang, W., Wang, J.: Knowledge-aware deep dual networks for text-based mortality prediction. In: ICDE, pp. 1406–1417 (2019)

    Google Scholar 

  17. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks. In: SIGKDD, pp. 1903–1911 (2017)

    Google Scholar 

  18. Ma, L., et al.: AdaCare: explainable clinical health status representation learning via scale-adaptive feature extraction and recalibration. In: AAAI, pp. 825–832 (2020)

    Google Scholar 

  19. Ma, L., et al.: ConCare: personalized clinical feature embedding via capturing the healthcare context. In: AAAI, pp. 833–840 (2020)

    Google Scholar 

  20. Mahajan, R., Mansotra, V.: Predicting geolocation of tweets: using combination of CNN and BiLSTM. Data Sci. Eng. 6(4), 402–410 (2021)

    Article  Google Scholar 

  21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: ICLR (2013)

    Google Scholar 

  22. Umemoto, K., Goda, K., Mitsutake, N., Kitsuregawa, M.: A prescription trend analysis using medical insurance claim big data. In: ICDE, pp. 1928–1939 (2019)

    Google Scholar 

  23. Wang, F., Lee, N., Hu, J., Sun, J., Ebadollahi, S., Laine, A.F.: A framework for mining signatures from event sequences and its applications in healthcare data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 272–285 (2012)

    Article  Google Scholar 

  24. Wawrzinek, J., Pinto, J.M.G., Wiehr, O., Balke, W.: Exploiting latent semantic subspaces to derive associations for specific pharmaceutical semantics. Data Sci. Eng. 5(4), 333–345 (2020)

    Article  Google Scholar 

  25. Yin, K., Qian, D., Cheung, W.K., Fung, B.C., Poon, J.: Learning phenotypes and dynamic patient representations via RNN regularized collective non-negative tensor factorization. In: AAAI, pp. 1246–1253 (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (No. 2021YFF0900800), the major Science and Technology Innovation of Shandong Province grant (No. 2021CXGC010108), the Fundamental Research Funds of Shandong University, and partially supported by the NSFC (No. 91846205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lizhen Cui or Ning Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, F., Cui, L., Cao, Y., Liu, N., Huang, W., Xu, Y. (2022). Similarity-Aware Collaborative Learning for Patient Outcome Prediction. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13246. Springer, Cham. https://doi.org/10.1007/978-3-031-00126-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00126-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00125-3

  • Online ISBN: 978-3-031-00126-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics