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Abstract. Runtime verification (RV) enables monitoring systems at
runtime, to detect property violations early and limit their potential
consequences. This paper presents an end-to-end framework to capture
requirements in structured natural language and generate monitors that
capture their semantics faithfully. We leverage NASA’s Formal Require-
ment Elicitation Tool (fret), and the RV system Copilot. We extend
fret with mechanisms to capture additional information needed to gener-
ate monitors, and introduce Ogma, a new tool to bridge the gap between
fret and Copilot. With this framework, users can write requirements
in an intuitive format and obtain real-time C monitors suitable for use in
embedded systems. Our toolchain is available as open source.

1 Introduction

Safety-critical systems, such as aircraft, automobiles, and power systems, where
failure can result in injury or death of a human [23], must undergo extensive
assurance. The verification process must ensure that the system satisfies its
requirements under realistic operating conditions and that there is no unintended
behavior. Verification rests on possessing a precise statement of requirements,
arguably one of the most difficult tasks in engineering reliable software.

Runtime verification (RV) [21, 19, 5] has the potential to enable the safe
operation of complex safety-critical systems. RV monitors can be used to detect
and respond to property violations during missions, as well as to verify implemen-
tations and simulations at design time. For monitors to be effective, they must
faithfully reflect the mission requirements, which is difficult for non-trivial sys-
tems because correctness properties must be expressed in a precise mathematical
formalism while requirements are generally written in natural language.

The focus of this paper is to provide an end-to-end framework that takes
as input requirements and other necessary data and provides mechanisms to
1) help the user deeply understand the semantics of these requirements, 2) au-
tomatically generate formalizations and 3) produce RV monitors that faithfully
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Fig. 1: Step-by-step workflow

capture the semantics of the requirements. We leverage NASA’s Formal Re-
quirement Elicitation Tool (fret) [17, 18] and the runtime monitoring system
Copilot [29, 36, 35]. fret allows users to express and understand requirements
through its intuitive structured natural language (named fretish) and elicitation
mechanisms, and generates formalizations in temporal logic. Copilot allows
users to specify monitors and compile them to hard real-time C code.

The contribution of this paper is the tight integration of the fret-Copilot
tools to support the automated synthesis of executable RV monitors directly
from requirement specifications. In particular, we present:
– A new tool, named Ogma, that receives requirement formalizations and

variable data from fret and compiles these into Copilot monitors.
– An extension of the fret analysis portal to support the generation and

export of specifications that can be directly digested by Ogma.
– Preliminary experimental results that evaluate the proposed workflow.

All tools needed by our workflow are available as open source [2, 1, 4].

Related Work. A number of runtime verification languages and systems have
been applied in resource-constrained environments [39, 13, 6, 7, 37, 28]. In
contrast to our work, these systems do not provide a direct translation from
natural language. Several tools [25, 14, 16, 24, 8] formalize natural-language
like requirements, but not for the purpose of generating runtime monitors. The
STIMULUS tool [22] allows users to express requirements in an extensible,
natural-like language that is syntactic sugar for hierarchical state machines.
The machines then act as monitors that can be used to validate requirements
during the design and testing phases, but are not intended to be used at runtime.
FLEA [10] is a formal language for expressing requirements that compiles to
runtime monitors in a garbage collected language, making it harder to use in
embedded systems; in contrast, our approach generates hard real-time code.

2 Step-by-step Framework Workflow

To integrate fret and Copilot, we extended the fret analysis portal and
created the Ogma tool. Figure 1 shows the step-by-step workflow of the complete
framework - dashed lines represent the newly added steps (2, 3, and 4). Once
requirements are written in fretish, fret helps users understand and refine
their requirements through various explanations and simulation (step 0). Next,
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NL: “While flying, if the airspeed is below 100 m/s, the autopilot shall increase
the airspeed to at least 100 m/s within 10 seconds.”

FRETish: in flight mode if airspeed < 100 the aircraft shall within

10 seconds satisfy (airspeed >= 100)

pmLTL: H (Lin flight→(Y (((O[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) |

Fin flight)) & (!(airspeed ≥ 100)))) → (O[<10](Fin flight | (airspeed ≥ 100)))) S

(((O[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin flight)) & (!(airspeed ≥
100)))) → (O[<10](Fin flight | (airspeed ≥ 100)))) & Fin flight)))) & ((!Lin flight)

S ((!Lin flight) & Fin flight)) → (((O[=10](((airspeed < 100) & ((Y (!(airspeed <

100))) | Fin flight)) & (!(airspeed ≥ 100)))) → (O[<10](Fin flight | (airspeed ≥
100)))) S (((O[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin flight)) &

(!(airspeed ≥ 100)))) → (O[<10](Fin flight | (airspeed ≥ 100)))) & Fin flight)),

where Fin flight (First timepoint in flight mode) is flight & (FTP | Y !flight), Lin flight

(Last timepoint in flight mode) is !flight & Y flight, FTP (First Time Point) is ! Y true.

Fig. 2: Running example in Natural Language (NL), fretish, and pmLTL forms.

fret automatically translates requirements (step 1) into pure Past-time Metric
Linear Temporal Logic (pmLTL) formulas. Next, information about the variables
referenced in the requirements must be provided by the user (step 2). The
formulas, as well as the provided variables’ data, are then combined to generate
the Component Specification (step 3). Based on this specification, Ogma creates
a complete Copilot monitor specification (step 4). Copilot then generates
the C Monitor (step 5), which is given along with other C code (step 6) to a C
Compiler for the generation (step 7) of the final object code.

Running Example. The next sections illustrate each workflow step using a
flight-critical system requirement: airplanes should always avoid stalling (a stall
is a sudden loss of lift, which may lead to a loss of control). To avoid stalls, they
should fly above a certain speed, known as stall speed (as well as stay below a
critical angle of attack). Our running requirement example is captured in natural
language in Figure 2. For the purposes of this example, we consider the airspeed
threshold to be 100 m/s and the correction time to be 10 seconds.

3 FRET Steps

Next we discuss fret, the requirements tool that constitutes our frontend.

Step 0: fretish and semantic nuances. A fretish requirement (see running
example in Figure 2) contains up to six fields: scope, condition, component*,
shall*, timing, and response*. Fields marked with * are mandatory.

component specifies the component that the requirement refers to (e.g., air-
craft). shall expresses that the component’s behavior must conform to the
requirement. response is of the form satisfy R, where R is a Boolean condition
(e.g., satisfy airspeed ≥ 100). scope specifies the period when the requirement
holds during the execution of the system, e.g., when “in flight mode”. condition
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is a Boolean expression that further constrains when the response shall occur
(e.g., the requirement becomes relevant only upon airspeed ≤ 100 becoming true).
timing specifies when the response must occur (e.g., within 10 seconds).

Fig. 3: fret explanations

Getting a temporal require-
ment right is usually a tricky task
since such requirements are of-
ten riddled with semantic sub-
tleties. To help the user, fret
provides a simulator and seman-
tic explanations [17]. For exam-
ple, the diagram in Figure 3 ex-
plains that the requirement is
only relevant within the grayed
box M (while in flight mode). TC
represents the triggering condi-
tion (airspeed < 100) and the
orange band, with a duration of n=10 seconds, states that the response
(airspeed >= 100) is required to hold at least once within the 10 sec-
onds duration, assuming that flight mode holds for at least 10 seconds.

Fig. 4: fret variable editor

Step 1: fretish to pmLTL. For
each fretish requirement, fret
generates formulas in a variety of
formalisms. For the Copilot in-
tegration, we use the generated
pmLTL formulas (Figure 2) Clearly,
manually writing such formulas
can be quite error-prone, while
the fret formalization process has
been extensively tested through its
formalization verifier [17].

Steps 2 & 3: Variables data
and Component Specification.
We extended fret’s analysis portal [3] to capture the information needed to
generate Component Specifications for Ogma. To generate a specification, the
user must indicate the type (i.e., input, output, internal) and data type (integer,
Boolean, double, etc) of each variable (Figure 4).Internal variables represent ex-
pressions of input and output variables; if the same expression is used in multiple
requirements, an internal variable can be used to substitute it and simplify the
requirements. The user must assign an expression to each internal variable. In
our example, the flight internal variable is defined by the expression altitude

> 0.0, where altitude is an input variable. Internal variable assignments can
be defined in Lustre [20] or Copilot [29]. Integrated Lustre and Copilot parsers
identify parsing errors and return feedback (Figure 4). Once steps 1 and 2 are
completed, fret generates a Component Specification, which contains all re-
quirements in pmLTL and Lustre code, as well as variable data that belong to
the same system component.
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4 Ogma Steps

Ogma is a command-line tool to produce monitoring applications. Ogma gener-
ates monitors in Copilot, and also supports integrating them into larger systems,
such as applications built with NASA’s core Flight System (cFS) [40].

Step 4: Copilot Monitors. Ogma provides a command fret-component-spec

to process Component Specifications. The command traverses the Abstract Syn-
tax Tree of the Component Specification, and converts each tree node into its
Copilot counterpart. Input and output variables in fret become extern streams
in Copilot, or time-varying sources of information needed by the monitors:

airspeed :: Stream Double

airspeed = extern "airspeed" Nothing

Internal variables are also mapped to streams. Each requirement’s pmLTL formula
is translated into a Boolean stream, paired with a C handler triggered when
the requirement is violated. In the example below, the property we monitor is
associated with a handler, handlerpropAvoidStall, which must be implemented
separately in C by the user to determine how to address property violations:

propAvoidStall :: Stream Bool

propAvoidStall = ((PTLTL.alwaysBeen ((((not (flight)) && ... )))))

spec = trigger "handlerpropAvoidStall" (not propAvoidStall) []

5 Copilot Steps

Copilot is a stream-based runtime monitoring language. Copilot streams may
contain data of different types. At the top level, specifications consist of pairs of
Boolean streams, together with a C handler to be called when the current sample
of a stream becomes true. For a detailed introduction to Copilot, see [29].

Step 5: C Monitors. Ogma generates self-contained Copilot monitoring
specifications, which can be further compiled into C99 by just compiling and
running the Copilot specifications with a Haskell compiler. This process produces
two files: a C header and a C implementation.

Step 6: Larger Applications. The C files generated by Copilot are designed
to be integrated into larger applications. They provide three connection end-
points: extern variables, a step function, and handler functions, which users
implement to handle property violations. The code generated has no dynamic
memory allocation, loops or recursive calls, it executes in predictable memory and
time. For our running example, the header file generated by Copilot declares:

extern bool flight; extern float airspeed;

void handlerpropAvoidStall(void); void step(void);

Commonly, the calling application will poll sensors, write their values to
global variables, call the step function, and implement handlers that log property
violations or execute corrective actions. Users are responsible for compiling and
linking the Copilot code together with their application (step 7).

We also used the running requirement in this paper to monitor a flight in
the simulator X-Plane. We wrote an X-Plane plugin to show the state of the C
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(a) Cruising (b) Stall (c) Recovery

Fig. 5: Demonstration of Copilot monitor running as X-Plane plugin.

monitor and some additional information on the screen (Fig. 5a). To test the code,
we brought an aircraft to a stall by increasing the angle of attack, which also
lowered the airspeed (Fig. 5b). After 10 seconds below the specified threshold, the
monitor became active, remaining on after executing a stall recovery (Fig. 5c).

6 Preliminary Results

We report on experiments with monitors generated from the publicly available
Lockheed Martin Cyber-Physical System (LMCPS) challenge problems [11, 12],
which are a set of industrial Simulink model benchmarks and natural language
requirements developed by domain experts. LMCPS requirements were previously
written in fretish [27, 26] by a subset of the authors and were analyzed against
the provided models using model checking.

In this paper, we reuse the fretish requirements to generate monitors
and compare our runtime verification results with the model checking results
of [26]. For each Simulink model we generated C code through the automatic
code generation feature of Matlab/Simulink. We then attached the generated C
monitors to the C code and used the property-based testing system QuickCheck [9]
to generate random streams of data, feed them to the system under observation,
and report if any of the monitors were activated, based on [30, 31, 34].

We experimented with the Finite State Machine (FSM) and the Control
Loop Regulators (REG) LMCPS challenges. For both challenges, our results
are consistent with the model checking results - QuickCheck found inputs that
activated the monitors, indicating that some requirements were not satisfied.
Moreover, it returned results within seconds in cases where model checkers timed
out. See [33] for details on the results and [32] for a reproducible artifact.

7 Conclusion

We described an end-to-end framework in which requirements written in struc-
tured natural language can be equivalently transformed into monitors and be
analyzed against C code. Our framework ensures that requirements and analysis
activities are fully aligned: C monitors are derived directly from requirements and
not handcrafted. The design of our toolchain facilitates extension with additional
front-ends (e.g., JKind Lustre [15]), and backends (e.g., R2U2 [38]). In the future,
we plan to explore more use cases, including some from real drone test flights.
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