Skip to main content

Metadata Privacy Preservation for Blockchain-Based Healthcare Systems

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13245))

Included in the following conference series:

Abstract

Blockchain-based healthcare systems provide a patient-centric and accountable way to manage and share electronic health records. Thanks to its unique features, the blockchain is employed to record the metadata and to carry out access control. Nevertheless, the transparent nature of blockchain also poses a new challenge to these systems. We identify that the metadata stored on the blockchain leaks the relationship between doctors and patients. Based on this relationship, the adversary can launch linkage attacks to infer patients’ information. Hence, it is necessary to protect metadata privacy. However, strong privacy protection may reduce accountability. Striking a balance between accountability and privacy preservation is a major challenge for the blockchain and its applications. In this paper, we first elaborate on the reasons why the metadata could leak the privacy of patients in blockchain-based healthcare systems. After that, we propose privacy-preserving and accountable protocols to deal with this problem for two different healthcare scenarios: the single doctor case and the group consultation case. Finally, the theoretical analysis demonstrates the practicality of our protocols.

Supported by organization x.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Specifically, we require DDH holds in group \(G_{2}\) equipped with a bilinear map. Sometimes this assumption is referred to as the symmetric external Diffie-Hellman assumption.

References

  1. Aguiar, E.J.D., Faiçal, B.S., Krishnamachari, B., Ueyama, J.: A survey of blockchain-based strategies for healthcare. ACM Comput. Surv. 53(2), 1–27 (2020)

    Article  Google Scholar 

  2. Amofa, S., et al.: A blockchain-based architecture framework for secure sharing of personal health data. In: 20th IEEE International Conference on e-Health Networking, Applications and Services, Healthcom 2018, Ostrava, Czech Republic, September, pp. 1–6 (2018)

    Google Scholar 

  3. Armknecht, F., Bohli, J., Karame, G.O., Liu, Z., Reuter, C.A.: Outsourced proofs of retrievability. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 831–843 (2014)

    Google Scholar 

  4. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for medical data access and permission management. In: International Conference on Open & Big Data (2016)

    Google Scholar 

  5. Cao, S., Zhang, G., Liu, P., Zhang, X., Neri, F.: Cloud-assisted secure ehealth systems for tamper-proofing EHR via blockchain. Inf. Sci. 485, 427–440 (2019)

    Article  Google Scholar 

  6. Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., Wang, F.: Secure and trustable electronic medical records sharing using blockchain. In: AMIA 2017, American Medical Informatics Association Annual Symposium, Washington, DC, USA, 4–8 November 2017 (2017)

    Google Scholar 

  7. Huang, H., Zhu, P., Xiao, F., Sun, X., Huang, Q.: A blockchain-based scheme for privacy-preserving and secure sharing of medical data. Comput. Secur. 99, 102010 (2020)

    Article  Google Scholar 

  8. Kuo, T., Rojas, H.Z., Ohno-Machado, L.: Comparison of blockchain platforms: a systematic review and healthcare examples. J. Am. Med. Inform. Assoc. 26(5), 462–478 (2019)

    Article  Google Scholar 

  9. Shi, S., He, D., Li, L., Kumar, N., Khan, M.K., Choo, K.R.: Applications of blockchain in ensuring the security and privacy of electronic health record systems: a survey. Comput. Secur. 97, 1–6 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSFC grants (61941121, 62172423, and 91846204). And part of this work was done when the first author was visiting the Hong Kong Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Li, X., Au, M.H., Fan, Z., Meng, X. (2022). Metadata Privacy Preservation for Blockchain-Based Healthcare Systems. In: Bhattacharya, A., et al. Database Systems for Advanced Applications. DASFAA 2022. Lecture Notes in Computer Science, vol 13245. Springer, Cham. https://doi.org/10.1007/978-3-031-00123-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-00123-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-00122-2

  • Online ISBN: 978-3-031-00123-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics