
Searching for Ribbon-Shaped Paths
in Fair Transition Systems

Marco Bozzano , Alessandro Cimatti , Stefano Tonetta ,
Viktoria Vozarova(�)

Fondazione Bruno Kessler (FBK)
via Sommarive, 18
Trento 38123, Italy

{bozzano,cimatti,tonettas,vvozarova}@fbk.eu

Abstract. Diagnosability is a fundamental problem of partial observ-
able systems in safety-critical design. Diagnosability verification checks
if the observable part of system is sufficient to detect some faults. A
counterexample to diagnosability may consist of infinitely many indis-
tinguishable traces that differ in the occurrence of the fault. When the
system under analysis is modeled as a Büchi automaton or finite-state
Fair Transition System, this problem reduces to look for ribbon-shaped
paths, i.e., fair paths with a loop in the middle.
In this paper, we propose to solve the problem by extending the liveness-
to-safety approach to look for lasso-shaped paths. The algorithm can be
applied to various diagnosability conditions in a uniform way by changing
the conditions on the loops. We implemented and evaluated the approach
on various diagnosability benchmarks.

Keywords: Diagnosability· Model checking · Liveness to safety

1 Introduction

The design of fault detection mechanisms is a standard part of the design of
safety-critical systems. Faults are usually not directly observable. They are di-
agnosed by observing a sequence of observations and inferring the value of un-
observable variables based on a system model. A fundamental question for the
design of such partially observable systems is to determine if it always possible
to detect a fault. Diagnosability verification is the problem of checking whether
the available sensors are sufficient to determine the occurrence of a fault.

Historically, diagnosability verification is reduced to a model checking prob-
lem looking for a critical pair of indistinguishable traces that differ with respect
to the fault. This pair witnesses the impossibility to detect the fault along such
sequence of observations.

When considering fair transition systems, critical pairs are not sufficient and
it is necessary to look for infinitely many indistinguishable traces. In case of
finite state systems, such set of infinite traces can be represented by ribbon-
shaped paths, i.e., paths with a loop in the middle. Previous solutions, hinted

c© The Author(s) 2022

https://doi.org/10.1007/978-3-030-99524-9_30
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 543–560, 2022.

http://orcid.org/0000-0002-4135-103X
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0001-9091-7899
http://orcid.org/0000-0001-8506-8212
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_30&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_30

M. Bozzano et al.

in [16], were based on either bounded model checking, so not able to prove diag-
nosability (absence of the critical ribbon-shaped paths) or BDD-based fixpoint
computation, which suffers from the problem of precomputing the fair states.

In this paper, we propose a new approach based on the liveness-to-safety
construction [3], where the search for a (single) lasso shaped path is reduced
to an invariant property. Like in liveness-to-safety, we use additional variables
to guess the loopback states, which in the case of ribbon-shaped paths are used
twice, the first time for the loop in the middle, the second time for the final lasso.
Additional constraints are added to encode the looping conditions that must hold
in the two loops for encoding the diagnosability problem. The algorithm can
be applied to various diagnosability conditions in a uniform way by changing
the conditions on the loops. We implemented and evaluated the approach on
various diagnosability benchmarks. Different algorithms have tested to solve the
resulting invariant model checking problem, showing better performance with
respect to the fixpoint-based approach.

The main contribution of the paper is the extension of liveness-to-safety
to generate an infinite number of traces. The set is in the form of a ribbon
shape (in other words, in the form a; b∗; c; dω) and may have applications beyond
the diagnosability problem, e.g., to solve non-interference problems requiring
infinitely many different traces [13] or to counterexample-guided abstraction
refinement.

The rest of the paper is organized as follows. In Section 2, we give an overview
of related work. Section 3 defines the necessary formal background. The main
problem along with the original solution is presented in Section 4. Our main
contribution is introduced in Section 5, where we present the novel solution and
prove its correctness. Section 6 contains the experimental evaluation comparing
our solution with the original one. Finally, in Section 7 we give conclusions and
directions for future work.

2 Related Work

The problem of diagnosability [17] refers to the possibility of inferring some
desired information (e.g., the occurrence of a fault) during the execution of
a system, in a partially observable environment. Hence, diagnosability can be
phrased using hyperproperties, namely as a property of the traces representing
the execution of the system [5,16].

In [16] it has been shown that the problem of diagnosability under fairness
can be reduced to the search for ribbon-shaped paths, i.e. paths with a loop in
the middle, where specific conditions on the occurrence of faults are imposed.
Historically, diagnosability has been defined in the context of Discrete-Event
Systems [17], without taking fairness into account. In [14] fairness is considered
only in the context of live systems, i.e. under the hypothesis that every finite trace
can be extended to an infinite fair trace, and fair diagnosability is introduced
only informally. In this context, our ribbon-shaped fair critical pair corresponds

544

Searching for Ribbon-Shaped Paths in Fair Transition Systems

to the critical pair of [14], where the faulty trace must be fair while the nominal
trace may be unfair.

A construction similar to ribbon-shaped paths, called doubly pumped lasso,
is used in [13] as a building block to address the problem of model checking
a class of quantitative hyperproperties, as in the problem of quantitative non-
interference (i.e., bound the amount of information about some secret inputs
that may be leaked through the observable outputs of the system).

In [13] the problem of verifying quantitative hyperproperties is addressed us-
ing a model checking algorithm based on model counting, which is shown to have
a better complexity than using an HyperLTL model checker, and a Max#SAT-
based implementation. In [16], the authors address the problem of checking diag-
nosability using an extension of the classical twin-plant construction [15] and an
LTL model checker. The approach we use in this paper builds upon the approach
of [16], but uses an extension of the liveness-to-safety approach [3], instead. The
extension omits the computation of fair states and keeps the representation of
the system symbolic, which is more space efficient. The problem is reduced to the
reachability problem. The problem is well-studied, thus we may take advantage
of already developed algorithms for checking reachability.

3 Background

3.1 Symbolic Fair Transition Systems

The plant under analysis is represented as a finite-state symbolic fair transi-
tion system (SFTS). An SFTS is a tuple 〈V, I, T, F 〉, where V is a finite set of
Boolean state variables; I is a formula over V defining the initial states, T is
a formula over V , V ′ (with V ′ being the next version of the state variables)
defining the transition relation, and F is a set of formulas over V defining the
fairness conditions. If F = ∅, we call it a symbolic transition system (STS) and
write 〈V, I, T 〉.

We remark that the choice of representing the plant in form of an SFTS
does not restrict the generality of the framework. In fact, it is possible to encode
labeled transition systems and discrete event systems.

A state s is an assignment to the state variables V . We denote with s′ the
corresponding assignment to V ′. Given an assignment to a set V of Boolean
variables, we also represent the assignment as the set of variables that are as-
signed to true. Given a state s and a subset of variables U , we denote with s|U
the restriction of s to the variables in U .

In the following we assume that an SFTS P =̇ 〈V, I, T, F 〉 is given.
Given a sequence of states σ, we denote with σk the sequence obtained by

repeating σ for k times, and σω the sequence obtained by repeating σ for an
infinite number of times.

Given a state s0 of P , a trace of P starting from s0 is an infinite sequence
π =̇ s0, s1, s2, . . . of states starting from s0 such that, for each k ≥ 0, 〈sk, sk+1〉
satisfies T , and for all f ∈ F , for infinitely many i ≥ 0, the formula f is true in

545

si. If s0 is initial, i.e., it satisfies I, then we say that π is a trace of P . We write
ΠP for the set of traces of P .

We denote with π[k] the k+ 1-th state sk of π. We say that s is reachable (in
k steps) in P iff there exists a sequence π = s0s1 . . . sk, where sk = s, s0 satisfies
I and every 〈si, si+1〉 satisfies T . A state s is fair if there exists a trace starting
from s.

Given a trace π =̇ s0, s1, s2, . . . and a subset of variables U ⊆ V , we denote
by π|U =̇ s0|U , s1|U , s2|U , . . . the projection over the variables in U .

Let S1 = 〈V 1, I1, T 1, F1〉 and S2 = 〈V 2, I2, T 2, F2〉 be two SFTSs. We define
a synchronous product S1×S2 as the SFTS 〈V 1 ∪ V 2, I1 ∧ I2, T 1 ∧ T 2, F1 ∪ F2〉.
Every state s of S1 × S2 is an assignment to the two sets of state variables V 1

and V 2 such that s1 = s|V 1 is a state of S1 and s2 = s|V 2 is a state of S2.
Let p be a propositional formula over V . We write s |= p iff s satisfies p, and

π, i |= p if π[i] satisfies p. We write P |= p iff for all reachable s in P it holds
that s |= p. Let ϕ be a formula over an infinite trace expressed in LTL [12]. We
write π |= ϕ iff ϕ is true on the trace π. We write P |= ϕ iff for all traces π in
ΠP it holds that π |= ϕ.

In the rest of the presentation, we sometimes use a context, which we express
as an LTL formula Ψ , to restrict the set of traces of the plant. This is useful to
address the problem of diagnosability under assumptions. Note that, since our
framework supports plants with fairness constraints, the incorporation of the
context can be done (see, e.g., [10]) by converting the context into an SFTS SΨ
(representing the monitor automaton for the LTL formula) and replacing the
plant P with P × SΨ (the synchronous product of the plant with the monitor
automaton).

The Twin Plant Construction The twin plant construction of a plant P over
a subset Y ⊆ V of variables (the observable variables), denoted Twin(P, Y) and
originally proposed by [15], is based on two copies of P , such that a trace in
the twin plant corresponds to a pair of traces of P . In the security domain, two
copies of a system used for verification are known as a self-composition [2].

The twin plant can be defined as the synchronous product of two copies of
the SFTS corresponding to the plant. Formally, given a plant P = 〈V, I, T, F 〉,
we denote with PL =̇ 〈VL, IL, TL, FL〉 and PR =̇ 〈VR, IR, TR, FR〉 the (‘left’ and
‘right’) copies of P , obtained by renaming each variable v as vL or vR, respec-
tively (i.e., if � ∈ {L,R}, then V� stands for the set of variables {v� | v ∈ V }.
Moreover, we define a formula ObsEq stating that the sets of observable vari-
ables of the two copies are equal at the given point. The twin plant of P is
defined as follows.

Definition 1 (Twin Plant). Given a set of variables Y ⊆ V , the twin plant
of P = 〈V, I, T, F 〉 is the SFTS Twin(P, Y) =̇ PL × PR. Moreover, we define
the formula ObsEq =̇

∧
v∈Y vL = vR.

There is a one-to-one correspondence between ΠP ×ΠP (pairs of traces of P)
and ΠTwin(P,Y) (traces of Twin(P, Y)). A trace of Twin(P, Y): π =̇ (s0,L, s0,R),

M. Bozzano et al.546

(s1,L, s1,R), . . . can be decomposed into two traces of P : Left(π) =̇ s0,L, s1,L, . . .
and Right(π) =̇ s0,R, s1,R, Conversely, given two traces πL and πR in ΠP ,
there is a corresponding trace in ΠTwin(P,Y), denoted by πL × πR.

3.2 Liveness to Safety (L2S).

The liveness-to-safety reduction (L2S) [3] is a technique for reducing an LTL
model checking problem on a finite-state transition system to an invariant model
checking problem. The idea is to encode the absence of a lasso-shaped path
violating the LTL property FG¬f as an invariant property.

The encoding is achieved by transforming the original transition system S to
the transition system SL2S, introducing a set X of variables containing a copy x
for each state variable x of the original system, plus additional variables seen,
triggered and loop. Let S =̇ 〈X, I, T 〉. L2S transforms the transition system in
SL2S =̇ 〈XL2S, IL2S, TL2S〉 so that S |= FG¬f if and only if SL2S |= ¬badL2S,
where:

XL2S =̇ X ∪X ∪ {seen, triggered, loop}
IL2S =̇ I ∧ ¬seen ∧ ¬triggered ∧ ¬loop
TL2S =̇ T ∧

[∧
X x ⇐⇒ x′

]
∧
[
seen′ ⇐⇒ (seen ∨∧X(x ⇐⇒ x))

]
∧
[
triggered′ ⇐⇒ (triggered ∨ (f ∧ seen′))

]
∧
[
loop′ ⇐⇒ (triggered′ ∧∧X(x′ ⇐⇒ x′))

]
badL2S =̇ loop

The variables X are used to non-deterministically guess a state of the system
from which a reachable fair loop starts. The additional variables are used to
remember that the guessed state was seen once and that the signal f was true
at least once afterwards.

4 The Problem of Ribbon-Shaped Paths

4.1 The Diagnosability Problem

The observable part obs(s) of a state s is the projection of s on the subset
Y of observable state variables. Thus, obs(s) =̇ s|Y . The observable part of π
is obs(π) =̇ obs(s0), obs(s1), obs(s2), . . . = π|Y . Given two traces π1 and π2, we
denote by ObsEqUpTo(π1, π2, k) the condition saying that, for all i, 0 ≤ i ≤ k,
obs(π1[i]) = obs(π2[i]).

Let β be a formula over V representing the fault condition to be diagnosed.
We call β a diagnosis condition. A system is diagnosable for β if there exists
a bound d such that after the occurrence of β, an observer can infer within d
steps that β indeed occurred. This means that any other trace with the same
observable part contains β as well. Formally, it was first defined in [17] as follows.

Searching for Ribbon-Shaped Paths in Fair Transition Systems 547

OFF
OK

ON
OK

OFF
KO

ON
KO

(a) light bulb

ON
OK

ON
OK

ON
KO

ON
OK

OFF
OK

OFF
KO

ON
OK

OFF
KO

π1

π2

l = 2

(b) RCP

Fig. 1: The light bulb example and an example of a ribbon-shaped critical pair
in the light bulb.

Definition 2 (Diagnosability). Let P be a plant and β a diagnosis condition.
P is diagnosable for β iff there exists d ≥ 0 such that for every trace π1 and
index i ≥ 0 such that π1, i |= β, it holds:

(∃j ∈ N i ≤ j ≤ i+d·(∀π2 ·ObsEqUpTo(π1, π2, j)⇒ ∃k ∈ N k ≤ j ·π2, k |= β)).

The above definition requires a global bound, while when considering fair
transition systems it is possible that the occurrence of β can be inferred eventu-
ally, but without a fixed bound. That is the motivation of extending the definition
to fair diagnosability [16].

Definition 3 (Fair Diagnosability). Let P be a plant and β a diagnosis con-
dition. P is fair-diagnosable for β iff for every trace π1, there exists d ≥ 0 such
that for every index i ≥ 0 such that π1, i |= β, it holds:

(∃j ∈ N i ≤ j ≤ i+d·(∀π2 ·ObsEqUpTo(π1, π2, j)⇒ ∃k ∈ N k ≤ j ·π2, k |= β)).

Example 1. Consider the state machine of a light bulb as shown in Figure 1a,
with the observable value OFF/ON and the diagnosis condition β =̇ KO. Con-
sider the following context: G(KO → F OFF)∧G(OK → F ON). Intuitively, the
LTL formula states that globally a state where KO holds is followed eventually
by a state where OFF holds, and similarly a state where OK holds is followed
eventually by a state where ON holds. Therefore, if the execution reaches KO, it
will eventually go into state OFF/KO and remain there forever. If an execution
is instead always OK, then it will visit infinitely often the state ON/OK. We
can prove that condition β is not fair-diagnosable according to Def. 3. In fact, for
every j, there exists a trace without β that is observationally equivalent up to
j to the trace with β. Notice how the fairness condition causes the observations
after a failure to always diverge eventually, but that this event can be delayed
indefinitely.

4.2 Ribbon-Shaped Critical Pairs

Figure 2 illustrates the concept of ribbon-shaped paths. The formal definition is
as follows.

M. Bozzano et al.548

π1

s0 s1 sk sk+1
. sl sl+1

∃β

ObsEqUpTo(π1, π2, l)

π2

t0 t1 tk tk+1
.

tl tl+1

∀!β

Fig. 2: Ribbon-shaped critical pair

Definition 4 (Ribbon-Shaped Critical Pairs (RCP)). Let P be a plant and
β a diagnosis condition. We say that π1, π2 ∈ ΠP are a ribbon-shaped critical
pair for the diagnosability of β iff there exist k, l such that 0 ≤ k ≤ l and:

1. π1[l] = π1[k] and π2[l] = π2[k];
2. ObsEqUpTo(π1, π2, l);
3. π1, i |= β for some i, 0 ≤ i ≤ l;
4. π2, i 6|= β for all i, 0 ≤ i ≤ l.

For fair diagnosability, the definition is similar:

Definition 5 (Ribbon-Shaped Fair Critical Pairs (RFCP)). Let P be a
plant and β a diagnosis condition. We say that π1, π2 ∈ ΠP are a ribbon-shaped
fair critical pair for the diagnosability of β iff there exist k, l such that 0 ≤ k ≤ l
and:

1. π1[l] = π1[k] and π2[l] = π2[k];
2. π1 is in the form s0, s1, . . . sk, (sk+1, . . . sl)

ω;
3. ObsEqUpTo(π1, π2, l);
4. π1, i |= β for some i ≥ 0;
5. π2, i 6|= β for all i, 0 ≤ i ≤ l.

In this paper, we use a slightly different definition than the one given in [16].
Definition 5 includes an additional constraint on π1 by requiring a loop shape.
However, these two definitions are equivalent and the proof of it can be found
in the extended version of the paper.

Example 2. Fig. 1b shows an example of a ribbon-shaped critical pair for the
light bulb of Example 1.

We can prove that, in the general case, β is not diagnosable if and only if there
exists a ribbon-shaped critical pair. In other words, ribbon-shaped critical pairs
are necessary and sufficient for diagnosability violation. The following theorem
is adapted and extended from [16] and can be proved in a similar way.

Searching for Ribbon-Shaped Paths in Fair Transition Systems 549

Theorem 1 (RCP necessary and sufficient for diagnosability). Let P
be a plant. P is not diagnosable for β iff there exists a ribbon-shaped critical
pair for the diagnosability of β. P is not fair diagnosable for β iff there exists a
ribbon-shaped fair critical pair for the fair diagnosability of β.

The proof can be done similarly as in [16]. The theorem in [16] is proved for
asynchronous systems while here we assume that the plants in the twin plant
are synchronized on the observable part.

4.3 Fixpoint-based Algorithm

The ribbon-shaped structure requires to eventually reach a loop (the ribbon),
from which it is possible to branch with a fair suffix (the final lasso). Therefore,
it combines path and branching conditions, and can be encoded into a CTL*
formula [16] over variables of the twin plant. We can verify whether the formula
holds in the twin plant using a fixpoint-based algorithm. Actually, the specific
structure allows for a simple implementation on top of standard BDD-based
model checking [16]: it is sufficient first to compute the set of fair states, then
to compute the set of fair states staying forever in the looping condition, and
finally to look for an initial state reaching such loop.

The main issue of this approach is the computation of fair states, which is
performed independently from the diagnosis condition and may be a bottleneck
in case of complex fairness conditions.

5 Extended Liveness to Safety

In this section, we propose a novel algorithm for finding RCPs and RFCPs in fair
symbolic transition systems. The algorithm extends L2S such that it searches
for two consequent loops instead of one. We define a ribbon structure, which is
constructed from the twin plant. The ribbon structure is parametrized, thus it
can be used for finding both RCPs and RFCPs with only a slight modification.
We prove that a certain state is reachable in the ribbon structure if and only if
there exists an RCP/RFCP in the original structure.

The ribbon structure extends the twin plant of the original structure with a
new copy of state variables, new flags, and new transitions that constrain the
behaviour of the new variables and the flags. In the following, we describe how
the twin plant is extended and we formally define the ribbon structure.

5.1 Definition of the L2S Extension

The ribbon structure is parametrized by SFTS P , two propositional formulas
p and q and two sets of propositional fairness conditions F1 and F2. These
parameters are later instantiated depending on the specific ribbon-shaped path
that is considered. In particular, p represents the diagnosis condition β in the
left copy of the twin plant and q represents the negation of β in the right copy
conjoined with the constraint to force the same observations on the two copies.

M. Bozzano et al.550

The ribbon structure P∼ and the propositional formula ϕ∼ are defined such
that any path ρ of P∼ on which ϕ∼ is reached satisfies the following conditions:

– ρ contains two consequent loops L1 and L2 that satisfy fairness conditions
F1 and F2 respectively;

– p is satisfied in some state of ρ before the end of the first loop;
– q is satisfied in all states of ρ before the end of the first loop.

In the rest of this section, we formally define the set of variables, the initial
formula and the transition formula using the parameters described above.

Variables Similarly as in the original liveness-to-safety reduction, we create a
copy of all state variables of the twin plant. The copy variables serve as a guess
of the state representing a loopback. The variables are denoted by overline and
defined as V = {v | v ∈ V }, where V is the set of variables of the twin plant
P . The variables are reused both for the first and the second loop, where the
second loop is a fair loop.

The flags are auxiliary variables used to monitor whether a loop was found
and whether all loop conditions were satisfied. The set of flags is defined as
Vm = {mseen,mL1 ,mp,mq} ∪

⋃
fi∈F1

m1,i ∪
⋃
fi∈F2

m2,i. The intuition
behind each flag is as follows:

mseen is true ⇐⇒ the loopback (either the first or the second one) was already
seen and is saved in V ;

mL1 is true ⇐⇒ the first loop was already found;
mp is true ⇐⇒ p was true;
mq is true ⇐⇒ q was true in all previous states;

m1,i is true ⇐⇒ fi ∈ F1 was true in the first loop;
m2,i is true ⇐⇒ fi ∈ F2 was true in the second loop.

In addition, when mseen is true, the current state is in a loop. If mL1
is false,

it is in the first loop. Otherwise, the first loop was already found and the current
state is in the second loop.

Auxiliary Formula The following formula ϕL1
states requirements for find-

ing the loopback of the first loop L1. We need that the conditions on p and q
are satisfied and that L1 was yet not found. In addition, we need that the fair-
ness conditions were true and that the current state is the same as the guessed
loopback.

ϕL1
:= mp ∧mq ∧ ¬mL1

∧mseen ∧
∧
fi∈F1

m1,i ∧
∧
v∈V

v = v

Initial Formula All flags besides mq are initialized to false, mq is initialized
to true:

¬mseen ∧ ¬mL1
∧ ¬mp ∧mq ∧

∧
fi∈F1

¬m1,i ∧
∧
fi∈F2

¬m2,i (I1)

Searching for Ribbon-Shaped Paths in Fair Transition Systems 551

Transition Formulas We define transitions (T1)–(T8) to ensure the correct
behaviour of the introduced variables such that the conditions mentioned above
are satisfied. The transitions and their intuitive descriptions are as follows.

– Anytime mseen is set to true, in the next state the copied variables are set
to the state variables of the current state:

¬mseen ∧mseen
′ =⇒

∧
v∈V

v′ = v (T1)

– If mseen is true, the values of the copy variables are preserved also in the
next state:

mseen =⇒
∧
v∈V

v′ = v (T2)

– The flags mx,i can change to true only when fi ∈ Fx is true and the current
state is in Lx:∧

fi∈F1

(
(m1,i

′ = m1,i) ∨ (mi,1
′ ∧mseen ∧ ¬mL1

∧ fi)
)

(T3)

∧
fi∈F2

(
(m2,i

′ = m2,i) ∨ (m2,i
′ ∧mseen ∧mL1

∧ fi)
)

(T4)

– mL1
can change to true only when the first loop was found, as specified

above by ϕL1
, and it forces mseen to be set to false:

(mL1

′ = mL1
) ∨ (ϕL1

∧ ¬mseen
′ ∧mL1

′) (T5)

– mseen can change to false only when L1 was just found:

mseen =⇒ (mseen
′ ∨ (¬mseen

′ ∧ ¬mL1
∧mL1

′)) (T6)

– mp can change to true only when p is true:

(mp
′ = mp) ∨ (p ∧mp

′) (T7)

– Anytime q is false, mq goes to false and stays false:

(¬mq ∨ ¬q) =⇒ ¬mq
′ (T8)

Note that the transitions (T3), (T4), (T5) and (T7) imply that flags mx,i,
mL1

, mp can change their value from false to true only once and then they stay
true. The transition (T8) implies that mq can change its value from true to
false only once and then it stays false. Finally, (T6) implies that mseen is set to
false exactly once, when L1 is found, and thus set to true exactly twice, when a
loopback of either L1 or L2 is guessed.

M. Bozzano et al.552

Ribbon Structure Putting together the variables and formulas defined above,
we give the following definition of the ribbon structure.

Definition 6. For the plant P = 〈V, I, T, F 〉, the propositional formulas p, q and
the sets of propositional formulas F1, F2 over V , let 〈V∼, I∼, T∼〉 be a symbolic
transition system where:

– V∼ = V ∪ V ∪ Vm;
– I∼ = I ∧ (I1);
– T∼ = T ∧ (T1) ∧ (T2) ∧ (T3) ∧ (T4) ∧ (T5) ∧ (T6) ∧ (T7) ∧ (T8).

We call this STS a ribbon structure and denote it by Ribbon(P, p, q, F1, F2).

To finish the reduction, we define the reachability condition. Intuitively, the
condition should express that the second loop was found. This means that the
first loop was already found, all fairness conditions in F2 were true and the
current state is the same as the guessed loopback:

ϕ∼ := mL1 ∧mseen ∧
∧
fi∈F2

m2,i ∧
∧
v∈V

v = v.

In the next section, we show how the reachability in a ribbon structure is
used to find RCPs and RFCPs and we prove that our construction is correct.

5.2 Correctness

The ribbon structure and the reachability condition are defined such that any
satisfiable trace contains two consecutive loops. The definitions of RCP and
RFCP describe only the first loop. Not all critical pairs contain the second
loop. However, using the following propositions, we claim that the existence of
a critical pair implies existence of a critical pair with two loops, where the first
loop is as in the original pair and the second loop is fair. This fact is necessary
to prove that if P contains a critical pair, we can find a critical pair with two
loops in the ribbon structure.

Proposition 1. Let π be a trace of an SFTS P . Then, any prefix of π can be
extended to a trace πF that ends with a fair loop.

Proposition 2. Let π1 = s1, s2, s3 . . ., π2 = t1, t2, t3 . . . be traces of SFTS P
that end with a fair loop. Then, the path (s1, t1), (s2, t2), (s3, t3) . . . is a trace of
P × P that ends with a fair loop.

The first proposition is true because we consider only finite systems. In a
finite system, any infinite fair suffix contains a state that is repeated infinitely
many times. Thus, there must be two occurrences of the state in between which
all fairness conditions are true at least once. The second proposition is true
because we can unroll the fair loops of π1 and π2 until both of them are in loop
and then we match the period of the new fair loop in π1×π2 by taking the least
common multiple of periods of the fair loops.

Searching for Ribbon-Shaped Paths in Fair Transition Systems 553

Theorem 2. Let P be a plant and P∼ = Ribbon(Twin(P, Y), p, q, F1, F2) is a
ribbon structure where p = βL, q = ¬βR∧ObsEq, F1 = ∅, F2 = FL∪FR. There
exists a ribbon-shaped critical pair in P for the diagnosability of β iff P∼ |= ϕ∼.

Proof. Here, we sketch the proof of the theorem. The full proof is given in the
extended version of the paper. We separately prove both directions of the equiv-
alence:

=⇒ We have π1, π2 ∈ ΠP satisfying Definition 4. We prove that there is a trace
ρ ∈ ΠP∼ such that ρ |= ϕ∼. At first, we show what the trace looks like and
then we prove it is a trace of P∼. Let π1,F , π2,F be a critical pair with two
loops, where the first loop is equal to the loop in π1, π2 and the second loop
is fair. We construct the path ρ as symbolized in Figure 3. The main idea is
to set ρ|V to π1,F ×π2,F . The existence of loop bounds k, l, k′, l′ follows from
the definition of RCP. In the copy variables ρ|V , we keep (π1,F × π2,F)[k]

until the first loop is found and then we switch to (π1,F × π2,F)[k′]. Flags
mseen and mL1 are set accordingly to the bounds of the loops. Flags mp

and m2,i are set to true after conditions βL and fi respectively were true.
The existence of such states where the conditions are satisfied follows from
the definition of RCP. Flag mq is true until the first loop is found, because
from the definition of RCP we know that ¬βR and ObsEq are true.
The formal definition of ρ and the full proof that ρ ∈ ΠP∼ and ρ |= ϕ∼ is
given in the appendix.

⇐= We have P∼ |= ϕ∼, thus there is ρ ∈ ΠP∼ such that ρ |= ϕ∼. Assume we
have such ρ. We show how to construct π1 and π2 from ρ and then we prove
that π1, π2 are an RCP for P and β. Let us set π1 = ρ|VL

and π2 = ρ|VR
.

Let the bounds k, l, k′, l′ of the loops in π1 and π2 be the indices:
– l′ is such that ρ, l′ |= ϕL2

;
– k′ < l′ is the greatest index such that ρ, k′ |= ¬mseen;
– l < k′+ 1 such that ρ, l |= ¬mL1

∧mL1
′, from the construction we know

there is only one such l;
– k < l is the greatest index such that ρ, k |= ¬mseen.

In Appendix A, we finish the prove by showing that π1 and π2 are an RCP.

Theorem 3. Let P be a plant and P∼ = Ribbon(Twin(P, Y), p, q, F1, F2) is a
ribbon structure where p = βL, q = ¬βR ∧ ObsEq, F1 = FL, F2 = FL ∪ FR.
There exists a ribbon-shaped critical pair in P for the fair diagnosability of β iff
P∼ |= ϕ∼.

The proof is very similar to the previous one. The only difference is the
necessity to verify the fairness of the first loop, which is done the same way as
the fairness of the second loop and thus straightforward.

6 Experimental Evaluation

We compared the proposed technique based on L2S and the technique based on
the computation of fixpoints using BDD proposed in [16] and briefly described

M. Bozzano et al.554

ρ|V
s0 sk+1 sl = sk sk′+1 sl′ = sk′

ρ|V
sk sk′

mseen

mL1

mp

∃j ≤ l.sj |= βL
mq

∀j ≤ l.sj |= ¬βR ∧ObsEq

m2,i

∃j, k′ < j ≤ l′.sj |= fi

Fig. 3: The trace ρ as constructed in proof of Theorem 2. For each m ∈ Vm,
a dashed line means ρ, i |= ¬m, a full line and a full circle mean ρ, i |= m,
an empty circle means ρ, i+ 1 |= m.

in Section 4.3. We implemented both algorithms in the xSAP platform [4] and
tested them on benchmarks. The benchmarks, the tool and the scripts required
to test it can be found online1. In this section, we at first introduce the imple-
mentation of the proposed technique and we describe the benchmarks. Then, we
show comparison of the two techniques and we comment on their performance.

6.1 Implementation

We have implemented both the L2S algorithm and the BDD-based algorithm
inside of the xSAP tool [4]. The algorithms make use of various procedures
already implemented in nuXmv [8] and integrated in xSAP, mainly computation
of fixpoint with BDDs [7] and different invariant model checking algorithms. The
fair states are computed with the Emerson-Lei doubly-fixpoint algorithm [1].
The invariant model checking is implemented using engines based on standard
verification algorithms IC3 [6], k-induction [18] and BDD-based fixpoint [11].

The input of each algorithm is a model in an SMV language2, a list of ob-
servable variables of the model, a propositional diagnosis condition and an LTL
formula representing the context. Both the model and the context are translated
into Büchi automata and their parallel composition with the union of their ac-
cepting states is computed. The resulting set of accepting states is the set of
fairness conditions. Then, a twin plant is constructed. The fixpoint-based algo-
rithm is described in Section 4.

1 http://es.fbk.eu/people/vvozarova/diag-rcp-search.zip
2 see nuXmv manual htpps://nuxmv.fbk.eu)

Searching for Ribbon-Shaped Paths in Fair Transition Systems 555

http://es.fbk.eu/people/vvozarova/diag-rcp-search.zip
htpps://nuxmv.fbk.eu

Table 1: Properties of the used models.
model #bool var #reach diam #obs #fairness

acex 31 219.4 96 5-21 1
autogen 99 212.0 20 4-20 1-4
cassini 176 244.2 8 5-58 1
guidance 98 247.5 70 5-62 1
pdist 83 211.0 31 5-41 1-4

In the L2S algorithm, we get the ribbon structure P∼ and the propositional
formula ϕ∼ by extending the twin plant with new variables and transitions as
defined in Section 6. The parameters p and q are constructed from the diagnosis
condition and the set of observable variables. Finally, an arbitrary reachability
algorithm is used to solve the reachability of ϕ∼ in the resulting system.

6.2 Benchmarks

We selected several benchmarks modelling industrial use cases. The models are
finite with boolean variables. For each model, we have specified a fault condition
and possibly more sets of fairness conditions. Both the fault condition and the
fairness conditions are given as propositional formulas. In Table 1, we give for
each model the number of variables, the number of reachable states, the diameter
of the state space, the sizes of sets of observable variables and the sizes of fairness
condition sets.

Each benchmark was tested with more sets of observable variables and some
were tested with more sets of fairness conditions. In sum, we have 72 examples
for diagnosability and fair diagnosability problems and each instance was solved
by BDD-based fixpoint approach and L2S approach with IC3, k-induction and
BDD engines. This gives the total of 576 individual invocations of the xSAP
tool. The experiments were run in parallel on a cluster with nodes with Intel
Xeon CPU running at 2.27GHz with 8CPU, 48GB. The timeout for each run
was two hours and the memory cap was set to 8GB.

6.3 Results

The results for selected examples are given in Table 2 and all results are plotted
in Figure 4a for diagnosability and in Figure 4b for fair diagnosability. We com-
pare the BDD-based fixpoint algorithm (FP-BDD) with L2S with IC3 engine
algorithm (L2S-IC3). The k-induction engine was unable to prove diagnosabil-
ity with the given bound on k (150), time and memory. In general, it performs
better on cases where a counterexample exists, which are not of concern in this
paper. The runs for L2S with BDD engine reached timeout in 127 out of 144
cases and for this reason we do not include it in the analysis.

As both figures and the table show, the approach using L2S extension is in
most cases more effective than the BDD-based approach proposed in the previous

M. Bozzano et al.556

(a) diagnosability (b) fair diagnosability

Fig. 4: Results for the diagnosability (a) and the fair diagnosability (b) comparing
L2S approach with IC3 engine and BDD-based fixpoint computation approach.
The axes represent time in seconds on a logarithmic scale.

literature. The novel technique manages to outperform the previous one in most
cases, as is shown by the cases plotted below the diagonal line on each figure.
Moreover, it manages to solve some cases in which the fixpoint-based algorithm
timed out. For the acex model, FP-BDD performs better than L2S-IC3. This
is because the model has few boolean variables, thus BDDs are smaller and
operations on them are faster. In addition, IC3 needs 56-116 frames to prove
non-reachability on acex, compared to 3-62 frames in other cases.

7 Conclusions and Future Work

In this paper, we considered the problem of proving the absence of a ribbon-
shaped path, which is a core issue in proving diagnosability of fair transition
systems. We conceived a new encoding extending the liveness-to-safety paradigm
in order to search for two consecutive loops. We implemented the algorithm in the
xSAP tool and evaluated it on various diagnosability benchmarks in comparison
with a fixpoint-based solution.

The directions for future work are manifold: first, generalize the looping
conditions to consider also problems different from diagnosability such as non-
interference properties (as in [13]); second, exploit the generation of infinite sets
of traces in counterexample-guided abstraction refinement, reducing the number
of refinement iterations; finally, extend the approach to infinite-state systems,
taking into account data variables that are updated in the loop (as in [9]).

Searching for Ribbon-Shaped Paths in Fair Transition Systems 557

Table 2: Results comparing L2S with IC3 engine and BDD-based algorithm. The
times are given in seconds, TO stands for the timeout of 7200 seconds. All cases
are diagnosable.

model #obs #fairness
diagnosability fair diagnosability

L2S-IC3 FP-BDD L2S-IC3 FP-BDD

acex 5 1 TO 29.59 3114.25 30.58
9 1 4385.18 22.25 1493.26 23.22
13 1 992.60 24.25 1203.87 21.94
17 1 1450.14 24.65 1754.44 25.35
21 1 1328.43 27.22 1996.66 30.39

autogen 4 1 676.89 657.07 179.27 809.45
2 300.14 968.09 994.24 840.69
3 415.00 741.83 756.72 988.33
4 228.62 5638.46 800.11 5457.23

16 1 2231.98 5188.65 420.75 5318.42
2 379.31 TO 586.94 TO
3 411.57 6300.83 274.74 5459.99
4 771.76 TO 574.25 TO

20 1 482.92 4741.88 522.16 5573.37
2 548.96 6016.29 943.53 6043.12
3 426.54 5728.60 945.79 5768.85
4 1134.01 TO 568.33 TO

cassini 5 1 31.85 TO 51.11 TO
10 1 82.48 TO 60.35 TO
15 1 90.62 TO 71.00 TO
20 1 41.50 TO 61.95 TO
25 1 62.39 TO 64.06 TO
58 1 58.36 TO 64.65 TO

guidance 5 1 425.76 349.59 196.27 370.38
10 1 173.75 1663.83 245.50 1727.08
15 1 250.78 4616.18 128.19 4678.15
20 1 271.89 2928.52 300.66 3598.55
25 1 224.58 TO 507.58 TO
62 1 278.82 TO 95.00 TO

pdist 5 1 95.19 458.85 96.81 350.6
2 46.33 511.33 46.72 435.57
3 48.09 424.51 40.19 419.86
4 80.44 420.94 29.07 388.84

20 1 36.72 32.96 1635.52 35.92
2 22.47 28.86 35.54 34.19
3 71.29 34.42 34.19 35.74
4 33.86 33.65 28.98 31.97

25 1 773.29 246.48 285.85 280.56
2 54.20 215.76 38.83 279.42
3 35.06 216.55 25.86 219.13
4 24.75 217.05 16.75 217.25

41 1 23.82 818.28 38.74 859.25
2 31.33 643.03 50.58 759.50
3 41.38 633.24 14.40 782.73
4 22.21 750.93 18.93 818.21

M. Bozzano et al.558

References

1. Allen Emerson, E., Lei, C.L.: Temporal reasoning under generalized fairness con-
straints. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 86. pp. 21–36. Springer
Berlin Heidelberg, Berlin, Heidelberg (1986)

2. BARTHE, G., D’ARGENIO, P.R., REZK, T.: Secure information flow by self-
composition. Mathematical Structures in Computer Science 21(6), 1207–1252
(2011). https://doi.org/10.1017/S0960129511000193

3. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety check-
ing. Electronic Notes in Theoretical Computer Science 66(2), 160–177
(2002). https://doi.org/https://doi.org/10.1016/S1571-0661(04)80410-9, https://
www.sciencedirect.com/science/article/pii/S1571066104804109, fMICS’02, 7th In-
ternational ERCIM Workshop in Formal Methods for Industrial Critical Systems
(ICALP 2002 Satellite Workshop)

4. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,
C., Micheli, A., Zampedri, G.: The xSAP Safety Analysis Platform. In: TACAS.
Lecture Notes in Computer Science, vol. 9636, pp. 533–539. Springer (2016)

5. Bozzano, M., Cimatti, A., Gario, M., Tonetta, S.: Formal Design of Asyn-
chronous Fault Detection and Identification Components using Temporal
Epistemic Logic. Logical Methods in Computer Science 11(4), (2015).
https://doi.org/10.2168/LMCS-11(4:4)2015, https://doi.org/10.2168/LMCS-11(4:
4)2015

6. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: VMCAI. Lecture
Notes in Computer Science, vol. 6538, pp. 70–87. Springer (2011)

7. Bryant, R.E.: Binary Decision Diagrams. In: Handbook of Model Checking, pp.
191–217. Springer (2018)

8. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In: CAV.
Lecture Notes in Computer Science, vol. 8559, pp. 334–342. Springer (2014)

9. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv
with Timed Transition Systems and Timed Temporal Properties. In: CAV (1).
Lecture Notes in Computer Science, vol. 11561, pp. 376–386. Springer (2019)

10. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another Look at LTL Model Check-
ing. Formal Methods in System Design 10(1), 47–71 (1997)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001)

12. Emerson, E.: Temporal and Modal Logic. Handbook of theoretical computer sci-
ence 2, 995–1072 (1990)

13. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperprop-
erties. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verifica-
tion - 30th International Conference, CAV 2018, Held as Part of the Feder-
ated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 10981, pp. 144–163.
Springer (2018). https://doi.org/10.1007/978-3-319-96145-3 8, https://doi.org/10.
1007/978-3-319-96145-3 8

14. Grastien, A.: Symbolic testing of diagnosability. In: International Workshop on
Principles of Diagnosis (DX). pp. 131–138 (2009)

15. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A Polynomial-time Algorithm for
Diagnosability of Discrete Event Systems. IEEE Transactions on Automatic Con-
trol 46(8), 1318–1321 (2001)

Searching for Ribbon-Shaped Paths in Fair Transition Systems 559

https://doi.org/10.1017/S0960129511000193
https://doi.org/https://doi.org/10.1016/S1571-0661(04)80410-9
https://www.sciencedirect.com/science/article/pii/S1571066104804109
https://www.sciencedirect.com/science/article/pii/S1571066104804109
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8

16. M. Bozzano and A. Cimatti and S. Tonetta: Testing Diagnosability of Fair Discrete-
Event Systems. In: Proc. International Workshop on Principles of Diagnosis (DX-
19) (2019)

17. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Di-
agnosability of Discrete-event Systems. IEEE Transactions on Automatic Control
40(9), 1555–1575 (1995)

18. Sheeran, M., Singh, S., St̊almarck, G.: Checking Safety Properties Using Induction
and a SAT-Solver. In: FMCAD. Lecture Notes in Computer Science, vol. 1954, pp.
108–125. Springer (2000)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

M. Bozzano et al.560

http://creativecommons.org/licenses/by/4.0/

	Searching for Ribbon-Shaped Paths in Fair Transition Systems
	1 Introduction
	2 Related Work
	3 Background
	3.1 Symbolic Fair Transition Systems
	3.2 Liveness to Safety (L2S).

	4 The Problem of Ribbon-Shaped Paths
	4.1 The Diagnosability Problem
	4.2 Ribbon-Shaped Critical Pairs
	4.3 Fixpoint-based Algorithm

	5 Extended Liveness to Safety
	5.1 Definition of the L2S Extension
	5.2 Correctness

	6 Experimental Evaluation
	6.1 Implementation
	6.2 Benchmarks
	6.3 Results

	7 Conclusions and Future Work
	References

