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Abstract. We consider turn-based stochastic 2-player games on graphs
with ω-regular winning conditions. We provide a direct symbolic algo-
rithm for solving such games when the winning condition is formulated
as a Rabin condition. For a stochastic Rabin game with k pairs over a
game graph with n vertices, our algorithm runs in O(nk+2k!) symbolic
steps, which improves the state of the art.

We have implemented our symbolic algorithm, along with performance
optimizations including parallellization and acceleration, in a BDD-based
synthesis tool called Fairsyn. We demonstrate the superiority of Fairsyn
compared to the state of the art on a set of synthetic benchmarks derived
from the VLTS benchmark suite and on a control system benchmark from
the literature. In our experiments, Fairsyn performed significantly faster
with up to two orders of magnitude improvement in computation time.

1 Introduction

Symbolic algorithms for 2-player graph games are at the heart of many prob-
lems in the automatic synthesis of correct-by-construction hardware, software,
and cyber-physical systems from logical specifications. The problem has a
rich pedigree, going back to Church [10] and a sequence of seminal results
[6,31,17,30,13,14,34,21]. A chain of reductions can be used to reduce the syn-
thesis problem for ω-regular specifications to finding winning strategies in
2-player games on graphs, for which (symbolic) algorithms are known (see, e.g.,
[29,14,34,27]). These algorithms form the basis for algorithmic reactive synthesis.

For systems under uncertainty, it is also essential to capture non-determinism
quantitatively using probability distributions [5,18,22,25]. Turn-based stochas-
tic 2-player games [3,9], also known as 21/2-player games, generalize 2-player
graph games with an additional category of “random” vertices: Whenever the
game reaches a random vertex, a random process picks one of the outgoing
edges according to a probability distribution. The qualitative winning problem
asks whether a vertex of the game graph is almost surely winning for Player 0.
Stochastic Rabin games were studied by Chatterjee et al. [7], who showed that
the problem is NP-complete and that winning strategies can be restricted to
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be pure (non-randomized) and memoryless. Moreover, they showed a reduc-
tion from qualitative winning in an n-vertex k-pair stochastic Rabin game to
an O (n(k + 1))-vertex (k + 1)-pair (deterministic) Rabin game, resulting in an
O
(
(n(k + 1))k+2(k + 1)!

)
algorithm. In contrast, we provide a direct O(nk+2k!)

symbolic algorithm for the problem.
Our new direct symbolic algorithm is obtained in the following way. We

replace the probabilistic transitions with transitions of the environment con-
strained by extreme fairness as described by Pnueli [28]. Extreme fairness is
specified via a special set of Player 1 vertices, called live vertices. A run is ex-
tremely fair if whenever a live vertex is visited infinitely often, every outgoing
edge from this vertex is taken infinitely often. As our first contribution, we show
that to solve a qualitative stochastic Rabin game, we can equivalently solve a
(deterministic) Rabin game over the same game graph by interpreting random
vertices of the stochastic game as live vertices.

As our second contribution we prove a direct symbolic algorithm to solve
(deterministic) Rabin games with live vertices, which we call extremely fair ad-
versarial Rabin games. In particular, we show a surprisingly simple syntactic
transformation that modifies well-known symbolic fixpoint algorithm for solving
2-player Rabin games on graphs (without live vertices), such that the modified
fixpoint solves the extremely fair adversarial version of the game.

To appreciate the simplicity of our modification, let us consider the well-
known fixpoint algorithms for Büchi and co-Büchi games—particular classes of
Rabin games—given by the following µ-calculus formula:

Büchi: νY. µX. (G ∩ Cpre(Y )) ∪ (Cpre(X)) ,
Co-Büchi: µX. νY. (G ∪ Cpre(X)) ∩ (Cpre(Y )) .

where Cpre(·) denotes the controllable predecessor operator and G denotes the
set of goal states that should be visited recurrently. In the presence of strong
transition fairness, the new algorithm becomes

Büchi: νY. µX. (G ∩ Cpre(Y )) ∪ (Apre(Y,X)) ,
Co-Büchi: νW. µX. νY. (G ∪Apre(W,X)) ∩ (Cpre(Y )) .

The only syntactic change (highlighted in blue) we make is to substitute the
controllable predecessor for the µ variable X by a new almost sure predecessor
operator Apre(Y,X) incorporating also the previous ν variable Y ; if the fixpoint
starts with a µ variable (with no previous ν variable), like for co-Büchi games,
we introduce one additional ν variable in the front. For the general class of
Rabin specifications, with a more involved fixpoint and with arbitrarily high
nesting depth depending on the number of Rabin pairs, we need to perform this
substitution for every such Cpre(·) operator for every µ variable.

We prove the correctness of this syntactic fixpoint transformation for solv-
ing Rabin games [31,27] in this paper. It can be shown that the same syntactic
transformation may be used to obtain fixpoint algorithms for qualitative solution
of stochastic games with other popular ω-regular objectives, namely Reachabil-
ity, Safety, (generalized) Büchi, (generalized) co-Büchi, Rabin-chain, parity, and

82 T. Banerjee et al.



GR(1). Owing to page constraints, these additional fixpoints are only discussed
in the extended version [4] of this paper, where we also generalize all results
presented in this paper to a weaker notion of fairness, called transition fairness.
In a nutshell, these results show that one can solve games with live vertices
while retaining the algorithmic characteristics and implementability of known
symbolic fixpoint algorithms that do not consider fairness assumptions.

We have implemented our symbolic algorithm for solving stochastic Rabin
games in a symbolic BDD-based reactive synthesis tool called Fairsyn. Fairsyn
additionally uses parallellization and a fixpoint acceleration technique [23] to
boost performance. We evaluate our tool on two case studies, one using synthetic
benchmarks derived from the VLTS benchmark suite [15] and the other from
controller synthesis for stochastic control systems [12]. We show that Fairsyn
scales well on these case studies, and outperforms the state-of-the-art methods
by up to two orders of magnitude.

All the technical proofs, the fixpoints for various other specifications, and an
additional benchmark taken from the software engineering literature [8] can be
found in the extended version of this paper under a slighly more relaxed setting
of the problem (transition fairness instead of extreme fairness) [4].

2 Preliminaries

Notation: We write N0 to denote the set of natural numbers including zero.
Given a, b ∈ N0, we write [a; b] to denote the set {n ∈ N0 | a ≤ n ≤ b}. By
definition, [a; b] is an empty set if a > b. For any set A ⊆ U defined on the
universe U , we write A to denote the complement of A. Given an alphabet A,
we use the notation A∗ and Aω to denote respectively the set of all finite words
and the set of all infinite words formed using the letters of the alphabet A. Let
A and B be two sets and R ⊆ A × B be a relation. For any element a ∈ A, we
use the notation R(a) to denote the set {b ∈ B | (a, b) ∈ R}.
21/2-player game graph: We consider usual turn-based stochastic games, also
known as 21/2-player games, played between Player 0, Player 1, and a third player
representing environmental randomness which is treated as a “half player.” For-
mally, a 21/2-player game graph is a tuple G = 〈V, V0, V1, Vr, E〉 where (i) V is a
finite set of vertices, (ii) V0, V1, and Vr are subsets of V which form a partition of
V , and (iii) E ⊆ V ×V is the set of directed edges. The vertices in Vr are called
random vertices, and the edges originating in a random vertex are called random
edges, denoted as Er. A 21/2-player game graph with no random vertices (i.e.
Vr = ∅) is called a 2-player game graph. A 21/2-player game graph with V1 = ∅
is called a 11/2-player game graph (also known as Markov Decision Processes or
MDPs). A 21/2-player game graph with V = Vr is known as a Markov chain.

Strategies: A (deterministic) strategy of Player 0 is a function ρ0 : V ∗V0 → V
with ρ0(wv) ∈ E(v) for every wv ∈ V ∗V0. Likewise, a strategy of Player 1 is a
function ρ1 : V ∗V1 → V with ρ1(wv) ∈ E(v) for every wv ∈ V ∗V1. We denote
the set of strategies of Player i by Πi. A strategy ρi of Player i (i ∈ {0, 1}) is
memoryless if for every w1v, w2v ∈ V ∗Vi, we have ρi(w1v) = ρi(w2v). In this
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paper we restrict attention to deterministic strategies, as randomized strategies
are no more powerful than deterministic ones for 21/2-player Rabin games [7].

Plays: Consider an infinite sequence of vertices4 π = v0v1v2 . . . ∈ V ω. The
sequence π is called a play over G starting at the vertex v0 if for every i ∈ N0, we
have vi ∈ V and (vi, vi+1) ∈ E. A play is finite if it is of the form v0v1 . . . vn for
some finite n ∈ N0. Let ρ0 ∈ Π0 and ρ1 ∈ Π1 be a pair of strategies for the two
players, and v0 ∈ V be a given initial vertex. For every finite play π = v0v1 . . . vn,
the next vertex vn+1 is obtained as follows: If vn ∈ V0 then vn+1 = ρ0(v0 . . . vn);
if vn ∈ V1 then vn+1 = ρ1(v0 . . . vn); and if vn ∈ Vr then vn+1 is chosen uniformly
at random from the set Er(v

n). The uniform probability distribution over the
random edges is without loss of generality for the problem considered in this
paper; we will come back to this after setting up the problem statement. Every
play generated in this way by fixing ρ0, ρ1, and v0 is called a play compliant with
ρ0 and ρ1 that starts at vertex v0. The random choice in the random vertices
induces a probability measure P ρ0,ρ1v0 on the sample space of plays.5 This is in
contrast to 2-player games, where for any choice of ρ0 ∈ Π0, ρ1 ∈ Π1, and
v0 ∈ V , the resulting compliant play is unique.

Winning Conditions: A winning condition ϕ is a set of infinite plays over G,
i.e., ϕ ⊆ V ω, where the game graph G will always be clear from the context. We
adopt Linear Temporal Logic (LTL) notation for describing winning conditions.
The atomic propositions for the LTL formulas are sets of vertices, i.e., elements
of the set 2V . We use the standard symbols for the Boolean and the temporal
operators: “¬” for negation, “∧” for conjunction, “∨” for disjunction, “→” for
implication, “U” for until (AU B means “the play remains inside the set A until
it moves to the set B”), “©” for next (©A means “the next vertex is in the set
A”), “♦” for eventually (♦A means “the play will eventually visit a vertex from
the set A”), and “�” for always (�A means “the play will only visit vertices
from the set A”). The syntax and semantics of LTL can be found in standard
textbooks [3]. By slightly abusing notation, we use ϕ interchangeably to denote
both the LTL formula and the set of plays satisfying ϕ. Hence, we write π ∈ ϕ
to denote the satisfaction of the formula ϕ by the play π.

Rabin Winning Conditions: A Rabin winning condition is expressed using a
set of k Rabin pairs R = {〈G1, R1〉, . . . , 〈Gk, Rk〉}, where k is any positive integer
and Gi, Ri ⊆ V for all i ∈ [1; k]. We say that R has the index set P = [1; k]. A
play π satisfies the Rabin condition R if π satisfies the LTL formula

ϕ :=
∨
i∈P

(
♦�Ri ∧�♦Gi

)
. (2)

Almost Sure Winning: Let G be 21/2-player game graph, ρ0 ∈ Π0 and ρ1 ∈ Π1

be a pair of strategies, v0 ∈ V be an initial vertex, and ϕ be an ω-regular

4 In our convention for denoting vertices, superscripts (ranging over N0) will denote
the position of a vertex within a given sequence/play, whereas subscripts, either 0,
1, or r, will denote the membership of a vertex in the sets V0, V1, or Vr respectively.

5 The unique measure P ρ0,ρ1
v0

is obtained through Carathéodory’s extension theorem
by extending the pre-measure on every infinite extension—called the cylinder set—of
every finite play; see [3, pp. 757] for details.
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specification over the vertices of G. Then P ρ0,ρ1v0 (ϕ) denotes the probability of
satisfaction of ϕ by the plays compliant with ρ0 and ρ1 and starting at v0.
The set of almost sure winning states of Player 0 for the specification ϕ is
defined as the set Wa.s. ⊆ V such that for every v0 ∈ Wa.s. the following
holds: supρ0∈Π0

infρ1∈Π1 P
ρ0,ρ1
v0 (ϕ) = 1. It is known [7, Thm. 4] that there is

an optimal (deterministic) memoryless strategy ρ∗0 ∈ Π0—called the optimal
almost sure winning strategy—such that for every v0 ∈ Wa.s. it holds that

infρ1∈Π1 P
ρ∗0 ,ρ1
v0 (ϕ) = 1.

We extend the notion of winning to 2-player games as follows. Fix a 2-player
game graph G = 〈V, V0, V1, ∅, E〉 and an ω-regular specification ϕ over V . Player 0
wins the game from a vertex v0 ∈ V if Player 0 has a strategy ρ0 such that for
every Player 1 strategy ρ1, the unique resulting play starting at v0 is in ϕ. The
winning region W ⊆ V is the set of vertices from which Player 0 wins the game.
It is known that Player 0 has a memoryless strategy ρ∗0—called the optimal
winning strategy—such that for every Player 1 strategy ρ1 ∈ Π1 and for every
initial vertex v0 ∈ W , the resulting unique compliant play is in ϕ [19].

3 Problem Statement and Outline

Given a 21/2-player game graph G and a Rabin specification ϕ as in (2), we
consider the problem of solving the induced qualitative reactive synthesis prob-
lem. That is, we want to compute the set of almost sure winning states Wa.s.

of G w.r.t. ϕ and the corresponding optimal memoryless winning strategy ρ∗0 of
Player 0. This problem was solved by Chatterjee et al. [7] via a reduction from
qualitative winning in the original 21/2-player Rabin game to winning in a larger
(deterministic) 2-player Rabin game with an additional Rabin pair.

Instead of inflating the game graph and introducing an extra Rabin pair at
the cost of more expensive computation, we propose a direct and computationally
more efficient symbolic algorithm over the original game graph G. We get this
algorithm by interpreting the random vertices of G as special Player 1 vertices,
called live vertices, which are subject to an extreme fairness assumption: along
every play, if a live vertex v is visited infinitely often, then all outgoing transitions
of v are also taken infinitely often. This re-interpretation results in a 2-player
Rabin game with special live Player 1 vertices that are subjected to extreme
fairness assumptions on Player 1’s behavior. We call such games extremely fair
adversarial (2-player) Rabin games. The correctness of our symbolic algorithm
then follows from the two main results of our paper.

(I) We show that qualitative winning in a 21/2-player Rabin game G is equiv-
alent to winning in the extremely fair adversarial (2-player) Rabin game G`
obtained from G. Moreover, the winning strategy ρ0 of Player 0 in G` is also the
optimal almost sure winning strategy in G for ϕ (see Thm. 1 in Sec. 4).

(II) We give a direct symbolic algorithm to compute the set of winning states,
along with the Player 0 winning strategy for extremely fair adversarial (2-player)
Rabin games (see Thm. 2 in Sec. 5).
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Both contributions are discussed in detail in Sec. 4 and Sec. 5, respectively.
Even though, for convenience, we have assumed a uniform probability distribu-
tion over the random edges, our contributions are valid for any arbitrary prob-
ability distribution. This follows from the established fact that the qualitative
analysis of 21/2-player games does not depend on the precise probability values
but only on the supports of the distributions [7].

We conclude the paper by an experimental evaluation in Sec. 6.

4 From Randomness to Extreme Fairness

In this section, we show that qualitative winning in 21/2-player Rabin games
is equivalent to winning in extremely fair adversarial (2-player) Rabin games
over the same underlying game graph. While it is known [16, Thm. 11.1] that
the reduction of random vertices to extreme fairness is sound and complete
for liveness winning conditions6 we extend this connection to arbitrary Rabin
winning conditions in this section, and therefore to the entire class of ω-regular
specifications. We start with a formal definition of extremely fair adversarial
games and the connection between randomness and extreme fairness, before
stating our main result in Thm. 1.

Extremely Fair Adversarial Games: Let G = 〈V, V0, V1, ∅, E〉 be a 2-player
game graph with live vertices V ` ⊆ V1, denoted using the tuple G` = 〈G, V `〉.
The set of edges originating from the live vertices are called the live edges, and
is denoted as E` := (V `×V )∩E. A play π over G` is extremely fair with respect
to V ` if it satisfies the following LTL formula:

α :=
∧

(v,v′)∈E` (�♦v → �♦(v ∧©v′)) . (3)

Given G` and an ω-regular winning condition ϕ over V , Player 0 wins the ex-
tremely fair adversarial game over G` for ϕ from a vertex v0 ∈ V if Player 0
wins the game over G` for the winning condition α→ ϕ from v0.

Randomness as Extreme Fairness: Let G = 〈V, V0, V1, Vr, E〉 be a 21/2-player
game graph. Then we say that G induces the 2-player game graph with live
vertices G` := 〈〈V, V0, V1 ∪ Vr, ∅, E〉, Vr〉. Intuitively, we interpret every random
vertex of G as a live Player 1 vertex in G`. Obviously, this reinterpretation does
not change the structure of the underlying graph specified by V and E.

Soundness of the Reduction: It remains to show that the almost sure winning
set and the optimal almost sure winning strategy of Player 0 in G for ϕ is the same
as the winning state set and the winning strategy of Player 0 in G` for ϕ. This is
formalized in the following theorem when ϕ is given as a Rabin condition. The
proof essentially shows that the random vertices of G simulate the live vertices
of G`, and vice versa; details are in the extended version [4, App. B.6, pp. 61].

6 An LTL formula ϕ over V describes a liveness property if every finite play π over G
allows for a continuation π′ s.t. ππ′ ∈ ϕ.
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Theorem 1. Let G be a 21/2-player game graph with vertex set V , ϕ ⊆ V ω be a
Rabin winning condition as in (2), and G` be the 2-player game graph with live
edges induced by G. Let W ⊆ V be the set of vertices from which Player 0 wins
the extremely fair adversarial game over G` with respect to ϕ, and Wa.s. be the
almost sure winning set of Player 0 in the 21/2-player game G with respect to ϕ.
Then, W = Wa.s.. Moreover, an optimal almost sure winning strategy in G` is
also an optimal winning strategy in G, and vice versa.

5 Extremely Fair Adversarial Rabin Games

This section presents our main result, which is a symbolic fixpoint algorithm that
computes the winning region of Player 0 in the extremely fair adversarial game
over G` with respect to any ω-regular property formalized as a Rabin winning
condition. This new symbolic fixpoint algorithm has multiple unique features.
(I) It works directly over G`, without requiring any pre-processing step to reduce
G` to a “normal” 2-player game with larger set of vertices.
(II) Our new fixpoint algorithm is obtained from the algorithm of Piterman et al.
[27] by a simple syntactic change. We simply replace all controllable predecessor
operators over least fixpoint variables by a new almost sure predecessor operator
invoking the preceding maximal fixpoint variable. This makes the proof of our
new fixpoint algorithm conceptually simple (see Sec. 5.3).

At a higher level, we make a simple yet efficient syntactic transformation of
the fixpoint to incorporate the fairness assumption on the live vertices, without
introducing any extra computational complexity. Most remarkably, this transfor-
mation also works directly for fixpoint algorithms for reachability, safety, Büchi,
(generalized) co-Büchi, Rabin-chain, and parity games, as these can be formal-
ized as particular instances of a Rabin game. Moreover, it also works for gener-
alized Rabin, generalized Büchi, and GR(1) games. Owing to page constrains,
these additional cases are described in the extended version [4].

5.1 Preliminaries on Symbolic Computations over Game Graphs

Set Transformers: Our goal is to develop symbolic fixpoint algorithms to char-
acterize the winning region of an extremely fair adversarial game over a game
graph with live edges. As a first step, given G`, we define the required symbolic
transformers of sets of states. We define the existential, universal, and control-
lable predecessor operators as follows. For S ⊆ V , we have

Pre∃0(S) := {v ∈ V0 | E(v) ∩ S 6= ∅}, (4a)

Pre∀1(S) := {v ∈ V1 | E(v) ⊆ S}, and (4b)

Cpre(S) := Pre∃0(S) ∪ Pre∀1(S). (4c)

Intuitively, the controllable predecessor operator Cpre(S) computes the set of all
states that can be controlled by Player 0 to stay in S after one step regardless
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of the strategy of Player 1. Additionally, we define two operators which take
advantage of the fairness assumption on the live vertices. Given two sets S, T ⊆
V , we define the live-existential and almost sure predecessor operators:

Lpre∃(S) := {v ∈ V ` | E(v) ∩ S 6= ∅}, and (5a)

Apre(S, T ) := Cpre(T ) ∪
(

Lpre∃(T ) ∩ Pre∀1(S)
)
. (5b)

Intuitively, the almost sure predecessor operator7 Apre(S, T ) computes the set
of all states that can be controlled by Player 0 to stay in T (via Cpre(T )) as well
as all Player 1 states in V ` that (a) will eventually make progress towards T if
Player 1 obeys its fairness-assumptions encoded in α (via Lpre∃(T )) and (b) will
never leave S in the “meantime” (via Pre∀1(S)). All the used set transformers are
monotonic with respect to set inclusion. Further, Cpre(T ) ⊆ Apre(S, T ) always
holds, Cpre(T ) = Apre(S, T ) if V ` = ∅, and Apre(S, T ) ⊆ Cpre(S) if T ⊆ S.

Fixpoint Algorithms in the µ-calculus: We use µ-calculus [20] as a con-
venient logical notation to define a symbolic algorithm (i.e., an algorithm that
manipulates sets of states rather than individual states) for computing a set of
states with a particular property over a given game graph G. The formulas of the
µ-calculus, interpreted over a 2-player game graph G, are given by the grammar

ϕ ::= p | X | ϕ ∪ ϕ | ϕ ∩ ϕ | pre(ϕ) | µX.ϕ | νX.ϕ

where p ranges over subsets of V , X ranges over a set of formal variables, pre
ranges over monotone set transformers in {Pre∃0 ,Pre∀1 ,Cpre,Lpre∃,Apre}, and µ
and ν denote, respectively, the least and the greatest fixed point of the functional
defined as X 7→ ϕ(X). Since the operations ∪, ∩, and the set transformers pre
are all monotonic, the fixed points are guaranteed to exist. A µ-calculus formula
evaluates to a set of states over G, and the set can be computed by induction over
the structure of the formula, where the fixed points are evaluated by iteration.
We omit the (standard) semantics of formulas (see [20]).

5.2 The Symbolic Algorithm

We now present our new symbolic fixpoint algorithm to compute the winning
region of Player 0 in the extremely fair adversarial game over G` with respect to
a Rabin winning condition R. A detailed correctness proof can be found in the
extended version [4, App. B.3, pp. 40].

Theorem 2. Let G` = 〈G, V `〉 be a game graph with live edges and R be a Rabin
condition over G with index set P = [1; k]. Further, let Z∗ denote the fixed point
of the following µ-calculus expression:

νYp0 .µXp0 .
⋃
p1∈P

νYp1 .µXp1 .
⋃

p2∈P\1

νYp2 .µXp2 . . . .
⋃

pk∈P\k−1

νYpk .µXpk .

 k⋃
j=0

Cpj

 ,
(6a)

7 We will justify the naming of this operator later in Rem. 1.
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where Cpj :=
(⋂j

i=0Rpi

)
∩
[(
Gpj ∩ Cpre(Ypj )

)
∪
(
Apre(Ypj , Xpj )

)]
, (6b)

with8 p0 = 0, Gp0 := ∅ and Rp0 := ∅ as well as P\i := P \ {p1, . . . , pi}. Then Z∗

is equivalent to the winning region W of Player 0 in the extremely fair adver-
sarial game over G` for the winning condition ϕ in (2). Moreover, the fixpoint
algorithm runs in O(nk+2k!) symbolic steps, and a memoryless winning strategy
for Player 0 can be extracted from it.

5.3 Proof Outline

Given a Rabin winning condition over a “normal” 2-player game, [27] provided a
symbolic fixpoint algorithm which computes the winning region for Player 0. The
fixpoint algorithm in their paper is almost identical to our fixpoint algorithm
in (6): it only differs in the last term of the constructed C-terms in (6b). [27]
defines the term Cpj as(⋂j

i=0Rpi

)
∩
[(
Gpj ∩ Cpre(Ypj )

)
∪
(
Cpre(Xpj )

)]
.

Intuitively, a single term Cpj computes the set of states that always remain within

Qpj :=
⋂j
i=0Rpi while always re-visiting Gpj . That is, given the simpler (local)

winning condition
ψ := �Q ∧�♦G (7)

for two sets Q,G ⊆ V , the set

νY. µX. Q ∩ [(G ∩ Cpre(Y )) ∪ (Cpre(X))] (8)

is known to define exactly the states of a “normal” 2-player game G from which
Player 0 has a strategy to win the game with winning condition ψ [26]. Such
games are typically called Safe Büchi Games. The key insight in the proof of
Thm. 2 is to show that the new definition of C-terms in (6b) via the new al-
most sure predecessor operator Apre actually computes the winning state sets
of extremely fair adversarial safe Büchi games. Subsequently, we generalize this
intuition to the fixpoint for the Rabin games.

Fair Adversarial Safe Büchi Games: The following theorem characterizes
the winning states in an extremely fair adversarial safe Büchi game.

Theorem 3. Let G` = 〈G, V `〉 be a game graph with live vertices and Q,G ⊆ V
be two state sets over G. Further, let

Z∗ := νY. µX. Q ∩ [(G ∩ Cpre(Y )) ∪ (Apre(Y,X))] . (9)

Then Z∗ is equivalent to the winning region of Player 0 in the extremely fair ad-
versarial game over G` for the winning condition ψ in (7). Moreover, the fixpoint
algorithm runs in O(n2) symbolic steps, and a memoryless winning strategy for
Player 0 can be extracted from it.

8 The Rabin pair 〈Gp0 , Rp0〉 = 〈∅, ∅〉 in (6) is artificially introduced to make the
fixpoint representation more compact. It is not part of R.
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Intuitively, the fixpoints in (8) and (9) consist of two parts: (a) A minimal
fixpoint over X which computes (for any fixed value of Y ) the set of states that
can reach the “target state set” T := Q ∩G ∩ Cpre(Y ) while staying inside the
safe set Q, and (b) a maximal fixpoint over Y which ensures that the only states
considered in the target T are those that allow to re-visit a state in T while
staying in Q.

By comparing (8) and (9) we see that our syntactic transformation only
changes part (a). Hence, in order to prove Thm. 3 it essentially remains to show
that this transformation works for the even simpler safe reachability games.

Extremely Fair Adversarial Safe Reachability Games: A safe reachabil-
ity condition is a tuple 〈T,Q〉 with T,Q ⊆ V and a play π satisfies the safe
reachability condition 〈T,Q〉 if π satisfies the LTL formula

ψ := QU T. (10)

A safe reachability game is often called a reach-while-avoid game, where the
safe sets are specified by an unsafe set R := Q that needs to be avoided. Their
extremely fair adversarial version is formalized in the following theorem and
proved in the extended version [4, Thm. 3.3].

Theorem 4. Let G` = 〈G, V `〉 be a game graph with live edges and 〈T,Q〉 be a
safe reachability winning condition. Further, let

Z∗ := νY. µX. T ∪ (Q ∩Apre(Y,X)). (11)

Then Z∗ is equivalent to the winning region of Player 0 in the extremely fair
adversarial game over G` for the winning condition ψ in (10). Moreover, the fix-
point algorithm runs in O(n2) symbolic steps, and a memoryless winning strategy
for Player 0 can be extracted from it.

To gain some intuition on the correctness of Thm. 4, let us recall that the
fixpoint for safe reachability games without live edges is given by:

µX. T ∪ (Q ∩ Cpre(X)). (12)

Intuitively, the fixpoint computation in (12) is initialized with X0 = ∅ and
computes a sequence X0, X1, . . . , Xk of increasing sets until Xk = Xk+1. We
say that v has rank r if v ∈ Xr \Xr−1. All states contained in Xr allow Player 0
to force the play to reach T in at most r − 1 steps while staying in Q. The
corresponding Player 0 strategy ρ0 is known to be winning w.r.t. (10) and along
every play π compliant with ρ0, the path π remains in Q and the rank is always
decreasing.

To see why the same strategy is also sound in the extremely fair adversarial
safe reachability game G`, first recall that for vertices v /∈ V ` of G`, the operator
Apre(X,Y ) simplifies to Cpre(X). With this, we see that for every v /∈ V ` a
Player 0 winning strategy ρ̃0 in G` can always force plays to stay in Q and to
decrease their rank, similar to ρ0. Then every play π compliant with such a
strategy ρ̃0 and visiting a vertex in V ` only finitely often satisfies (10).
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Fig. 1. Fair adversarial game graph discussed in Ex. 1 and Ex. 2 with Player 0 and
Player 1 vertices being indicated by circles and squares, respectively. The live vertices
are V ` = {2, 3, 5} (double square, blue), the target vertices are G = {6, 9} (double
circle, green), and the unsafe vertices are Q = {1} (red,dotted).

The only interesting case for soundness of Thm. 4 is therefore every play π
that visits states in V ` infinitely often. However, as the number of vertices is
finite, we only have a finite number of ranks and hence a certain vertex v ∈ V `
with a finite rank r needs to get visited by π infinitely often. From the definition
of Apre, we know that only states v ∈ V ` are contained in Xr if v has an outgoing
edge reaching Xk with k < r. Because of the extreme fairness condition, reaching
v infinitely often implies that also a state with rank k s.t. k < r will get visited
infinitely often. As X1 = T we can show by induction that T is eventually visited
along π while π always remains in Q until then.

In order to prove completeness of Thm. 4 we need to show that all states
in V \ Z∗ are losing for Player 0. Here, again the reasoning is equivalent to the
“normal” safe reachability game for v /∈ V `. For live vertices v ∈ V `, we see
that v is not added to Z∗ via Apre if v /∈ T and either (i) none of its outgoing
edges make progress towards T or (ii) some of its outgoing edges leave Z∗. One
can therefore construct a Player 1 strategy that for (i)-vertices always choose
an arbitrary transition and thereby never makes progress towards T (also if v
is visited infinitely often), and for (ii)-vertices ensures that they are only visited
once on plays which remain in Q. This ensures that (ii)-vertices never make
progress towards T via their possibly existing rank-decreasing edges.

In the extended version [4], we have provided a detailed soundness and com-
pleteness proof of Thm. 4 along with the respective Player 0 and Player 1 strat-
egy construction. In addition, there we also proved Thm. 3 using a reduction to
Thm. 4 for every iteration over Y .

Example 1 (Extremely Fair adversarial safe reachability game). We consider an
extremely fair adversarial safe reachability game over the game graph depicted
in Fig. 1 with target vertex set T = G = {6, 9} and safe vertex set Q = V \ {1}.

We denote by Y m the m-th iteration over the fixpoint variable Y in (11),
where Y 0 = V . Further, we denote by Xmi the set computed in the i-th iteration
over the fixpoint variable X in (11) during the computation of Y m where Xm0 =
∅. We further have Xm1 = T = {6, 9} as Apre(·, ∅) = ∅. Now we compute

X12 = T ∪ (Q ∩Apre(Y 0, X11))

= {6, 9} ∪ (V \ {1} ∩ [Cpre(X11)︸ ︷︷ ︸
{7,8}

∪ (Lpre∃(X11) ∩ Pre∀1(V ))︸ ︷︷ ︸
{3,5}

]) = {3, 5, 6, 7, 8, 9}.

(13)
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We observe that the only vertices added to X via the Cpre term are 7 and
8. The live vertices 3 and 5 are added due to their outgoing edges leading to
the target vertex 6. The additional requirement Pre∀1(V ) in Apre(Y 0, X11) is
trivially satisfied for all vertices at this point as Y 0 = V and can therefore be
ignored. Doing one more iteration over X we see that now vertex 4 gets added
via the Cpre term (as it is a Player 0 vertex that allows progress towards 5) and
vertex 2 is added via the Apre term (as it is live and allows progress to 3). The
iteration over X terminates with Y 1 = X1∗ = V \ {1}.

Re-iterating over X for Y 1 gives X22 = X12 = {3, 5, 6, 7, 8, 9} as before.
However, now vertex 2 does not get added to X23 because vertex 2 has an
edge leading to V \ Y 1 = {1}. Therefore the iteration over X terminates with
Y 2 = X2∗ = V \{1, 2}. When we now re-iterate over X for Y 2 we see that vertex
3 is not added to X32 any more, as vertex 3 has a transition to V \ Y 2 = {1, 2}.
Therefore the iteration over X now terminates with Y 3 = X3∗ = V \ {1, 2, 3}.
Now re-iterating over X does not change the vertex set anymore and the fixed-
point terminates with Y ∗ = Y 3 = V \ {1, 2, 3}.

We note that the fixpoint expression (12) for “normal” safe reachability
games terminates after two iterations over X with X∗ = {6, 7, 8, 9}, as ver-
tices 7 and 8 are the only vertex added via the Cpre operator in (13). Due to
the stricter notion of Cpre requiring that all outgoing edges of Player 0 vertices
make process towards the target, (12) does not require an outer largest fixed-
point over Y to “trap” the play in a set of vertices which allow progress when
“waiting long enough”. This “trapping” required in (11) via the outer fixpoint
over Y actually fails for vertices 2 and 3 (as they are excluded from the winning
set of (11)). Here, Player 1 can enforce to “escape” to the unsafe vertex 1 in
two steps before 2 and 3 are visited infinitely often (which would imply progress
towards 6 via the existing live edges).

We see that the winning region in the “normal” game is much smaller than the
winning region for the extremely fair adversarial game, as adding live transitions
restricts the strategy choices of Player 1, making it easier for Player 0 to win.

Example 2 (Extremely fair adversarial safe Büchi game). We now consider an
extremely fair adversarial safe Büchi game over the game graph depicted in Fig. 1
with target set G = {6, 9} and safe set Q = V \ {1}.

We first observe that we can rewrite the fixpoint in (9) as

νY. µX. [Q ∩G ∩ Cpre(Y )] ∪ [Q ∩ (Apre(Y,X))] . (14)

Using (14) we see that for Y 0 = V we can define T 0 := Q∩G∩Cpre(V ) = G =
{6, 9}. Therefore the first iteration over X is equivalent to (13) and terminates
with Y 1 = X1∗ = V \ {1}.

Now, however, we need to re-compute T for the next iteration over X and
obtain T 1 = Q ∩ G ∩ Cpre(Y 1) = V \ {1} ∩ {6, 9} ∩ V \ {1, 2, 9} = {6}. This
re-computation of T 1 checks which target vertices are repeatedly reachable, as
required by the Büchi condition. As vertex 9 has no outgoing edge trivially it
cannot be reached repeatedly.

92 T. Banerjee et al.



With this, we see that for the next iteration over X we only have one target
vertex T 1 = {6}. Unlike the safe reachability case in Ex. 1, the vertex 7 cannot
be added to X22, since Player 1 can always decide to take the edge towards 9
from 7, and therefore prevents repeated visit of a target state. Vertices 2 and 3
get eliminated for the same reason as in the safe reachability game within the
second and third iteration over Y . The overall fixpoint computation therefore
terminates with Y ∗ = Y 3 = {4, 5, 6, 8}.

Proof of Thm. 2: The proof of Thm. 2 essentially follows from the same
arguments as in the soundness proof of the Rabin fixpoint for 2-player game by
Piterman et al. [27], which utilizes Thm. 4 and Thm. 3 at all suitable places. In
[4, App. A, pp. 29], we illustrate the steps of the Rabin fixpoint in (6) using a
simple extremely fair adversarial Rabin game with two Rabin pairs.

Remark 1. We remark that the fixpoint (11), as well as the Apre operator, are
similar in structure to the solution of almost surely winning states in concurrent
reachability games [1]. In concurrent games, the fixpoint captures the largest
set of states in which the game can be trapped while maintaining a positive
probability of reaching the target. In our case, the fixpoint captures the largest
set of states in which Player 0 can keep the game while ensuring a visit to the
target either directly or through some of the edges from the live vertices. The
commonality justifies our notation and terminology for Apre.

Remark 2. [2] studied fair CTL and LTL model checking where the fairness con-
dition is given by exteme fairness with all vertices of the transition system being
live. They show that CTL model checking under this all-live fairness condition,
can be syntactically transformed to non-fair CTL model checking. A similar
transformation is possible for fair model checking of Büchi, Rabin, and Streett
formulas. The correctness of their transformation is based on reasoning similar
to our Apre operator. For example, a state satisfies the CTL formula ∀♦p under
fairness iff all paths starting from the state either eventually visits p or always
visits states from which a visit to p is possible.

Complexity Analysis of (6): For Rabin games with k Rabin pairs, Piterman et
al. [27] proposed a fixpoint formula with alternation depth 2k+1 . Using the ac-
celerated fixpoint computation technique of Long et al. [23], they deduce a bound
of O(nk+1k!) symbolic steps. We can apply the same acceleration technique to
our fixpoint (6), yielding a complexity upper bound of O(nk+2k!) symbolic steps.
(The additional complexity is because of an additional outermost ν-fixpoint.)

6 Experimental Evaluation

We developed a C++-based tool Fairsyn9, which implements the symbolic fair
adversarial Rabin fixpoint from Eq. (6) using Binary Decision Diagrams (BDD).

9 Repository URL: https://gitlab.mpi-sws.org/kmallik/synthesis-with-edge-fairness
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Fairsyn has a single-threaded and a multi-threaded version, which respectively
use the CUDD BDD library [32] and the Sylvan BDD library [11]. In both, we
used a fixpoint acceleration procedure that “warm-starts” the inner fixpoints by
exploiting a monotonicity property (detailed in the extended version [4]).

We demonstrate the effectiveness of our proposed symbolic algorithm for 21/2-
player Rabin games using a set of synthetic benchmark experiments derived from
the VLTS benchmark suite (Sec. 6.1) and a controller synthesis experiment for
a stochastic dynamical system (Sec. 6.2); in the extended version [4], we include
an additional software engineering benchmark example from the literature. In
all of these examples, Fairsyn significantly outperformed the state-of-the-art.

The experiments in Sec. 6.1 were performed using the multi-threaded Fairsyn
on a computer equipped with a 3 GHz Intel Xeon E7 v2 processor with 48 CPU
cores and 1.5 TiB RAM. The experiments in Sec. 6.2 were performed using the
single-threaded Fairsyn on a Macbook Pro (2015) laptop equipped with a 2.7 GHz
Dual-Core Intel Core i5 processor with 16 GiB RAM.

6.1 The VLTS Benchmark Experiments

We present a collection of synthetic benchmarks for empirical evaluation of the
merits of our direct symbolic algorithm compared to the one using the reduction
to 2-player games [7]; in the following, we refer the latter as the indirect approach.
Like our direct algorithm, the indirect approach has been implemented in Fairsyn
and benefits from the same Sylvan-based parallel BDD-library and accelerated
fixpoint solution technique. We collect the first 20 transition systems from the
Very Large Transition Systems (VLTS) benchmark suite [15]; their descriptions
can be found in the VLTS benchmark website. For each of them, we randomly
generated instances of 21/2-player Rabin games with up to 3 Rabin pairs using
the following procedure: (i) we labeled a given fraction of the vertices as ran-
dom vertices, (ii) we equally partitioned the remaining vertices into system and
environment vertices, and (iii) for every set in R = {〈G1, R1〉, . . . , 〈Gk, Rk〉}, we
randomly selected up to 5% of all vertices to be contained in the set. All the ver-
tices in (i), (ii), and (iii) were selected randomly. In these examples, the number
of vertices ranged from 289–164,865, the number of BDD variables ranged from
9–18, and the number of transitions from 1224–2,621,480.

In Fig. 2, we compare the running times of Fairsyn and the indirect approach.
On the left scatter plot, every point corresponds to one instance of the randomly
generated benchmarks, where the X and the Y coordinates represent the run-
ning time for Fairsyn and the indirect approach respectively. The solid red line
indicates the exact same performance for both methods, whereas the dashed
red line indicates an order of magnitude performance improvement for Fairsyn
compared to the indirect approach. Observe that Fairsyn was faster by up to
two orders of magnitude for the majority of the cases. In the experiments, the
memory footprint of Fairsyn and the indirect approach was similar.

In the right plot, the X-axis corresponds to the proportion of random vertices
within the set of vertices in percentage: 0% corresponds to a 2-player game and
100% corresponds to a Markov chain. The Y-axis corresponds to the running
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time normalized with respect to the running time for the 0% case. We observe
that Fairsyn was insensitive to the change of proportion of the random vertices.
On the other hand, the indirect approach took longer time for larger proportion
of random vertices, because for every random vertex it adds 3k + 2 additional
vertices, thus causing a linear blowup in the size of the game graph. The big
variations in the time differences of the two approaches are due to the varying
size of the experiments: The larger a game graph is, the larger is the difference.
Interestingly, for both Fairsyn and the indirect method, there is a dip in the
running time when all the vertices are random (i.e. the 100% case), which is
possibly due to faster computation of the Cpre and Apre operators and faster
convergence of the fixpoint algorithm, owing to the absence of Player 0 and
Player 1 vertices.
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Fig. 2. LEFT: Comparison of running time of Fairsyn and the indirect approach on
the VLTS benchmarks. All axes are in log-scale. RIGHT: Sensitivity of normalized
running time w.r.t. variation of the proportion of random vertices. The blue and the red
lines correspond to different instances of Fairsyn and the indirect approach respectively.

6.2 Synthesis for Stochastically Perturbed Dynamical Systems

Synthesizing verified symbolic controllers for continuous dynamical systems is an
active area in cyber-physical systems research [33]. We consider a stochastically
perturbed dynamical system model, called the bistable switch [12], which is an
important model studied in molecular biology. The system model, call it Σ, has a
continuous and compact two-dimensional state space X = [0, 4]× [0, 4] ∈ R2 and
a finite input space U = {−0.5, 0, 0.5} × {−0.5, 0, 0.5}. Suppose for any given
time k ∈ N, x1(k), x2(k) are the two states, u1(k), u2(k) are the two inputs,
and w1(k), w2(k) are a pair of statistically independent noise samples drawn
from a pair of distributions with bounded supports W1 = [−0.4,−0.2], W2 =
[−0.4,−0.2] respectively. Then the states of Σ in the next time instant are:

x1(k + 1) = x1(k) + 0.05 (−1.3x1(k) + x2(k)) + u1(k) + w1(k), (15)

x2(k + 1) = x2(k) + 0.05

(
(x1(k))2

(x1(k))2 + 1
− 0.25x2(k)

)
+ u2(k) + w2(k).

A controller C for Σ is a function C : X → U mapping the state x(k) at any
time instant k to a suitable control input u(k). Then applying (15) repeatedly
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Table 1. Performance comparison between Fairsyn and StochasticSynthesis (abbrevi-
ated as SS) [12] on a comparable implementation of the abstraction (uniform grid-based
abstraction). Col. 1 shows the size of the resulting 21/2-player game graph (computed
using the algorithm given in [24]), Col. 2 and 3 compare the total synthesis times and
Col. 4 and 5 compare the peak memory footprint (as measured using the “time” com-
mand) for Fairsyn and SS respectively. “OoM” stands for out-of-memory.

# vertices in
21/2-game abstraction

Total synthesis time Peak memory footprint
Fairsyn SS Fairsyn SS

3.8× 103 0.4 s 30 s 66 MiB 156 MiB
2.2× 104 8.2 s 55 s 72 MiB 1 GiB
1.1× 105 1 min 23 s 16 min 1 s 108 MiB 81 GiB
6.6× 105 5 min 27 s OoM 166 MiB 126 GiB
4.3× 106 41 min 7 s OoM 517 MiB 127 GiB

with u(k) = C(x(k)), starting with an initial state (x1(0), x2(0)) = x(0) = xinit,
gives us an infinite sequence of states (x(0), x(1), x(2), . . .) called a path. For
a fixed controller C and for a given initial state xinit, we obtain a probability
measure PCxinit

on the sample space of paths of Σ, in a way similar to how we
obtained the probability measure P ρ0,ρ1v0 over infinite plays of 21/2-player games.

Let ϕ ⊆ Xω be a Rabin specification, defined using a finite predicate over X.

C
B

C
C

C A

0 4
0

4

Fig. 3. Predicates over X.

We extend the notion of almost sure winning for con-
trol systems in the obvious way: A state x ∈ X of Σ is
almost sure winning if there is a controller C such that
PCx (ϕ) = 1. The controller synthesis problem asks to
compute an optimal controller C∗ such that for every
almost sure winning state x, PC

∗

x (ϕ) = 1.
Majumdar et al. [24] show that this synthesis prob-

lem can be approximately solved by lifting the system
Σ to a finite 21/2-player game. We used Fairsyn to solve the resulting 21/2-player
Rabin games obtained for the controller synthesis problem for Σ in (15) and for
the following specification given in LTL using the predicates A,B,C,D as shown
in Fig. 3: ϕ := (�♦B → ♦C) ∧ (♦A→ �¬C).

In Table 1, we compare the performance of Fairsyn against the state-of-the-
art algorithm for solving this problem, which is implemented in the tool called
StochasticSynthesis (SS) [12]. It can be observed that Fairsyn significantly out-
performs SS for every abstraction of different coarseness considered here.
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