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Abstract. A continuous-time Markov chain (CTMC) execution is a con-
tinuous class of probability distributions over states. This paper proposes
a probabilistic linear-time temporal logic, namely continuous-time linear
logic (CLL), to reason about the probability distribution execution of
CTMCs. We define the syntax of CLL on the space of probability dis-
tributions. The syntax of CLL includes multiphase timed until formulas,
and the semantics of CLL allows time reset to study relatively temporal
properties. We derive a corresponding model-checking algorithm for CLL
formulas. The correctness of the model-checking algorithm depends on
Schanuel’s conjecture, a central open problem in transcendental num-
ber theory. Furthermore, we provide a running example of CTMCs to
illustrate our method.

1 Introduction

As a popular model of probabilistic continuous-time systems, continuous-time
Markov chains (CTMC's) have been extensively studied since Kolmogorov [25].
In the recent 20 years, probabilistic continuous-time model checking receives
much attention. Adopting probabilistic computational tree logic (PCTL) [22] to
this context with extra multiphase timed until formulas U Tipy ... UTk Dy,
for state formula @ and time interval 7, Aziz et al. proposed continuous stochas-
tic logic (CSL) to specify the branching-time properties of CTMCs and the
model-checking problem for CSL is decidable [8]. After that, efficient model-
checking algorithms were developed by transient analysis of CTMCs using uni-
formization [9] and stratification [41] for a restricted version (path formulas are
restricted to single until formulas ®;U%®;) and a full version of CSL, respec-
tively. These algorithms have been practically implemented in model checkers
PRISM [26], MRMC [24] and STORM [18]. Further details can be found in an
excellent survey [23].

There are also different ways to specify the linear-time properties of CTMCs.
Timed automata were first used to achieve this task [11,13,14,15,19], and then
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metric temporal logic (MTL) [12] was also considered in this context. Subse-
quently, the probability of “the system being in state sy within five-time units
after having continuously remained in state s;” can be computed. However, some
statements cannot be specified and verified because of the lack of a probabilistic
linear-time temporal logic, for instance “the system being in state so with high
probability (> 0.9) within five-time units after having continuously remained in
state s1 with low probability (< 0.1)”. Furthermore, this probabilistic property
cannot be expressed by CSL because CSL cannot express properties that are
defined across several state transitions of the same time length in the execution
of a CTMC.

In this paper, targeting to express the mentioned probabilistic linear-time
properties, we introduce continuous-time linear logic (CLL). In particular, we
adopt the viewpoint used in [2] by regarding CTMCs as transformers of prob-
ability distributions over states. CLL studies the properties of the probability
distribution execution generated by a given initial probability distribution over
time. By the fundamental difference between the views of state executions and
probability distribution executions of CTMCs, CLL and CSL are incomparable
and complementary, as the relation between probabilistic linear-time temporal
logic (PLTL) and PCTL in model checking discrete-time Markov chains [2, Sec-
tion 3.3].

The atomic propositions of CLL are explained on the space of probability
distributions over states of CTMCs. We apply the method of symbolic dynamics
to the probability distributions of CTMCs. To be specific, we symbolize the
probability value space [0, 1] into a finite set of intervals .# = {Z;, C [0, 1]} .
A probability distribution p over its set of states S = {sg, s2,...,84—1} is then
represented symbolically as a set of symbols

S(u) ={(s,Z) € Sx I : u(s) € I}

where each symbol (s,Z) asserts u(s) € Z, i.e., the probability of state s in
distribution 4 falls in interval Z. For example, (so,[0.9,1]) means the system is
in state so with a probability in 0.9 to 1. The symbolization idea of distributions
has been considered in [2]: choosing a disjoint cover of [0, 1]:

I = {[prl)a [p17p2)7 sy [p’m 1]}

Here, we remove this restriction and enrich the expressiveness of .#. A crucial
fact about this symbolization is that the set S x .# is finite. Consequently,
the (probability distribution) execution path generated by an initial probability
distribution g induces a sequence of symbols in .S x .# over time. Therefore, the
dynamics of CTMCs can be studied in terms of a (real-time) language over the
alphabet S x ., which is the set of atomic propositions of CLL.

Different from non-probabilistic linear-time temporal logics — linear-time
temporal logic (LTL) and MTL, CLL has two types of formulas: state formu-
las and path formulas. The state formulas are constructed using propositional
connectives. The path formulas are obtained by propositional connectives and a
temporal modal operator timed until U7 for a bounded time interval 7, as in
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MTL and CSL. The standard next-step temporal operator in LTL is meaningless
in continuous-time systems since the time domain (real numbers) is uncountable.
As a result, CLL can express the above mentioned probabilistic property “the
system is at state sy with high probability (> 0.9) within 5 time units after hav-
ing continuously remained at state s; with low probability (< 0.1)” in a path
formula:

¢ = (s1,10,0.1) U (50, (0.9, 1]).

In this single until formula, there is a time instant 0 < ¢ < 5 at which state s;
with low probability transits to state sy with high probability. Then we illustrate
this on the following timeline.

10 Jt<5H
f‘ <S(), [09, 1]>

(517[070'1]>

Furthermore, CLL allows multiphase timed until formulas. The semantics of the
formulas focuses on relative time intervals, i.e., time can be reset as in timed au-
tomata [5,6], while those of CSL [8] are for absolute time intervals. Subsequently,
CLL can express not only relatively but also absolutely temporal properties of
CTMCs.

We illustrate the significant difference between relatively temporal properties
and absolutely temporal properties of CTMCs. For instance, “before probability
distributions transition ¢ happening in 3 to 7 time units, the system always stays
at state sg with a high probability (> 0.9)” can be formalized in path formulae

¢ = (s0,[0.9, 1NUB((s1,]0,0.1)) U (s50,[0.9,1])).

As we can see, there are two time instants, namely ¢; and to, happening distribu-
tion transitions. Time is reset to 0 after the first distribution transition happens
and thus ¢, is relative to t;. More clearly, we depict this on the following timeline.

=3
—_— Lt <7 Lta+t) <12
4

1 0s {s0,[0.9,1])

(50,(0.9,1]) (s1,[0,0.1])

An absolute version is “probability distribution transition ¢ happens and the
system always stays at state sg with a high probability (> 0.9) in 3 to 7 time
units”

¢ =03 (s0,[0.9,1]) A (s1,[0,0.1)U (50, [0.9,1])).

We can get a clear timeline representation by simply adding 0*7(sq,[0.9,1]) to
that of . Assume that t < 3,

10 bt <3 13 17

4 (80, [0.9,1])
(s1,]0,0.1]) (s0,[0.9,1])
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Time reset enriches the expressiveness of CLL but introduces more difficulties
to model checking CLL than CSL. We cross this by translating relative time to
the absolute one. As a result, we develop an algorithm to model check CTMCs
against CLL formulas. More precisely, we reduce the model-checking problem to
a reachability problem of absolute time intervals. The reachability problem corre-
sponds to the real root isolation problem of real polynomial-exponential functions
(PEFs) over the field of algebraic numbers, an extensively studied question in
recent symbolic and algebraic computation community (e.g. [1,20,28]). By de-
veloping a state-of-the-art real root isolation algorithm, we resolve the latter
problem under the assumption of the validity of Schanuel’s conjecture, a central
open question in transcendental number theory [27]. This conjecture has also
been the footstone of the correctness of many recent model-checking algorithms,
including the decidability of continuous-time Markov decision processes [30], the
synthesizing inductive invariants for continuous linear dynamical systems [4], the
termination analysis for probabilistic programs with delays [39], and reachability
analysis for dynamical systems [20].

In summary, the main contributions of this paper are as follows.

— Introducing a probabilistic logic, namely continuous-time linear logic (CLL),
for reasoning about CTMCs;

— Dewveloping a state-of-the-art real root isolation algorithm for PEFs over the
field of algebraic numbers for checking atomic propositions of CLL;

— Proving that model checking CTMCs against CLL formulas is decidable
subject to Schanuel’s conjecture.

Organization of this paper. In the next section, we give the mathematical
preliminaries used in this paper. In Section 3, we recall the view of CTMCs as
distribution transformers. After that, the symbolic dynamics of CTMCs are in-
troduced by symbolizing distributions over states of CTMCs in Section 4. In the
subsequent section, we present our continuous-time probabilistic temporal logic
CLL. In Section 6, we develop an algorithm to solve the CLL model checking
problem. A case study and related works are shown in Sections 7 and 8, respec-
tively. We summarize our results and point out future research directions in the
final section.

2 Preliminaries

For the convenience of the readers, we review basic definitions and notations of
number theory, particularly Schanuel’s conjecture.

Throughout this paper, we write C, R, Q and A for the fields of all complex,
real, rational and algebraic numbers, respectively. In addition, Z denotes the set
of all integer numbers. For F € {C,R, Q,Z, A}, we use F[t] and F"*™ to denote
the set of polynomials in ¢ with coefficients in F and n-by-m matrices with every
entry in F, respectively. Furthermore, for F € {R,Q,Z}, we use F™ to denote
the set of positive elements (including 0) of F.
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A bounded (time) interval T is a subset of RT, which may be open, half-open
or closed with one of the following forms:

[t1,ta], [t1,t2), (t1,t2], (t1,t2),

where t1,to € R* and ta > 1 (t1 = t2 is only allowed in the case of [t1, t2]). Here,
t; and ty are called the left and right endpoints of T, respectively. Conveniently,
we use inf 7 and sup 7 to denote ¢ and to, respectively. In this paper, we only
consider bounded intervals.

For reasoning about the temporal properties, we further define the addition
and subtraction of (time) intervals. The expression T +t or t + T, for t € RT,
denotes the interval {t +¢' : ¢/ € T}. Similarly, 7 — t stands for the interval
{—t+t :¢ €T} if t <infT. Furthermore, for two intervals 77 and 7a,

Ti+T={te(t' +T2):t' €eTi} ={t1 +t2:t1 € T and t5 € To}.

Two intervals 77 and 7> are disjoint if their intersection is an empty set, i.e.,
Ti N T2 = (. Let us see some concrete examples: 1+ (2,3) = (3,4), (2,3) — 1 =
(1,2), (2,3) + [3,4] = (5,7) and (2,3),[3,4] are disjoint. It is obvious that all
calculations of time intervals in the above are easy to be computed.

An algebraic number is a complex number that is a root of a non-zero poly-
nomial in one variable with rational coefficients (or equivalent to integer coeffi-
cients, by eliminating denominators). An algebraic number « is represented by
(P, (a,b),e) where P is the minimal polynomial of «, a,b € Q and a + bi is an
approximation of « such that |« — (a+bi)| < € and « is the only root of P in the
open ball B(a + bi,€). The minimal polynomial of « is the polynomial with the
smallest degree in Q[t] such that « is a root of the polynomial and the coefficient
of the highest-degree term is 1. Any root of f(¢) € A[t] is algebraic. Moreover,
given the representations of a,b € A, the representations of a b, § and a-b can
be computed in polynomial time, so does the equality checking [17].

Furthermore, a complex number is called transcendental if it is not an al-
gebraic number. In general, it is challenging to verify relationships between
transcendental numbers [33]. On the other hand, one can use the Lindemann-
Weierstrass theorem to compare some transcendental numbers. The transcen-
dence of e and 7 are direct corollaries of this theorem.

Theorem 1 (Lindemann-Weierstrass theorem). Let ny,- - ,n, be pairwise
distinct algebraic complex numbers. Then Y, Ape™ # 0 for non-zero algebraic
numbers Ay, , Ap.

The following concepts are introduced to study the general relation between
transcendental numbers.

Definition 1 (Algebraic independence). A set of complex numbers S =
{a1, -+ ,an} is algebraically independent over Q if the elements of S do not
satisfy any nontrivial (non-constant) polynomial equation with coefficients in Q.

By the above definition, for any transcendental number u, {u} is algebraically
independent over Q, while {a} for any algebraic number a € A is not. Thus, a
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set of complex numbers that is algebraically independent over Q must consist of
transcendental numbers. {, e”‘/ﬁ} is also algebraically independent over Q for
any positive integer n [31]. Checking the algebraic independence is challenging,.
For example, it is still widely open whether {e, 7} is algebraically independent
over Q.

Definition 2 (Extension field). Given two fields E C F, F is an extension
field of E, denoted by F/E, if the operations of E are those of F restricted to
E.

For example, under the usual notions of addition and multiplication, the field of
complex numbers is an extension field of real numbers.

Definition 3 (Transcendence degree). Let L be an extension field of Q,
the transcendence degree of L over Q is defined as the largest cardinality of an
algebraically independent subset of L over Q.

For instance, let Q(e)/Q = {a+ be | a,b € Q} and Q(v/2)/Q = {a+bv2 | a,b €
Q} be two extension fields of Q. Then the transcendence degree of them are 1
and 0, respectively, by noting that e is a transcendental number and v/2 is an
algebraic number.

Now, Schanuel’s conjecture is ready to be presented.

Conjecture 1 (Schanuel’s conjecture). Given any complex numbers zi,--- , 2,
that are linearly independent over Q, the extension field Q(z1, ..., 2, €%, ..., €*")
has transcendence degree of at least n over Q.

Stephen Schanuel proposed this conjecture during a course given by Serge
Lang at Columbia in the 1960s [27]. Schanuel’s conjecture concerns the transcen-
dence degree of certain field extensions of the rational numbers. The conjecture,
if proven, would generalize the most well-known results in transcendental num-
ber theory significantly [29,37]. For example, the algebraical independence of
{e, 7} would simply follow by setting z; = 1 and 2o = =i, and using Fuler’s
identity €™ +1 = 0.

3 Continuous-time Markov Chains as Distributions
Transformers

We begin with the definition of continuous-time Markov chains (CTMCs). A
CTMC is a Markovian (memoryless) stochastic process that takes values on a
finite state set S (|S| = d < 00) and evolves in continuous-time ¢ € RT. Formally,

Definition 4. A CTMC is a pair M = (S,Q), where S (|S| = d) is a finite

state set and Q € Q?*? is a transition rate matrix.

A transition rate matrix @ is a matrix whose off-diagonal entries {Q; ; }i; are
nonnegative rational numbers, representing the transition rate from state ¢ to
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state j, while the diagonal entries {Q; ;} are constrained to be — Zj# Q;,; for
all 1 < j < d. Consequently, the column summations of @ are all zero.

The evolution of a CTMC can be regarded as a distribution transformer.
Given initial distribution x4 € Q4% € D(S), the distribution at time ¢ € RY is:

Mt = thﬂa

where D(S) is denoted as the set of all probability distributions over S. We call
D(S) the probability distribution space of CTMCs. An execution path of CTMCs
is a continuous function indexed by initial distribution pu € D(S):

o, RT = D(S), ou(t) = e p. (1)

Ezample 1. We recall the illustrating example of CTMC M = (5,Q) in [8,
Figure 1] as the running example in our work. In particular, M is a 5-dimensional
CTMC with initial distribution u, where S = {sq, s1, $2, $3, 84} and

—30 000 0.1
10000 0.2
Q=1]20-700 p=103
00300 0.4
00400 0

4 Symbolic Dynamics of CTMCs

In this section, we introduce symbolic dynamics to characterize the properties
of the probability distribution space of CTMCs.

First, we fix a finite set of intervals .# = {Zj C [0, 1]}rek, where the end-
points of each 7 are rational numbers. With the states S = {so, 51, -, Sd—1},
we define the symbolization of distributions as a function:

S:D(S) = 257 S(p)={(s,I) € S x I : u(s) € T}, (2)

where x denotes the Cartesian product, and 2°%“ is the power set of S x
J. (s,I) € S(p) asserts that the probability of state s in distribution p is
in the interval Z. The symbolization of distributions is a generalization of the
discretization of distributions with Z;NZ,, = () for all k # m which was studied in
[2]. This generalization increases the expressiveness of our continuous linear-time
logic introduced in the next section. Now, we can represent any given probability
distribution by finite symbols from S x .#. For example, suppose

# = {[0,0.1],(0.1,0.9), 0.9, 1], [L, 1], [0.4,0.4]}, (3)
and then the initial distribution p in Example 1 is symbolized as

S(1) = {(s0,[0,0.1]), {s1, (0.1,0.9)), {s2, (0.1,0.9)),
(s3,(0.1,0.9)), (s3,[0.4,0.4]), (s4,[0,0.1])}.
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As we can see from the above example, the symbolization of distributions on
states considers the exact probabilities (singleton intervals) of the states and the
range of their possibilities.

Next, we introduce the symbolization to CTMCs,

Definition 5. A symbolized CTMC is a tuple SM = (S,Q,.#), where M =
(5,Q) is a CTMC and . is a finite set of intervals in [0, 1].

As we can see, the set of intervals is picked depending on CTMCs. Then, we
extend this symbolization to the path o,:

Soo, : RT —25%7, (5)

Definition 6. Given a symbolized CTMC SM = (S,Q,.7), Soo,, is a symbolic
execution path of M = (5, Q).

Given a symbolized CTMC SM = (S, Q, .#), the path g, of CTMC M = (5, Q)
over real numbers R™ generated by probability distribution u induces a symbolic
execution path S o o, over finite symbols S x .#. Subsequently, the dynamics
of CTMCs can be studied in terms of a language over S x .#. In other words,
we can study the temporal properties of CTMCs in the context of symbolized
CTMCs.

5 Continuous Linear-time Logic

In this section, we introduce continuous linear-time logic (CLL), a probabilistic
linear-time temporal logic, to specify the temporal properties of a symbolized
CTMC SM = (5,Q,.9).

CLL has two types of formulas: state formulas and path formulas. The state
formulas are constructed using propositional connectives. The path formulas are
obtained by propositional connectives and a temporal modal operator timed until
U7 for a bounded time interval 7, as in MTL and CSL. Furthermore, multiphase
timed until formulas ®oU T, U2 P, ... UTnd,, are allowed to enrich the expres-
siveness of CLL. More importantly, time reset is involved in these multiphase
formulas. Thus absolutely and relatively temporal properties of CTMCs can be
studied.

Definition 7. The state formulas of CLL are described according to the follow-
ing syntax:
P :=true|a € AP | P | P APy

where AP denotes S X Z as the set of atomic propositions.
The path formulas of CLL are constructed by the following syntax:

@ :=true | DU S Uy .. . U, | ~p | 01 Ao

where n € ZF is a positive integer, for all 0 < k < n, &, is a state formula,
and Ty ’s are time intervals with the endpoints in QF, i.e., each Ty, is one of the

following forms:
(a,b),[a, ], (a,b],[a,b)  Va,beQF.
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The semantics of CLL state formulas is defined on the set D(S) of probability
distributions over S with the symbolized function S in Eq.(2) of Section 4.

(1) p [= true for all probability distributions p € D(S);

(2) pEaiff a€S(p);

(3) p =~ iff it is not the case that p = @ (or written p = @ );
(4) plE P APy iff p =Py and p = Ps.

The semantics of CLL path formulas is defined on execution paths {0, },ep(s)

of CTMC M = (S, Q).

(1) o, = true for all probability distributions p € D(S);

(2) o, E S U D U2, ... UTnd,, iff there is a time instant ¢ € 77 such that
ou = &1 U@y .. .U, and for any t' € T1 N [0,t), pe = Do, where
ou, =@ iff py = @, and py is the distribution of the chain at time instant ¢,
ie., s = eQtp vt € Rt

(3) o, = ¢ iff it is not the case that o, = ¢ (written o, = ¢ );

(4) o, =1 N2 iff 0, = @1 and 0, = @o.

Not surprisingly, other Boolean connectives are derived in the standard way,
i.e., false = —true, &1 V &3 = ~(—P1 A ~P2) and 1 — P = =P V Py, and
the path formula ¢ follows the same way. Furthermore, we generalize temporal
operators ¢ (“eventually”) and O (“always”) of discrete-time systems into their
timed variant ¢7 and 07, respectively, in the following:

OTd =trueU7¢ 0O7@ =07 .

For n = 1 in multiphase timed until formulas, the until operator UT* is a
timed variant of the until operator of LTL; the path formula $oU71®; asserts
that @, is satisfied at some time instant in the interval 7; and that at all pre-
ceding time instants in 77, @o holds. For example,

@ = (s1,10,0.1) U (50, (0.9, 1),

as mentioned in introduction section.

For general n, the CLL path formula S UT o UT2Py .. . U, is explained
over the induction on n. We first mention that U7 is right-associative, e.g.,
& U &,UT2d, stands for SoU T (P4 UT2@2). This makes time reset, i.e., 7; and
T2 do not have to be disjoint, and the starting time point of 75 is based on some
time instant in 7;. Recall the multiphase timed until formula in introduction
section and this formula expresses a relative time property:

¢ = (s0,[0.9, 1NUBT((s1,]0,0.1)) U1 (s0,[0.9,1])),

which is different to the following CLL path formula representing an absolutely
temporal property of CTMCs:

@ = 0B (s0,[0.9,1]) A (s1,[0,0.1) UL (54, [0.9,1])).
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As an example, we clarify the semantics of CLL by comparing the above two
path formulas in general forms:

DU P U2 Py and SoUT 1 A DU D,.

(1) o, = SoUT P UT2P, asserts that there are time instants 1 € Ti,te € T
such that ¢ 1+, = P2 and for any ¢§ € T3 N [0,¢1) and th € T2 N [0,%2),
py; = Do and puy, 4y =y, where py = €9y Vt € RT. This is more clear in
the following timeline.

=inf 71 =inf T2
—_— —_— 1 Py
. —_— 't <sup T —— (t1 + t2) < sup(T1 + T2
1 time 0 pe 1 P /1 Py (t1 +t2) p(71 +T2)

(2) o = S UT &1 A B1UT2P, asserts that there are time instants ¢; € T, 1o €
Tz such that py, = @1 and py, = P2, and for any t) € 731 N [0,¢1) and
ty € TaN[0,t2), gy = Po and py = @1, where iy = eQtu vt € RT.

Before solving the model-checking problem of CTMCs against CLL formulas
in the next section, we shall first discuss what can be specified in our logic CLL.

Given a CTMC (S, Q), CLL path formula (121091 (s [1,1]) expresses a live-
ness property that state s € S is eventually reached with probability one before
time instant 1000. In terms of safety properties, formula [J[10:10001 (5 [0 0]) rep-
resents that state s € S is never reached (reached with probability zero) between
time instants 100 and 1000. Furthermore, setting the intervals nontrivial (neither
[0,0] or [1,1]), liveness and safety properties can be asserted with probabilities,
such as Q%1000 (5 [0.5,1]) and DI190:10001(s [0 0.5]). For multiphase timed un-
til formula (s, [0.7,1))UZ3(s,[0.7,1]) ... U>3(s,[0.7,1]), where the number of
U3l is 100, asserts that the probability of state s is beyond 0.7 in every time
instant 2 to 3, and this happens at least 100 times.

Next, we can classify members of & as representing “low” and “high” prob-
abilities. For example, if .# contains 3 intervals {[0,0.1], (0.1,0.9),[0.9, 1]}, we
can declare the first interval as “low” and the last interval as “high”. In this
case OI10:1000) (50 10,0.1]) — (s1,[0.9,1])) says that, in time interval [10,1000),
whenever the probability of state sy is low, the probability of state s; will be
high.

6 CLL Model Checking

In this section, we provide an algorithm to model check CTMCs against CLL
formulas, i.e., the following CLL model-checking problem — Problem 1 is decid-
able.

Problem 1 (CLL Model-checking Problem). Given a symbolized CTMC SM =
(S,Q,.#) with an initial distribution p and a CLL path formula ¢ on AP =
S x .7, the goal is to decide whether o, = ¢, where 0,,(t) = e?'1 is an execution
path defined in Eq.(1).
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In particular, we show that

Theorem 2. Under the condition that Schanuel’s conjecture holds, the CLL
model-checking problem in Problem 1 is decidable.

In the following, we prove the above theorem from checking basic formulas
— atomic propositions to the most complex one — nontrivial multiphase timed
until formulas. For readability, we put the proofs of all results in Appendix A of
the extended version [21] of this paper.

We start with the simplest case of atomic proposition (s, Z). By the semantics
of CLL, py |= (s, Z) if and only if p; = e®*u(s) € Z. To check this, we first observe
that the execution path @'y of CTMCs is a system of polynomial exponential
functions (PEFs).

Definition 8. A function f : R — R s a polynomial-exponential function
(PEF) if f has the following form:

) =" frt)e! (6)

where for all 0 < k < K < oo, fr(t) € Fi[t], fr(t) # 0, A\, € Fo and F1,Fs are
fields. Without loss of generality, we assume that \i’s are distinct.

Generally, for a PEF f(t) with the range in complex numbers C, g(t) =
f(®) + f*() is a PEF with the range in real numbers R, where f*(t) is the
complex conjugate of f(t). The factor ¢ is omitted whenever convenient, i.e.,
f = f(t). t is called a root of a function f if f(t) = 0. PEFs often appear in
transcendental number theory as auxiliary functions in the proofs involving the
exponential function [10].

Lemma 1. Given a CTMC M = (S,Q) with S = {s0,...,84-1}, Q@ € Q¥*4,
and an initial distribution p € QY for any 0 <i < d—1, 9 u(s;), the i-th
entry of e9tu, can be expressed as a PEF f : RT — [0,1] as in Eq.(6) with
F, =TF, = A.

By the above lemma, for a given ¢ in some bounded time interval 7 (to be specific
in the latter discussion), e®*(s) € Z is determined by the algebraic structure
of PEF g(t) = €@ u(s) in T. That is all mazimum intervals Tmax € T such
that g(t) € T for all t € Trax, where interval Toax # 0 is called maximum for
g(t) € T if no sub-intervals 7’ C Tiax such that the property holds, i.e., g(t) € Z
for all t € T'. Then e®*u(s) € T if and only if t € Tay for some maximum
interval Tpax. So, we aim to compute the set 7 of all maximum intervals. By
the continuity of PEF ¢(t), this can be done by identifying a real root isolation
of the following PEF f(¢) in T: f(t) = (g(¢t) —inf Z)(g(t) — sup ).

A (real) root isolation of function f(¢) in interval T is a set of mutually
disjoint intervals, denoted by Iso(f)7 = {(a;,b;) C T} for a;,b; € Q such that

— for any j, there is one and only one root of f(t) in (a;,b;);
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— for any root t* of f(t), t* € (a;,b;) for some j.

Furthermore, if f has no any root in 7, then Iso(f)7 = 0.

Although there are infinite kinds of real root isolations of f(¢) in 7, the
number of isolation intervals equals to the number of distinct roots of f(t) in T.

Finding real root isolations of PEFs is a long-standing problem and can be
at least backtracked to Ritt’s paper [34] in 1929. Some following results were
obtained since the last century (e.g. [7,38]). This problem is essential in the
reachability analysis of dynamical systems, one active field of symbolic and al-
gebraic computation. In the case of F; = Q and Fy = N7 in [1], an algorithm
named ISOL was proposed to isolate all real roots of f(t). Later, this algorithm
has been extended to the case of F; = Q and Fo = R [20]. A variant of the
problem has also been studied in [28]. The correctness of these algorithms is
based on Schanuel’s conjecture. Other works are using Schanuel’s conjecture to
do the root isolation of other functions, such as exp-log functions [35] and tame
elementary functions [36].

By Lemma 1, we pursue this problem in the context of CTMCs. The distinct
feature of solving real root isolations of PEF's in our paper is to deal with complex
numbers C, more specifically algebraic numbers A, i.e., F; = Fo = A. At the
same time, to the best of our knowledge, all the previous works can only handle
the case over R. Here, we develop a state-of-the-art real root isolation algorithm
for PEFs over algebraic numbers. Thus from now on, we always assume that
PEFs are over A, i.e., F; = Fy = A in Eq.(6). In this case, it is worth noting
that whether a PEF has a root in a given interval, 7 C RT is decidable subject
to Schanuel’s Conjecture if T is bounded [16], which falls in the situation we
consider in this paper.

Theorem 3 ([16]). Under the condition that Schanuel’s conjecture holds, there
is an algorithm to check whether a PEF f(t) has a root in interval T, i.e.,
whether Iso(f)7 = 0.

In this paper, we extend the above checking Iso(f)7 = 0 to computing
Iso(f)7 of PEF f(t).

Theorem 4. Under the condition that Schanuel’s conjecture holds, there is an
algorithm to find real root isolation Iso(f)7 for any PEF f(t) and interval T.
Furthermore, the number of real roots is finite, i.e., |Iso(f)7| < co.

We can compute the set .7 of all maximum intervals with the above theorem
to check atomic propositions. Furthermore, we can compare the values of any
real roots of PEFs, which is important in model checking general multiphase
timed until formulas at the end of this section.

Lemma 2. Let fi(t) and fa(t) be two PEFs with the domains in T and Ta,
and ty € Ty and ty € T3 are roots of them, respectively. Under the condition that
Schanuel’s conjecture holds, there is an efficient way to check whether or not
t1 —te < g for any given rational number g € Q.
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For model checking general state formula @, we can also use real root isolation
of some PEF to obtain the set of all maximum intervals Tpax such that pu; = @
for all t € Thax. The reason is that @ admits conjunctive normal form consisting
of atomic propositions. See the proof of the following lemma in Appendix A of
the extended version [21] of this paper for the details.

Lemma 3. Under the condition that Schanuel’s conjecture holds, given a time
interval T, the set 7 of all mazimum intervals in T satisfying us = @ can be
computed, where @ is a state formula of CLL. Furthermore, the number of all
intervals in T is finite; the left and right endpoints of each interval in & are
roots of PEFs.

At last, we characterize the multiphase timed until formulas by the reacha-
bility analysis of time intervals (instants).

Lemma 4. 0, = SoUT U2 Dy ---UTnd,, if and only if there exist time in-
tervals {Z, C RT}7_, with Io = [0,0] such that

— The satisfaction of intervals: for all 1 < k < n, p; | Pp_1 for all t € I,
and p+ | @y, where t* =supZ, and p; = thu vt € RT;

— The order of intervals: for all 1 < k < n, I, C Zy_1 + Tr and infZ; =
supZy_1 + inf Tg.

By the above lemma, the problem of checking multiphase timed until formulas
is reduced to verify the existence of a sequence of time intervals.
Now we can show the proof of Theorem 2.

Proof. Recall that the nontrivial step is to model check multiphase timed until
formula &oUT1d,U 2Py - - - UTnd,,, where {T; }7_1 is a set of bounded rational
intervals in RT, and for 0 < k < n + 1, &y, is a state formula.

By Lemma 4, for model checking the above formula, we only need to check
the existence of time intervals {Z}}_, illustrated in the lemma. The following
procedure can construct such a set of intervals if it exists:

- (1) Let fo = {Io = [0,0]} N

— (2) For each 1 < k < n, obtaining the set .# in [0,2521 sup 7;] of all
maximum intervals such that u; = @y for all t € T of T € ., where
e = e9tp; this can be done by Lemma 3. Noting that .#, can be the empty
set, i.e., S, = 0;

— (3) Let k from 1 to n. First, updating .#:

S, = {Iﬂ (I/ —‘rn) : T € S, and I e f}cfl}. (7)

The above updates can be finished by Lemma 2. If .#, = (), then the formula
is not satisfied;

— (4) Updating .%,: for each Z € .#,, we replace Z with [s — ¢,s) for some
constant € > 0 if there is an s € Z with s — ¢ € T such that us = @, where
ps = e9%u; Otherwise, remove this element from .#,. Again, this can be
done by Lemma 3. If .#, = ), then the formula is not satisfied;
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— (5) Finally, let k& from n — 1 to 1, updating .#:
I ={[s —inf T, s —inf Ty : [s — €, 5) € 1]}

Thus after the above procedure, we have non-empty sets {.%}7_, with the
following properties.

— foreach 1 <k <n, s =Py for all t € T, and Ty, € I, and py= = P,
where t* = sup Z,;

— for each 1 < k < n, I € .%,, there exists at least one 7' € #,_; such that
Z CsupZ + Ti and inf Z = supZ’ + inf Ty.

Therefore, we can get a set of intervals {Zj }7_, satisfying the two conditions
in Lemma 4 if it exists. On the other hand, it is easy to check that all such
{Zk}y_o must be in {F}7_,, i.e., for each k, 7y C Z for some Z € #,. This
ensures the correctness of the above procedure.

By the above constructive analysis, we give an algorithm for model checking
CTMCs against CLL formulas. Focusing on the decidability problem, we do
not provide the pseudocode of the algorithm. Alternatively, we implement a
numerical experiment to illustrate the checking procedure in the next section.

7 Numerical Implementation

In this section, we implement a case study of checking CTMCs against CLL
formulas. Here, we consider a symbolized CTMC SM = (S, Q,.¥), where M =
(S,Q) is the CTMC in Example 1 and finite set .# is the one considered in
Eq.(3). We check the properties of M given by the following two CLL path
formulas mentioned in the introduction for different initial distributions.

o = (51,10,0.1)U % (50, (0.9, 1]).

¢ = (s0,[0.9, 1NUB (51, [0,0.1]) U (50, [0.9,1]).

By Jordan decomposition, we have Q = SJS~! where

0 —6000 -70000 1—1410—;00
0 2001 0 —3000 —500 00
S=1-7-3000 J=10 0000 st=1204%201
3 3010 0 0000 2%oélo
4 4100 0 0000 31000

Then, we consider an initial distribution i as the same as the one in Example 1.
Then we have that the value of €9ty is as follows:

e 3t 0 0 00 0.1 %e*?’t
—3(e?t—1) 1 0 00| (02 —z5e 3 + T;
Yed—e™) 0 e 00|]os|=| gedilen

5*467’” 1673t + % 0— %67775 + 3 10 0.4 _%67315 %38 67715 4 38
76*7‘5 — 2e73t 4 % 0— %e Tt +2 () 1 0 _%567315 767715 n 12025
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As we only consider states sg and s; in formulas ¢ and ¢’, we focus on the
following PEFs: fo(t) = {573 and fi(t) = —g5¢ 7% + 5.

Next, we initialize the model checking procedures introduced in the proof of
Theorem 2. First, we compute the set .7 of all maximum intervals 7 C [0, 5]
such that e9u = (s0,[0.9,1]) for t € T, i.e., fo(t) € [0.9,1] for t € T. We obtain
7 = () by the real root isolation algorithm mentioned in Theorem 4, and this
indicates that o, [~ ¢ where o, (t) = e?'y is the path induced by p and defined
in Eq.(1).

To check whether o, = ¢, we compute the set .7 of all maximum intervals
T C [0,12] such that eQp = (s0,[0.9,1]) for t € T, i.e., fo(t) € [0.9,1] fort € T.
Again, we obtain .7 = () by the real root isolation algorithm in Theorem 4.
Therefore, o, = ¢'.

In the following, we consider a different initial distribution p; as follows:

0.9 %e*St

0 — (e —1)
el =eQt 01| = Dt _ %e’”

0 %efstJr%ef?tJrl%

0 7%673t+%677t+%

The key PEFs are: go(t) = 557 and g1(t) = — 35 (e ™3 — 1).

Again, we initialize the model checking procedures introduced in the proof of
Theorem 2. We first compute the set 7 of all maximum intervals 7" C [0, 5] such
that ety = (s1,[0,0.1]) for t € T, i.e., gi(t) € [0,0.1] for t € 7. This can be

done by finding a real root isolation of the following PEF: ¢{(t) = — 3 (e ™% —

1) — &.
By implementing the real root isolation algorithm in Theorem 4, we have

Iso(gY)05) = {(0.13,0.14)} and then 7 = {[0,"]} for t* € (0.13,0.14).

Following the same way, we compute 7 for e®'u; = (s0,[0.9,1]). Then we
complete the model checking procedures in the proof of Theorem 2, and we
conclude: o, = ¢. By repeating these, the result of the second formula ¢’ is

Opq [# QD/'

8 Related Works

Agrawal et al. [2] introduced probabilistic linear-time temporal logic (PLTL) to
reason about discrete-time Markov chains in the context of distribution trans-
formers as we did for CTMCs in this paper. Interestingly, the Skolem Prob-
lem can be reduced to the model checking problem for the logic PLTL [3]. The
Skolem Problem asks whether a given linear recurrence sequence has a zero term
and plays a vital role in the reachability analysis of linear dynamical systems.
Unfortunately, the decidability of the problem remains open [32]. Recently, the
Continuous Skolem Problem has been proposed with good behavior (the problem
is decidable) and forms a fundamental decision problem concerning reachability
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in continuous-time linear dynamical systems [16]. Not surprisingly, the Continu-
ous Skolem Problem can be reduced to model-checking CLL. The primary step
of verifying CLL formulas is to find a real root isolation of a PEF in a given
interval. Chonev, Ouaknine and Worrell reformulated the Continuous Skolem
Problem in terms of whether a PEF has a root in a given interval, which is
decidable subject to Schanuel’s conjecture [16]. An algorithm for finding root
isolation can also answer the problem of checking the existence of the roots of a
PEF. However, the reverse does not work in general. Therefore, the decidability
of the Continuous Skolem Problem cannot be applied to establish that of our
CLL model checking.

Remark 1. By adopting the method in this paper, we established the decidability
of model checking quantum CTMCs against signal temporal logic [40]. Again,
we need Schanuel’s conjecture to guarantee the correctness. A Lindblad’s master
equation governs a quantum CTMC and a more general real-time probabilistic
Markov model than a CTMC, i.e., a CTMC is an instance of quantum CTMCs.
We converted the evolution of Lindblad’s master equation into a distribution
transformer that preserves the laws of quantum mechanics. We reduced the
model-checking problem of quantum CTMCs to the real root isolation problem,
which we considered in this paper, and thus our method could be applied to it.

9 Conclusion

This paper revisited the study of temporal properties of finite-state CTMCs by
symbolizing the probability value space [0, 1] into a finite set of intervals. To
specify relatively and absolutely temporal properties, we propose a probabilistic
logic for CTMCs, namely continuous linear-time logic (CLL). We have considered
the model checking problem in this setting. Our main result is that a state-of-the-
art real root isolation algorithm over the field of algebraic numbers was proposed
to establish the decidability of the model checking problem under the condition
that Schanuel’s conjecture holds.

This paper aims to show decidability in as simple a fashion as possible with-
out paying much attention to complexity issues. Faster algorithms on our current
constructions would significantly improve from a practical standpoint.
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