
Property Directed Reachability

for Generalized Petri Nets

Nicolas Amat1(�) , Silvano Dal Zilio1 , and Thomas Hujsa1

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
namat@laas.fr

Abstract. We propose a semi-decision procedure for checking general-
ized reachability properties, on generalized Petri nets, that is based on
the Property Directed Reachability (PDR) method. We actually define
three different versions, that vary depending on the method used for ab-
stracting possible witnesses, and that are able to handle problems of in-
creasing difficulty. We have implemented our methods in a model-checker
called SMPT and give empirical evidences that our approach can handle
problems that are difficult or impossible to check with current state of
the art tools.
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1 Introduction

We propose a new semi-decision procedure for checking reachability properties
on generalized Petri nets, meaning that we impose no constraints on the weights
of the arcs and do not require a finite state space. We also consider a generalized
notion of reachability, in the sense that we can not only check the reachability of
a given state, but also if it is possible to reach a marking that satisfies a combina-
tion of linear constraints between places, such as (p0+p1 = p2+2)∧(p1 6 p2) for
example. Another interesting feature of our approach is that we are able to re-
turn a “certificate of invariance”, in the form of an inductive linear invariant [26],
when we find that a constraint is true on all the reachable markings. To the best
of our knowledge, there is no other tool able to compute such certificates in the
general case.

Our approach is based on an extension of the Property Directed Reachability
(PDR) method, originally developed for hardware model-checking [8,9], to the
case of Petri nets. We actually define three variants of our algorithm—two of
them completely new when compared to our previous work [1]—that vary based
on the method used for generalizing possible witnesses and can handle problems
of increasing difficulty.

Reachability for Petri nets is an important and difficult problem with many
practical applications: obviously for the formal verification of concurrent sys-
tems, but also for the study of diverse types of protocols (such as biological or
business processes); the verification of software systems; the analysis of infinite

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 505–523, 2022.
https://doi.org/10.1007/978-3-030-99524-9_28

http://orcid.org/0000-0002-5969-7346
http://orcid.org/0000-0002-6002-2696
http://orcid.org/0000-0001-5226-8752
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_28


N. Amat et al.

state systems; etc. It is also a timely subject, as shown by recent publications on
this subject [7,15], but also with the recent progress made on settling its theoret-
ical complexity [12,13], which asserts that reachability is Ackermann-complete,
and therefore inherently more complex than, say, the coverability problem. A
practical consequence of this “inherent complexity”, and a general consensus, is
that we should not expect to find a one-size-fits-all algorithm that could be us-
able in practice. A better strategy is to try to improve the performances on some
cases—for example by developing new tools, or optimizations, that may perform
better on some examples—or try to improve “expressiveness”—by finding algo-
rithms that can manage new cases, that no other tool can handle.

This wisdom is illustrated by the current state of the art at the Model Check-
ing Contest (MCC) [3], a competition of model-checkers for Petri nets that in-
cludes an examination for the reachability problem. Albeit strongly oriented
towards the analysis of bounded nets. As a matter of fact, the top three tools
in recent competitions—ITS-Tools [30], LoLA [34], and Tapaal [14]—all rely
on a portfolio approach. Methods that have been proposed in this context in-
clude the use of symbolic techniques, such as k-induction [31]; abstraction re-
finement [10]; the use of standard optimizations with Petri nets, like stubborn
sets or structural reductions; the use of the “state equation”; reduction to integer
linear programming problems; etc.

The results obtained during the MCC highlight the very good performances
achieved when putting all these techniques together, on bounded nets, with a col-
lection of randomly generated properties. Another interesting feedback from the
MCC is that simulation techniques are very good at finding a counter-example
when a property is not an invariant [7,31].

In our work, we seek improvements in terms of both performance and ex-
pressiveness. We also target what we consider to be a difficult, and less studied
area of research: procedures that can be applied when a property is an invariant
and when the net is unbounded, or its state space cannot be fully explored. We
also focus on the verification of “genuine” reachability constraints, which are not
instances of a coverability problem. These properties are seldom studied in the
context of unbounded nets. Interestingly enough, our work provides a simple
explanation of why coverability problems are also “simpler” in the case of PDR;
what we will associate with the notion of monotonic formulas.

Concerning performances, we propose a method based on a well-tried sym-
bolic technique, PDR, that has proved successful with unbounded model-checking
and when used together with SMT solvers [11,22]. Concerning expressiveness,
we define a small benchmark of “difficult nets”: a set of synthetic examples,
representative of patterns that can make the reachability problem harder.

Outline and Contributions. We define background material on Petri nets
in Sect. 2, where we use Linear Integer Arithmetic (LIA) formulas to reason
about nets. Section 3 describes our decision method, based on PDR and SMT
solvers, for checking the satisfiability of linear invariants over the reachable states
of a Petri net. Our method builds sequences of incremental invariants using
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both a property that we want to disprove, and a stepwise approximation of
the reachability relation. It also relies on a generalization step where we can
abstract possible “bad states” into clauses that are propagated in order to find
a counter-example, or to block inconsistent states.

We describe a first generalization method, based on the upset of markings,
that is able to deal with coverability properties. We propose a new, dual variant
based on the concept of hurdles [21], that is without restrictions on the prop-
erties. In this method, the goal is to block bad sequences of transitions instead
of bad states. We show how this approach can be further improved by defin-
ing a notion of saturated transition sequence, at the cost of adding universal
quantification in our SMT problems.

We have implemented our approach in an open-source tool, called SMPT,
and compare it with other existing tools. In this context, one of our contributions
is the definition of a set of difficult nets, that characterizes classes of difficult
reachability problems.

2 Petri Nets and Linear Reachability Constraints

Let N denote the set of natural numbers and Z the set of integers. Assuming P
is a finite, totally ordered set {p1, . . . , pn}, we denote by NP the set of mappings
from P → N and we overload the addition, subtraction and comparison operators
(=,≥,≤) to act as their component-wise equivalent on mappings. A QF-LIA
formula F , with support in P , is a Boolean combination of atomic propositions
of the form α ∼ β, where ∼ is one of =,≤ or ≥ and α, β are linear expressions,
that is, linear combinations of elements in N∪P . We simply use the term linear
constraint to describe F .

A Petri net N is a tuple (P, T,pre,post) where P = {p1, . . . , pn} is a finite
set of places, T is a finite set of transitions (disjoint from P ), and pre : T → NP

and post : T → NP are the pre- and post-condition functions (also called the
flow functions of N). A state m of a net, also called a marking, is a mapping of
NP . We say that the marking m assigns m(pi) tokens to place pi. A marked net
(N,m0) is a pair composed from a net and an initial marking m0.

A transition t ∈ T is enabled at marking m ∈ NP when m > pre(t). When
t is enabled at m, we can fire it and reach another marking m′ ∈ NP such that
m′ = m − pre(t) + post(t). We denote this transition m

t
−→m′. The difference

between m and m′ is a mapping ∆(t) = post(t)− pre(t) in Z
P , also called the

displacement of t.
By extension, we say that a firing sequence σ = t1 . . . tk ∈ T ∗ can be fired

from m, denoted m
σ
=⇒m′, if there exist markings m0, . . . ,mk such that m = m0,

m′ = mk and mi

ti+1

−−→mi+1 for all i < k. We can also simply write m →⋆ m′. In
this case, the displacement of σ is the mapping ∆(σ) = ∆(t1) + · · ·+∆(tk). We
denote by R(N,m0) the set of markings reachable from m0 in N . A marking m
is k-bounded when each place has at most k tokens. By extension, we say that
a marked Petri net (N,m0) is bounded when there is k such that all reachable
markings are k-bounded.
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Fig. 1. Two examples of Petri nets: Parity (left) and PGCD (right).

While reachable states are computed by adding a linear combination of “dis-
placements” (vectors in ZP ), the set R(N,m0) is not necessarily semilinear or,
equivalently, definable using Presburger arithmetic [20,26]. This is a consequence
of the constraint that transitions must be enabled before firing. But there is still
some structure to the set R(N,m0), like for instance the following monotonicity
constraint:

∀m ∈ N
P . m1

σ
=⇒m2 implies m1 +m

σ
=⇒m2 +m (H1)

We have other such results, such as with the notion of hurdle [21]. Just as
pre(t) is the smallest marking for which a given transition t is enabled, there is
a smallest marking at which a given firing sequence σ is fireable. This marking,
denoted by H(σ), has a simple inductive definition:

H(t) = pre(t) and H(σ1 · σ2) = max (H(σ1), H(σ2)−∆(σ1)) (H2)

Given this notion of hurdles, we obtain that m
σ
=⇒ m′ if and only if (1) the

sequence σ is enabled: m > H(σ), and (2) m′ = m+∆(σ). We use this result in
the second variant of our method.

We can go a step further and characterize a necessary and sufficient condition
for firing the sequence σ.σk, meaning firing the same sequence more than once.
Given ∆(σ), a place p with a negative displacement (say −d) means that we
“loose” d token each time we fire σ. Hence we should budget d tokens in p
for each new iteration. Therefore we have m

σ
=⇒

σ
k

=⇒m′ if and only if (1) m >

H(σ) + k · max(0,−∆(σ)), and (2) m′ = m + (k + 1) · ∆(σ). Equivalently, if
we denote by m+ the “positive” part of mapping m, such that m+(p) = 0 when
m(p) 6 0 and m+(p) = m(p) otherwise, we have:

H(σk+1) = max (H(σ), H(σ) − k ·∆(σ)) = H(σ) + k · (−∆(σ))
+

(H3)

Examples. We give two simple examples of unbounded nets in Fig. 1, which
are both part of our benchmark. Parity has a single place, hence its state space
can be interpreted as a subset of N: with an initial marking of 1, this is exactly
the set of odd numbers (and therefore state 0 is not reachable). We are in a
special case where the set R(N,m0) is semilinear. For instance, it can be seen
as solution to the constraint ∃k.(p = 2k + 1), or equivalently p ≡ 1 (mod 2).
But it cannot be expressed with a linear constraint involving only the variable
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p without quantification or modulo arithmetic. This example can be handled by
most of the tools used in our experiments, e.g. with the help of k-induction.

In PGCD, transitions t0/t1 can decrement/increment the marking of p0 by 1.
Nonetheless, with this initial state, it is the case that the number of occurrences
of t0 is always less than the one of t1 in any feasible sequence σ. Hence the two
predicates p0 ≥ 2 and p2 ≥ p1 are valid invariants. (Since some tools do not
accept literals of the form p ≥ q, we added the “redundant” place p3 so we can
restate our second invariant as p3 ≥ 1.) These invariants cannot be proved by
reasoning only on the displacements of traces (using the state equation) and are
already out of reach for LoLA or Tapaal.

Linear Reachability Formulas. We can revisit the semantics of Petri nets
using linear predicates. In the following, we use p for the vector (p1, . . . , pn),
and F (p) for a formula with variables in P . We also simply use F (α) for the
substitution F{p1 ← α1} . . . {pn ← αn}, with α = (α1, . . . , αn) a sequence of
linear expressions. We say that a mapping m of NP is a model of F , denoted
m |= F , if the ground formula F (m) = F (m(p1), . . . ,m(pn)) is true. Hence
we can also interpret F as a predicate over markings. Finally, we define the
semantics of F as the set JF K = {m ∈ NP | m |= F}.

As usual, we say that a predicate F is valid, denoted |= F , when all its
interpretations are true (JF K = NP ); and that F is unsatisfiable (or simply
unsat), denoted 2 F , when JF K = ∅.

We can define many properties on the markings of a net N using this frame-
work. For instance, we can model the set of markings m such that some transition
t is enabled using predicate ENBLt (see Equation (2) below). We can also define
a linear predicate to describe the relation between the markings before and after
some transition t fires. To this end, we use a vector p

′ of “primed variables”
(p′1, . . . , p

′

n), where p′
i

will stand for the marking of place pi after a transition
is fired. With this convention, formula FIREt(p,p

′) is such that FIREt(m,m′)
entails m

t
−→ m′ or m = m′ when t is enabled at m. With all these notations,

we can define a predicate T(p,p′) that “encodes” the effect of firing at most one
transition in the net N .

GEQm(p)
def
=

∧

i∈1..n (pi > m(pi)) (1)

ENBLt(p)
def
=

∧

i∈1..n (pi > pre(t)(pi)) = GEQ
H(t)(p) (2)

∆t(p,p
′)

def
=

∧

i∈1..n (p
′

i
= pi + post(t)(pi)− pre(t)(pi)) (3)

EQ(p,p′)
def
=

∧

i∈1..n (p
′

i
= pi) (4)

FIREt(p,p
′)

def
= EQ(p,p′) ∨ (ENBLt(p) ∧∆t(p,p

′)) (5)

T(p,p′)
def
= EQ(p,p′) ∨

∨

t∈T
(ENBLt(p) ∧∆t(p,p

′)) (6)

In our work, we focus on the verification of safety properties on the reachable
markings of a marked net (N,m0). Examples of properties that we want to check
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include: checking if some transition t is enabled (commonly known as quasi-
liveness); checking if there is a deadlock; checking whether some linear invariant
between place markings is true; . . . All properties that can be expressed using a
linear predicate.

Definition 1 (Linear Invariants and Inductive Predicates).
A linear predicate F is an invariant on (N,m0) if and only if we have m |= F
for all m ∈ R(N,m0). It is inductive if for all markings m we have m |= F and
m → m′ entails m′ |= F .

It is possible to characterize inductive predicates using our logical framework.
Indeed, F is inductive if and only if the QF-LIA formula (i) F (p) ∧ T (p,p′) ∧
¬F (p′) is unsat. Also, an inductive formula is an invariant when (ii) m0 |= F , or
equivalently |= F (m0). As a consequence, a sufficient condition for a predicate
F to be invariant is to have both conditions (i) and (ii); conditions that can
be checked using a SMT solver. Unfortunately, the predicates that we need to
check are often not inductive. In this case, the next best thing is to try to build
an inductive invariant, say R, such that JRK ⊆ JF K (or equivalently R ∧ ¬F
unsat). This predicate provides a certificate of invariance that can be checked
independently.

Lemma 1 (Certificate of Invariance). A sufficient condition for F to be
invariant on (N,m0) is to exhibit a linear predicate R that is (i) initial: R(m0)
valid; (ii) inductive: R(p) ∧ T (p,p′) ∧ ¬R(p ) unsat; and (iii) that entails F ,
for instance: R ∧ ¬F unsat.

This result is in line with a property proved by Leroux [26], which states
that when a final configuration m is not reachable there must exist a Presburger
inductive invariant that contains m0 but does not contain m. This result does
not explain how to effectively compute such an invariant. Moreover, in our case,
we provide a method that works with general linear predicates, and not only
with single configurations. On the other side of the coin, given the known results
about the complexity of the problem, we do not expect our procedure to be
complete in the general case.

In the next section, we show how to (potentially) find such certificates using
an adaptation of the PDR method. An essential component of PDR is to abstract
a “scenario” leading to the model of some property F—say a transition m

σ
=⇒m′

with m′ |= F—into a predicate that contains m (and potentially many more
similar scenarios). More generally, a generalization of the trio (m,σ, F ) is a
predicate G satisfied by m such that m1 |= G entails that there is m1 →⋆ m2

with m2 |= F .
We can use properties (H1)–(H3), defined earlier, to build generalizations.

Lemma 2 (Generalization). Assume we have a scenario such that m
σ
=⇒m′

and m′ |= F . We have three possible generalizations of the trio (m,σ, F ).

(G1) If property F is monotonic, then m1 |= GEQ
m
(p) implies there is m2 > m′

such that m1
σ
=⇒m2 and m2 |= F .
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(G2) If m1 |= GEQH(σ)(p) ∧ F (p+∆(σ)) then m1
σ
=⇒m2 and m2 |= F .

(G3) Assume a, b are mappings of NP such that a = H(σ) and b = (−∆(σ))+,
with the notations used in (H3). Then

m1 |= ∃k.

([
∧

i∈1..n(pi > a(i) + k · b(i))
]

∧F (p+ (k + 1) ·∆(σ))

)

implies

{

∃k.m1
σ
k+1

===⇒m2

and m2 |= F

Proof. Each property is a direct result of properties (H1) to (H3).

Property (G3) is the first and only instance of linear formula using an extra
variable, k, that is not in P . The result is still a linear formula though, since we
never need to use the product of two variables. This generalization is used when
we want to “saturate the sequence σ”. This is the only situation where we may
need to deal with quantified LIA formulas. Another solution would be to replace
each quantification with the use of modulo arithmetic, but this operation may
be costly and could greatly increase the size of our formulas. It would also not
cut down the complexity of the SMT problems.

3 Property Directed Reachability

Some symbolic model-checking procedure, such as BMC [6] or k-induction [28],
are a good fit when we try to find counter-examples on infinite-state systems.
Unfortunately, they may perform poorly when we want to check an invariant.
In this case, adaptations of the PDR method [8,9] (also known as IC3, for “In-
cremental Construction of Inductive Clauses for Indubitable Correctness”) have
proved successful.

We assume that we start with an initial state m0 satisfying a linear property,
I, and that we want to prove that property P is an invariant of the marked net
(N,m0). (We use blackboard bold symbols to distinguish between parameters
of the problem, and formulas that we build for solving it.) We define F = ¬P
as the “set of feared events”; such that P is not an invariant if we can find m
in R(N,m0) such that m |= F. To simplify the presentation, we assume that F

is a conjunction of literals (a cube), meaning that P is a clause. In practice, we
assume that F is in Disjunctive Normal Form.

PDR is a combination of induction, over-approximation, and SAT or SMT
solving. The goal is to build an incremental sequence of predicates F0, . . . , Fk

that are “inductive relative to stepwise approximations”: such that m |= Fi and
m → m′ entails m′ |= Fi+1, but not m′ |= F. The method stops when it finds a
counter-example, or when we find that one of the predicates Fi is inductive.

We adapt the PDR approach to Petri nets, using linear predicates and SMT
solvers for the QF-LIA and LIA logics in order to learn, generalize, and propagate
new clauses. The most innovative part of our approach is the use of specific
“generalization algorithms” that take advantage of the Petri nets theory, like the
use of hurdles for example. Our implementation follows closely the algorithm for
IC3 described in [9] and, for the sake of brevity, we only give the pseudo-code
for the four main functions.
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Function prove(I, F: linear predicates)

Result: ⊥ if F is reachable (P = ¬F is not an invariant), otherwise ⊤

1 if sat(I(p) ∧ T (p,p′) ∧ F(p′)) then
2 return ⊥

3 k ← 1, F0 ← I, F1 ← P

4 while ⊤ do
5 if not strengthen(k) then
6 return ⊥
7 propagateClauses(k)

8 if CL(Fi) = CL(Fi+1) for some 1 6 i 6 k then
9 return ⊤

10 k ← k + 1

The main function, prove, computes an Over Approximated Reachability Se-
quence (OARS) (F0, . . . , Fk) of linear predicates, called frames, with variables
in p. An OARS meets the following constraints: (1) it is monotonic: Fi ∧ ¬Fi+1

unsat for 0 6 i < k; (2) it contains the initial states: I ∧ ¬F0 unsat; (3) it
does not contain feared states: Fi ∧ F unsat for 0 6 i 6 k; and (4) it satisfies
consecution: Fi(p) ∧ T(p,p′) ∧ ¬Fi+1(p

′) unsat for 0 6 i < k.

By construction, each frame Fi in the OARS is defined as a set of clauses,
CL(Fi), meaning that Fi is built as a formula in CNF: Fi =

∧

cl∈CL(Fi)
cl . We

also enforce that CL(Fi+1) ⊆ CL(Fi) for 0 6 i < k, which means that the
monotonicity property between frames is trivially ensured.

The body of function prove contains a main iteration (line 4) that increases
the value of k (the number of levels of the OARS). At each step, we enter a
second, minor iteration (line 2 in function strengthen), where we generate new
minimal inductive clauses that will be propagated to all the frames. Hence both
the length of the OARS, and the set of clauses in its frames, increase during
computation. The procedure stops when we find an index i such that Fi = Fi+1.
In this case we know that Fi is an inductive invariant satisfying P. We can also
stop during the iteration if we find a counter-example (a model m of F). In this
case, we can also return a trace leading to m.

When we start the first minor iteration, we have k = 1, F0 = I and F1 = P.
If we have Fk(p)∧T (p,p′)∧F(p) unsat, it means that P is inductive, so we can
stop and return that P is an invariant. Otherwise, we proceed with the strengthen
phase, where each model of Fk(p)∧T (p,p′)∧F(p) becomes a potential counter-
example, or witness, that we need to “block” (line 3–5 of function strengthen).

Instead of blocking only one witness, we first generalize it into a predicate
that abstracts similar dangerous states (see the call to generalizeWitness).
This is done by applying one of the three generalization results in Lemma 2. We
give more details about this step later. By construction, each generalization is a
cube s (a conjunction of literals). Hence, when we block it, we learn new clauses
from ¬s that can be propagated to the previous frames.
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Function strengthen(k : current level)

1 try:
2 while (m

t
−→m′) |= Fk(p) ∧ T (p,p′) ∧ F(p′) do

3 s ← generalizeWitness(m, t, F)
4 n ← inductivelyGeneralize(s, k - 2, k)
5 pushGeneralization({(s, n+1)}, k)

6 return ⊤

7 catch counter example:
8 return ⊥

Function inductivelyGeneralize(s : cube, min: level, k: level)

1 if min < 0 and sat(F0(p) ∧ T (p,p′) ∧ s(p′)) then
2 raise Counterexample

3 for i ← max(1, min+ 1) to k do
4 if sat(Fi(p) ∧ T (p,p′) ∧ ¬s(p) ∧ s(p′)) then
5 generateClause(s, i-1, k)
6 return i− 1

7 generateClause(s, k, k)
8 return k

Before pushing a new clause, we test whether s is reachable from previous
frames. We take advantage of this opportunity to find if we have a counter-
example and, if not, to learn new clauses in the process. This is the role of
functions pushGeneralization and inductivelyGeneralize.

We find a counter example (in the call to inductivelyGeneralize) if the
generalization from a witness found at level k, say s, reaches level 0 and F0(p)∧
T (p,p′) ∧ s(p′) is satisfiable (line 1 in inductivelyGeneralize). Indeed, it
means that we can build a trace from I to F by going through F1, . . . , Fk.

The method relies heavily on checking the satisfiability of linear formulas in
QF-LIA, which is achieved with a call to a SMT solver. In each function call, we
need to test if predicates of the form Fi∧T ∧G are unsat and, if not, enumerate
its models. To accelerate the strengthening of frames, we also rely on the unsat
core of properties in order to compute a minimal inductive clause (MIC).

Our approach is parametrized by a generalization function (generalizeWit-
ness) that is crucial if we want to avoid enumerating a large, potentially un-
bounded, set of witnesses. This can be the case, for example, in line 5 of pushGe-
neralization. In this particular case, we find a state m at level n (because
m |= Fn), and a transition t that leads to a problematic clause in Fn+1. There-
fore we have a sequence σ of size k − n+ 1 such that m

σ
=⇒m′ and m′ |= F. We

consider three possible methods for generalizing the trio (m,σ,F), that corre-
sponds to property (G1)–(G3) in Lemma 2.
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Function pushGeneralization(states: set of (state, level), k: level)

1 while ⊤ do
2 (s, n) ← from states minimizing n

3 if n > k then
4 return
5 if (m

t
−→m′) |= Fn(p) ∧ T (p,p′) ∧ s(p′) then

6 p ← generalizeWitness(m, t, s)
7 l ← inductivelyGeneralize(p, n - 2, k)
8 states ← states∪ {(p, l + 1)}

9 else
10 l ← inductivelyGeneralize(s, n, k)
11 states ← states \ {(s, n)} ∪ {(s, l + 1)}

State-based Generalization. A special case of the reachability problem is
when the predicate F is monotonic„ meaning that m1 |= F entails m1 +m2 |= F

for all markings m1,m2. A sufficient (syntactic) condition is for F to be a positive
formula with literals of the form

∑

i∈I
pi ≥ a. This class of predicates coincide

with what is called a coverability property, for which there exists specialized
verification methods (see e.g. [18,19]).

By property (G1), If we have to block a witness m such that m
σ
=⇒ m′ and

m′ |= F, we can as well block all the states greater than m. Hence we can
choose the predicate GEQm to generalize m. This is a very convenient case for
verification and one of the optimizations used in previous works on PDR for
Petri nets [1,16,23,24]. First, the generalization is very simple and we can easily
compute a MIC when we block predicate GEQ

m
in a frame. Also, we can prove

the completeness of the procedure when F is monotonic. An intuition is that it
is enough, in this case, to check the property on the minimal coverability set
of the net, which is always finite [18]. The procedure is also complete for finite
transition systems. These are the only cases where we have been able to prove
that our method always terminates.

Transition-based Generalization. We propose a new generalization based
on the notion of hurdles. This approach can be used when F is not monotonic,
for example when we want to check an invariant that contains literals of the
form p = k (e.g. the reachability of a fixed marking) or p > q.

Assume we need to block a witness of the from m
σ
=⇒m′ |= s. Typically, s is a

cube in F, or a state resulting from a call to pushGeneralization. By property
(G2), we can as well block all the states satisfying Gσ(p)

def
= GEQH(σ)(p)∧ s(p+

∆(σ)). This generalization is interesting when property s does not constraint all
the places, or when we have few equality constraints. In this case Gσ may have
an infinite number of models. It should be noted that using the duality between
“feasible traces” and hurdles is not new. For example, it was used recently [19]
to accelerate the computation of coverability trees. Nonetheless, to the best of
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our knowledge, this is the first time that this generalization method has been
used with PDR.

Saturated Transition-based Generalization. We still assume that we start
from a witness m

σ
=⇒m′ |= s. Our last method relies on property (G3) and allows

us to consider several iterations of σ. If we fix the value of k, then a possible
generalization is Gk

σ

def
=
(
∧

i∈1..n(pi > a(i) + k · b(i))
)

∧s(p+(k+1) ·∆(σ)), where
a, b are the mappings of NP defined in Lemma 2. (Notice that G1

σ
= Gσ.) More

generally the predicate G6k
σ

= G1
σ
∨ · · · ∨ Gk

σ
is a valid generalization for the

witness (m,σ, s), in the sense that if m1 |= G6k
σ then there is a trace m1 →⋆ m2

such that m2 |= s. At the cost of using existential quantification (and therefore
a “top-level” universal quantification when we negate the predicate to block it
in a frame), we can use the more general predicate G⋆

σ

def
= ∃k.Gk

σ, which is still
linear and has its support in P .

We know examples of invariants where the PDR method does not terminate
except when using saturation. A simple example is the net Parity, used as an
example in Sect. 2, with the invariant P = (p > 1). In this case, F = ¬P = (p =
0). Hence we are looking for witnesses such that m →⋆ 0. The simplest example
is 2

t2−→ 0, which corresponds to the “blocking clause” p 6= 2. In this case, we
have H(t2) = 2 and ∆(t2) = −2. Hence the transition-based generalization is
(p ≥ 2) ∧ (p − 2 = 0) ≡ (p = 2), which does not block new markings. At this
point, we try to block (p = 0) ∨ (p = 2). The following minor iteration of our
method will consider the witness 4

t2.t2===⇒ 0, etc. Hence after k minor iterations,
we have Fk ≡ (p 6= 0)∧ (p 6= 2)∧ · · · ∧ (p 6= 2k). If we saturate t2, we find in one
step that we should block ∃k.(p− 2 · (k + 1) = 0). This is enough to prove that
(p > 1) is an invariant as soon as the initial marking is an odd number.

This example proves that PDR is not complete, without saturation, in the
general case. We conjecture that it is also the case with saturation. Even though
example Parity is extremely simple, it is also enough to demonstrate the limit
of our method without saturation. Indeed, when we only allow unquantified
linear predicates with variables in P , it is not possible to express all the possible
semilinear sets in NP . (We typically miss some periodic sets.) In practice, it is not
always useful to saturate a trace and, in our implementation, we use heuristics
to limit the number of quantifications introduced by this operation. Actually,
nothing prevents us from mixing our different kinds of generalization together,
and there is still much work to be done in order to find good tactics in this case.

4 Experimental Results

We have implemented our complete approach in a tool, called SMPT (for Satis-
fiability Modulo P/T Nets), and made our code freely available under the GPLv3
license. The software, scripts and data used to perform our analyses are available
on Github (htttps://github.com/nicolasAmat/SMPT) and are archived in Zen-
odo [2]. The tool supports the declaration of reachability constraints expressed
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Instance SMPT ITS-Tools LoLA Tapaal

Murphy 0.75
∗ TLE TLE TLE

PGCD 0.11
∗ 139.08 TLE TLE

CryptoMiner 0.19 ∗ 5.92 TLE 0.18

Parity 0.40 ∗ 3.36 0.01 4.16
Process 83.39 TLE 0.03 0.18

Table 1. Computation time on our synthetic examples (time in seconds).

using the same syntax as in the Reachability examinations of the Model Check-
ing Contest (MCC). For instance, we use PNML as the input format for nets.
SMPT relies on a SMT solver to answer sat and unsat-core queries. It inter-
acts with SMT solvers using the SMT-LIBv2 format, which is a well-supported
interchange format. We used the z3 solver for all the results presented in this
section.

Evaluation on Expressiveness. It is difficult to find benchmarks with un-
bounded Petri nets. To quote Blondin et al. [7], “due to the lack of tools handling
reachability for unbounded state spaces, benchmarks arising in the literature are
primarily coverability instances”. It is also very difficult to randomly generate a
true invariant that does not follow, in an obvious way, from the state equation.
For this reason, we decided to propose our own benchmark, made of five syn-
thetic examples of nets, each with a given invariant. This benchmark is freely
available and presented as an archive similar to instances of problems used in
the MCC.

Our benchmark is made of deceptively simple nets that have been engineered
to be difficult or impossible to check with current techniques. Our two first ex-
amples are displayed in Fig. 1. We give another example in Fig. 2. Each example
is quite small, with less than 10 places or transitions, and is representative of
patterns that can make the reachability problem harder: the use of self-loops;
dead transitions that cannot be detected with the state equation; weights that
are relatively prime; etc.

We compared SMPT against ITS-Tools, LoLA, and Tapaal and give our
results in Table 1. All results are computed using 4 cores, a limit of 16GB of
RAM, and a timeout of 1 h. A result of TLE stands for “Time Limit Exceeded”.
For SMPT, we marked with an asterisk (∗) the results computed using our
saturation-based generalization. Our results show that SMPT is able to answer
on several classes of examples that are out of reach for some, or all the other
tools; often by orders of magnitude.

Computing Certificate of Invariance. A distinctive feature of SMPT is the
ability to output a linear inductive invariant for reachability problems: when we
find that P is invariant, we are also able to output an inductive formula C, of

N. Amat et al.516



Fig. 2. Example Murphy, with invariant P = (p1 6 2 ∧ p4 > p5).

the form P ∧G, that can be checked independently with a SMT solver. We can
find the same capability in the tool Petrinizer [16] in the case of coverability
properties.

To get a better sense of this feature, we give the actual outputs computed with
SMPT on the two nets of Fig. 1. The invariant for the net Parity is P1 = (p0 > 1),
and for PGCD it is P2 = (p1 6 p2)

The certificate for property P1 on Parity is C1 ≡ (p0 > 1) ∧ ∀k.((p0 <
2 k + 2) ∨ (p0 > 2 k + 3)), which is equivalent to (p0 > 1) ∧ (∀k > 1).(p0 6= 2.k),
meaning the marking of p0 is odd. This invariant would be different if we changed
the initial marking to an even number.

[PDR] Certificate of invariance

# (not (p0 < 1))

# (forall (k1) ((p0 < (2 + (k1 * 2))) or (p0 + (-2 * (k1 + 1))) >= 1))

The certificate for property P2 on PGCD is C2 ≡ (p1 6 p2) ∧ ∀k.((p0 <
k+ 3)∨ (p2 − p1 > k + 1)) and may seem quite inscrutable. It happens actually
that the saturation “learned” the invariant p0 + p1 = p2 + 2 and was able to use
this information to strengthen property P2 into an inductive invariant.

[PDR] Certificate of invariance

# (not (p1 > p2))

# (forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))

Evaluation on Performance. Since it is not sufficient to use only a small
number of hand-picked examples to check the performance of a tool, we also
provide results obtained on a set of 30 problems (a net together with an invariant)
that are borrowed from test cases used by the tool Sara [32,33] and a similar
software, called Reach, that is part of the Tina toolbox [5]. Most of these
problems can be easily answered, but are interesting to test our reliability on a
relatively even-handed benchmark.

The experiments were performed with the same conditions as previously. We
display our results in the chart of Fig. 3, which gives the number of feasible
problems, for each tool, when we change the timeout value. We observe that
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Fig. 3. Minimal timeout to compute a given number of queries.

our performances are on par with Tapaal, which is the fastest among our three
reference tools on this benchmark.

Our tool is actually quite mature. In particular, a preliminary version of
SMPT [1] (without many of the improvements described in this work) partic-
ipated in the 2021 edition of the MCC, where we ranked fourth, out of five
competitors, and achieved a reliability in excess of 99.9%. Even if it was with
a previous version of our tool, there are still lessons to be learned from these
results. In particular, it can inform us on the behavior of SMPT on a very
large and diverse benchmark of bounded nets, with a majority of reachability
properties that are not invariants.

We can compare our results with those of LoLA, that fared consistently well
in the reachability category of the MCC. LoLA is geared towards model checking
of finite state spaces, but it also implements semi-decision procedures for the
unbounded case. Out of 45 152 reachability queries at the MCC in 2021 (one
instance of a net with one formula), LoLA was able to solve 85% of them (38 175
instances) and SMPT only 52% (23 375 instances); it means approximately ×1.6
more instances solved using LoLA than using SMPT. Most of the instances
solved with SMPT have also been solved by LoLA; but still 1 631 instances are
computed only with our tool, meaning we potentially increase the number of
computed queries by 4%. This is quite an honorable result for SMPT, especially
when we consider the fact that we use a single technique, with only a limited
number of optimizations.

5 Conclusion and Related Works

One of the most important results in concurrency theory is the decidability of
reachability for Petri nets or, equivalently, for Vector Addition Systems with
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States (VASS) [25]. Even if this result is based on a constructive proof, and
its “construction” streamlined over time [26], the classical Kosaraju-Lambert-
Mayr-Sacerdote-Tenney approach does not lead to a workable algorithm. It is
in fact a feat that this algorithm has been implemented at all, see e.g. the tool
KReach [15]. While the (very high) complexity of the problem means that no
single algorithm could work efficiently on all inputs, it does not prevent the
existence of methods that work well on some classes of problems. For example,
several algorithms are tailored for the discovery of counter-examples. We mention
the tool FastForward [7] in our experiments, that explicitly targets the case
of unbounded nets.

We propose a method that works as well on bounded as on unbounded ones;
that behaves well when the invariant is true; and that works with “genuine”
reachability properties, and not only with coverability. But there is of course no
panacea. Our approach relies on the use of linear predicates, which are incremen-
tally strengthened until we find an invariant based on: the transition relation of
the net; the property we want to prove (it is “property-directed”); and constraints
on the initial states. This is in line with a property proved by Leroux [26], which
states that when a final configuration is not reachable then “there exist check-
able certificates of non-reachability in the Presburger arithmetic.” Our extension
of PDR provides a constructive method for computing such certificates, when
it terminates. For our future works, we would like to study more precisely the
completeness of our approach and/or its limits.

This is not something new. There are many tools that rely on the use of in-
teger programming techniques to check reachability properties. We can mention
the tool Sara [33], that is now integrated inside LoLA and can answer reach-
ability problems on unbounded nets; or libraries like Fast [4], designed for the
analysis of systems manipulating unbounded integer variables. An advantage of
our method is that we proceed in a lazy way. We never explicitly compute the
structural invariants of a net, never switch between a Presburger formula and
its representation as a semilinear set (useful when one wants to compute the
“Kleene closure” of a linear constraint), . . . and instead let a SMT solver work
its magic.

We can also mention previous works on adapting PDR/IC3 to Petri nets.
A first implementation of SMPT was presented in [1], where we focused on the
integration of structural reductions with PDR. This work did not use our abstrac-
tion methods based on hurdles and saturation, which are new. We can find other
related works, such as [16,23,24]. Nonetheless they all focus on coverability prop-
erties. Coverability is not only a subclass of the general reachability problem, it
has a far simpler theoretical complexity (EXPSPACE vs NONELEMENTARY).
It is also not expressive enough for checking the absence of deadlocks or for
complex invariants, for instance involving a comparison between the marking
of two places, such as p < q. The idea we advocate is that approaches based
on the generalization of markings are not enough. This is why we believe that
abstractions (G2) and (G3) defined in Lemma 2 are noteworthy.
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We can also compare our approach with tools oriented to the verification of
bounded Petri nets; since many of them integrate methods and semi-decision
procedures that can work in the unbounded case. The best performing tools in
this category are based on a portfolio approach and mix different methods. We
compared ourselves with three tools: ITS-Tools [30], Tapaal [14] and LoLA

[34], that have in common to be the top trio in the Model Checking Contest [3].
(And can therefore accept a common syntax to describe nets and properties.)
Our main contribution in this context, and one of our most complex results, is
to provide a new benchmark of nets and properties that can be used to evaluate
future reachability algorithms “for expressiveness”.

The methods closest to ours in these portfolios are Bounded Model Check-
ing and k-induction [28], which are also based on the use of SMT solvers.
We can mention the case of ITS-Tools [31], that can build a symbolic over-
approximation of the state space, represented as set of constraints. This ap-
proximation is enough when it is included in the invariant that we check, but
inconclusive otherwise. A subtle and important difference between PDR and
these methods is that PDR needs only 2n variables (the p and p

′), whereas we
need n fresh variables at each new iteration of k-induction (so kn variables in
total). This contributes to the good performances of PDR since the complexity
of the SMT problems are in part relative to the number of variables involved.
Another example of over-approximation is the use of the so-called “state equation
method” [27], that can strengthen the computations of inductive invariants by
adding extra constraints, such as place invariants [29], siphons and traps [16,17],
causality constraints, etc. We plan to exploit similar constraints in SMPT to
better refine our invariants.

To conclude, our experiments confirm what we already knew: we always ben-
efit from using a more diverse set of techniques, and are still in need of new tech-
niques, able to handle new classes of problems. For instance, we can attribute the
good results of Tapaal, in our experiments, to their implementation of a Trace
Abstraction Refinement (TAR) techniques, guided by counter-examples [10]. The
same can be said with LoLA, that also uses a CEGAR-like method [33]. We be-
lieve that our approach could be a useful addition to these techniques.
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