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Abstract. Superoptimization is a compilation technique that searches
for the optimal sequence of instructions semantically equivalent to a given
(loop-free) initial sequence. With the advent of SMT solvers, it has been
successfully applied to LLVM code (to reduce the number of instructions)
and to Ethereum EVM bytecode (to reduce its gas consumption). Both
applications, when proven practical, have left out memory operations and
thus missed important optimization opportunities. A main challenge to
superoptimization today is handling memory operations while remaining
scalable. We present GASOLv2, a gas and bytes-size superoptimization
tool for Ethereum smart contracts, that leverages a previous Max-SMT
approach for only stack optimization to optimize also wrt. memory and
storage. GASOLv2 can be used to optimize the size in bytes, aligned with
the optimization criterion used by the Solidity compiler solc, and it can
also be used to optimize gas consumption. Our experiments on 12,378
blocks from 30 randomly selected real contracts achieve gains of 16.42% in
gas wrt. the previous version of the optimizer without memory handling,
and gains of 3.28% in bytes-size over code already optimized by solc.

1 Introduction and Related Work

Superoptimization is an automated technique for code optimization that was
proposed back in 1987 [20]. It aims at automatically finding the optimal (wrt.
the considered optimization criteria) instruction sequence —which is semanti-
cally equivalent— to a given sequence of loop-free instructions. It differs from
traditional optimization techniques in that it uses search rather than applying
pre-cooked transformations. However, as it requires exhaustive search in the
space of valid instruction sequences, it suffers from high computation demands
and it was considered impractical for many years. The first attempts of applying
superoptimization were within a GNU C compiler back in the nineties [15] and,
later, it has also been applied for an x86-64 assembly language [10,11].

There is a recent revival of superoptimization due to the availability of
SMT solvers which offer powerful techniques to handle enumerative search and
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to check semantic equivalence. The approaches to supercompilation based on
SMT can be roughly classified into two types: (1) Those that use an external
synthesis algorithm with pruning techniques, such as [9, 12, 17], and that invoke
the SMT solver to solve certain queries. This is the approach of the Souper
superoptimizer [22] that relies on the synthesis algorithm for loop-free programs
of Gulwani et al. [17]; (2) Those that directly produce an SMT encoding of the
problem and use the search engine of the solver. This is the approach of [18],
EBSO [21] and SYRUP [7]. Both types of approaches have been proven to be
practical on their own settings and optimization criteria: the analysis of blocks
does not reach the timeout of 10 sec in 90% of the cases [7] in SYRUP, and
Souper optimized three million lines of C++ in 88 minutes [22]. The optimizations
achieved vary for the considered criteria, Souper reported around 4.4% reduction
in number of instructions, and SYRUP reported 0.58% in the global Ethereum
gas usage. Scalability has been partly achieved because challenging features
have been left out of the encoding: memory operations have been excluded both
in Souper and SYRUP. While EBSO included a basic encoding for memory
operations, its practicality was not proven: EBSO times out in 82% of the blocks
and achieves optimization in less than 1% of all analyzed blocks. Leaving out
memory operations dismisses optimization opportunities of two kinds: (a) as it
works on smaller blocks of instructions (since the optimizer stops when finding
a memory operation), the stack optimization is more limited, and (b) besides
it misses possible optimizations on the memory operations themselves (e.g.,
eliminating unnecessary accesses).

The Ethereum Virtual Machine (EVM) has two areas where it can store items
(besides the stack): (1) the storage is where all contract state variables reside, every
contract has its own storage and it is persistent between external function calls
(transactions) and has a higher gas cost to use; (2) the memory is used to hold
temporary values, and it is erased between transactions and thus is cheaper to use.
For conciseness, we often use “memory” to include both storage and memory, as
their treatment for optimization is identical except for their associated costs. Our
big challenge is to be able to handle memory operations while remaining practical,
i.e., not reaching the timeout in the optimization of the vast majority of the
blocks. This is achieved by leveraging SYRUP’s two-staged method [7] to handle
memory: (i) the first stage is devoted to synthesize a stack specification from the
bytecode and apply simplification rules to it, and (ii) in a second stage a Max-
SMT solver is used to perform the search for the optimal solution. When lifting
such two-staged method to handle memory operations, we make two important
extensions: in stage (i), we now synthesize a stack and memory specification
from the bytecode on which we detect dependencies among memory operations
and possibly remove redundant operations; (ii) this dependency information is
included in our second stage as part of the encoding so that the SMT solver
only needs to consider the dependence among such memory instructions when
performing the search. Our two-staged approach allows isolating the dependency
analysis process from the search itself, reducing the effort the SMT solver does
in order to find the optimal sequence. The approach of Bansal and Aiken [10]
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to handle memory operations differs from ours on the superoptimization scope
and the search process itself. Their tool considers multiple target sequences from
a training set simultaneously and generates a database of (possibly) millions of
optimizations. They enumerate all well-formed instructions sequences up to a
certain size, including memory operations, and test the equivalence among them
via a hash function. Our tool considers each sequence of instructions to optimize
independently and the search is done via the search engine of an SMT solver.

GASOLv2 can be considered a successor of SYRUP [7], as it adopts its two-
staged process and reuses part of its components, but it incorporates three
fundamental extensions, and a new experimental evaluation, that constitute
the main contributions of this paper: (1) GASOLv2 starts from the assembly
json [1] generated by the solc compiler, rather than being used as a standalone
optimization tool as SYRUP. This is fundamental to achieve a wide use of the tool
since it is already linked to one of the most used compilers for coding Ethereum
smart contracts. (2) It optimizes memory and storage operations using on one
hand rule simplifications at the level of a specification synthesized from the
bytecode, and on the other hand, a new SMT encoding which enables achieving
a great balance between the accuracy and the overhead of the process. (3) While
SYRUP is a tool that only optimizes the gas consumption of the bytecode, we
have generalized some of its components to enable other optimization criteria.
Currently we have included as well size in bytes, but other criteria can be
easily incorporated now to the superoptimizer. (4) Besides we have performed a
thorough experimental evaluation of our tool and have compared the results wrt.
those obtained by SYRUP. The main conclusion of our evaluation is that handling
memory operations in superoptimization pays off: it can achieve gains of 16.42%
in gas over SYRUP, and reductions of 0.1% in gas and 3.28% in size (on already
optimized code). If we assume that these savings are uniformly distributed, and
the gas data obtained from Etherscan is constant, the 0.1% gas saved wrt the
SYRUP [7] would amount nearly to 9.5 Million dollars in 2021.

GASOLv2 is part of the GASOL project [3], a GAS Optimization tooLkit for
Ethereum smart contracts. The initial GASOL tool (i.e., GASOLv1), presented
in [5], aimed at detecting gas-expensive patterns within program loops (using
resource analysis) and made a program transformation (which does not rely on
SMT solvers) at the source code level. Hence, it contains a global (inter-block)
optimization technique that is orthogonal to our superoptimizer, in which we
perform local (or intra-block) transformations on loop-free code, and besides we
work at bytecode rather than at source level. Both complementary techniques
will be integrated within the GASOL toolkit, hence their names. In what follows,
we drop v2 and use GASOL to refer to the tool presented in this paper.

2 The Architecture of GASOL

Figure 1 displays the architecture of GASOL, white components are borrowed
from other tools, while gray components correspond to the new developments of
this paper (either completely new, like DEP, or novel extensions for memory
handling of previous SYRUP’s implementations, like SPEC, SIMP and SMS).
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Fig. 1: Architecture of GASOLv2

The input to GASOL is a smart contract (either its source in Solidity or its
compiled EVM bytecode [23]), a selection of the optimization criteria (currently
we are supporting gas consumption and size in bytes), and system settings (this
includes compiler options for invoking the solc compiler and GASOL settings like
the timeout per block of instructions). The output of GASOL is an optimized
bytecode program and optionally a report with detailed information on the
optimizations achieved (e.g., number of blocks optimized, number of blocks
proven optimal, gas/size reduction gains, optimization time, among others).

The first component, labeled SOLC in the figure, invokes the Solidity compiler
solc to obtain the bytecode in their assembly json exchange format [1]. Working on
this exchange format has many advantages, one is that we can enable the optimizer
of solc [4] and start the superoptimization from an already optimized bytecode.
Besides, the format has been designed to be a usable common denominator
for EVM 1.0, EVM 1.5 and Ewasm. Hence, we argue it is a good source for
superoptimization as different target platforms will be able to use our tool
equally. The assembly json format provides the EVM bytecode of the smart
contract, metadata that relates it with the source Solidity code, and compilation
information such as the version used to generate the bytecode. The output yield
by GASOL can also be returned in assembly json format so that it can be used
by other tools working on this format in the future. From the assembly json,
the next component BLK partitions the bytecode given by solc into a set of
sequences of loop-free bytecode instructions, named blocks, which correspond to
the blocks of the CFG and also computes the size of the stack when entering each
block.3 We omit details of this step as it is standard in compiler construction
and, for the case of the EVM, has been already subject of other analysis and
optimization papers (see, e.g. [8, 14, 16] and their references).

The next component SPEC synthesizes a functional specification of the
operand stack and of the memory and storage (SMS for short) for each block of
bytecode instructions. This is done by symbolically executing the bytecodes in
the block to extract from them what the contents of the operand stack and of
the memory/storage are after executing them. The description of this component
is given in Sec. 3.1. Next, DEP establishes the dependencies among the memory
accesses from which a pre-order, that determines when a memory access needs

3 In EVM, it is possible to reach a block with different stack sizes, and all such sizes
can be statically computed. We will refer to the minimum or maximum when needed.
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(1) τ(MLOAD, < S,M,St >) := < [MLOAD(S[0])] + S[1 : n],M + [MLOAD(S[0])],St >
(2) τ(MSTORE, < S,M,St >) := < S[2 : n],M + [MSTORE(S[0],S[1])],St >
(3) τ(SLOAD, < S,M,St >) := < [SLOAD(S[0])] + S[1 : n],M,St+ [SLOAD(S[0])] >
(4) τ(SSTORE, < S,M,St >) := < S[2 : n],M,St+ [SSTORE(S[0],S[1])] >
(5) τ(SWAPX, < S,M,St >) := let temp = S[0] < S[0/X][X/temp],M,St >
(6) τ(POP, < S,M,St >) := < S[1 : n],M,St >

Fig. 2: SMS Synthesis by Symbolic execution

to be performed before another one, is generated. For instance, subsequent load
accesses, which are not interleaved by any store, do not have dependencies among
them, while they do have with subsequent write accesses to the same positions.
This phase is described in Secs. 3.2 (dependencies) and 3.3 (pre-order). In the
next component SIMP, we apply simplification rules on the SMS. We include
all stack simplification rules of SYRUP [7], as well as the additional rules we
have developed for memory/storage simplifications. For instance, successive write
accesses that overwrite the same memory position are simplified to a single one
provided the same memory location is not read by any other instruction between
them. The description of this component is given in Sec. 3.2. Finally, we generate
a Max-SMT encoding from the (simplified) SMS that incorporates the pre-order
established by the component DEP and from which the optimized bytecode is
obtained. The description of this component is given in Sec. 4.

3 Synthesis of Stack and Memory Specifications

This section describes the first stage of the optimization (components SPEC,
SIMP and DEP) that consists in synthesizing from a loop-free sequence of byte-
code instructions a simplified specification of the stack and of the memory/storage
(with the dependencies) that the execution of such bytecodes produces.

3.1 Initial Stack and Memory/Storage Specification

For each block, we synthesize its Stack and Memory Specification (SMS) by
symbolically executing the instructions in the sequence. Function τ in Fig. 2
defines the symbolic execution for the memory/storage operations (1-4) and
includes two representative stack opcodes (5-6). The first parameter of τ is a
bytecode instruction and the second one is the SMS data structure < S,M,St >
whose first element corresponds to the stack (S), the second one to the memory
(M), and the third one to the storage (St). The stack S is a list whose position
S[0] corresponds to the top of the stack. At the beginning of executing a block,
the stack contains the minimum number of elements needed to execute the block
represented by symbolic variables si, where si models the element at S[i]. The
resulting list M (St resp.) will contain the sequence of memory (storage resp.)
accesses executed by the block. By abuse of notation, we often treat lists as
sequences. Both M and St are empty before executing the block symbolically.
As an example, the symbolic execution of SSTORE removes the two top-most
elements from S, and adds the symbolic expression SSTORE(S[0],S[1]) to the
storage sequence. Similarly, SLOAD removes from the top of the stack the position
to be read, puts on the top of the stack the symbolic expression SLOAD(S[0]) that
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represents the value read from the storage position S[0], and adds the same
expression to the storage sequence St. As a result of applying τ to a sequence of
bytecodes, the SMS obtained provides a specification of the target stack after
executing the sequence in terms of the elements located in the stack before
executing the sequence and, the target memory/storage (given as a sequence of
accesses) after executing the sequence in terms of the input stack elements too.

Example 1. Consider the following bytecode that belongs to a real contract
(bytecodes 0 to 47 of Welfare [2]). Its assembly json yield by the SOLC component
contains 4524 bytecodes and after being partitioned by BLK we have 437 blocks
to optimize. We illustrate the superoptimization of this block that contains in
total 48 bytecodes from which 5 are the (underlined) memory/storage accesses:

1 PUSH1 80
2 PUSH1 40
3 MSTORE
4 PUSH1 64
5 PUSH1 1
6 PUSH1 14
7 PUSH2 100
8 EXP

9 DUP2
10 SLOAD
11 DUP2
12 PUSH2 FFFF
13 MUL
14 NOT
15 AND
16 SWAP1

17 DUP4
18 PUSH2 FFFF
19 AND
20 MUL
21 OR
22 SWAP1
23 SSTORE
24 POP

25 PUSH2 3E8
26 PUSH1 1
27 PUSH1 16
28 PUSH2 100
29 EXP
30 DUP2
31 SLOAD
32 DUP2

33 PUSH2 FFFF
34 MUL
35 NOT
36 AND
37 SWAP1
38 DUP4
39 PUSH2 FFFF
40 AND

41 MUL
42 OR
43 SWAP1
44 SSTORE
45 POP
46 CALLVALUE
47 DUP1
48 ISZERO

As BLK returns that the stack is empty when entering the block, we apply τ to
the initial state < [ ], [ ], [ ] > and produce the following SMS at the next selected
lines: L1 : τ(PUSH1 80, < [ ], [ ], [ ] >) =< [128], [ ], [ ] >

L2 : τ(PUSH1 40, < [128], [ ], [ ] >) =< [64, 128], [ ], [ ] >
L3 : τ(MSTORE, < [64, 128], [ ], [ ] >) =< [ ], [MSTORE(64,128)], [ ] >

Finally, we get that at L48 S = [ISZERO(CALLVALUE), CALLVALUE], M = [MSTORE(64,128)],
St = [SLOAD1(1), SSTORE(1,V1), SLOAD2(1), SSTORE(1,V2)] where V1 = OR(MUL(...)),
AND(NOT(..)), SLOAD1(1)) (omitting subexpressions) and V2 is another similar expression
involving arithmetic, binary operations and SLOAD2(1). Note that we use subscripts
to distinguish the SLOAD instructions by their position in St. The stack specification
contains a term that represents the result of the opcode CALLVALUE (executed at line 46,
L46 for short), and a term with the result of executing the opcode ISZERO on CALLVALUE,
stored on top of the stack. The memory only contains one element that is obtained by
symbolically executing the three first instructions. The PUSH instructions at L1 and L2
introduce the values 64 and 128 on the stack, and the MSTORE executed at L3 introduces
in M the symbolic expression MSTORE(40,80). Similarly, St contains the sequence of
symbolic expressions that represent the storage instructions executed in the block at
L10, L23, L31 and L44 respectively. The expressions corresponding to V1 and V2 are also
obtained by applying function τ to the corresponding state. These stack expressions
can be simplified in the next step using the rules in [7].

We note that the EVM memory is byte addressable (e.g., with instruction MSTORE8)
and two different memory accesses may overlap. For simplicity of the presentation,
we only consider the general case of word-addressable accesses, but the technique
extends easily to the byte addressable case. In what follows, we use LOAD to
abstract from the specific memory (MLOAD) and storage (SLOAD) bytecodes (and
the same for STORE), when they are treated in the same way.

3.2 Memory/Storage Simplifications

In order to define the simplifications, and to later indicate to the SMT solver
which memory instructions need to follow an order, we compute the conflicts
between the different load and store instructions within each sequence.
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Definition 1. Two memory accesses A and B conflict, denoted as conf(A,B) if:

(i) A is a store and B is a load and the positions they access might be the same;
(ii) A and B are both stores, the positions they modify might be the same, and

they store different values.

Note that in (ii) two store instructions that might operate on the same position
do not conflict if the values they store are equal, as we will reach the same
memory state regardless of the order in which the stores are executed. Note that
two load instructions are never in conflict as the memory state does not change
if we execute them in one order or another.

Given the SMS obtained in Sec. 3.1, we achieve simplifications by applying
the stack simplification rules of [7] and, besides, the following new memory
simplification rules based on Def. 1 to the M and S components (that achieve
optimizations of type (b) according to the classification mentioned in Sec. 1):

Definition 2 (memory simplifications). Let < S,M,St > be an SMS, we
can apply the following simplifications to any subsequence b1, . . . , bn in M or St:

i) if b1 =STORE(p, v) and bn =LOAD(p) and @bi =STORE with i ∈ {2, . . . , n−1} and
conf(b1,bi), we simplify it to b1, . . . , bn−1 and replace bn by v in the resulting
SMS.

ii) if b1 =STORE(p, v) and bn =STORE(p, w) and @bi =LOAD with i ∈ {2, . . . , n− 1}
conf(b1,bi), we simplify it to b2, . . . , bn.

iii) if b1 =LOAD(p) and bn =STORE(p,LOAD(p)) and @bi =STORE with i ∈ {2, . . . , n−
1} conf(b1,bi), we simplify it to b1, . . . , bn−1.

The simplifications can be applied in any order within M and St until the process
converges and the resulting sequence cannot be further simplified.

Intuitively, in (i), a load instruction from a position after a store instruction to
the same position is simplified in the stack to the stored value provided there
is no other store operation in between that might have changed the content
of this position. In (ii), two subsequent store instructions to the same position
are simplified to a single store if there is no load access on the same position
between them. In (iii), a store instruction that stores in a position the result of
the load in the same position can be removed, provided there is no other store in
between that might have changed the content of this position. Note that such
simplification rules can be applied to general-purpose compilers.

Example 2. In the SMS of Ex. 1, we have that conf(SLOAD1(1),SSTORE(1,V1)), conf
(SLOAD1(1),SSTORE(1,V2)), conf(SLOAD2(1),SSTORE(1,V1)), conf(SLOAD2(1),SSTORE(1,
V2)) and conf(SSTORE(1,V1,SSTORE(1,V2)) as all accesses operate on the same lo-
cation. With these conflicts, we can apply rule i) to SLOAD2(1), as the previous
SSTORE instruction has stored the value V1 at the same location and there are no
other storage instructions with conflict between them. Hence, we eliminate it
from St and replace it by V1 in the resulting SMS. After that, we are able to apply
rule ii) on the two SSTORE instructions as they store a value at the same position
without conflict loads in between. Then, we remove SSTORE(1,V1) from St. The
resulting SMS has the same S and M and St is now [SLOAD1(1), SSTORE(1,V2’)]
where V2’ is V2 replacing SLOAD2(1) by V1.
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3.3 Pre-Order for Memory and Uninterpreted Functions

Given the SMS and using the conflict definition above, we generate a pre-order,
as defined below, that indicates to the SMT solver the order between the memory
accesses that needs to be kept in order to obtain the same memory state as the
original one. Clearly, having more accurate conflict tests will result in weaker
pre-orders and hence a wider search space for the SMT solver. This in turn will
result in potentially larger optimization. Our implementation is highly parametric
on the conflict test DEP so that more accurate tests can be easily incorporated.

Definition 3. Let A and B be two memory accesses in a sequence S. We say
that B has to be executed after A in S, denoted as A @ B if:

i) (store-store) B is a store instruction and A is the closest store instruction
predecessor of B in S such that conf(A,B).

ii) (load-store) A is a load instruction and B is the closest store instruction
successor of A in S such that conf(B,A).

iii) (store-load) B is a load instruction and A is the closest store instruction
predecessor of B in S such that conf(A,B).

Let us observe that we do not compute the closure for the dependencies at this
stage, as the SMT solver will infer them, as explained in Sec. 4.2.

Example 3. From the simplified SMS of Ex. 2, we get the following load-store
dependency, SLOAD1(1) @ SSTORE(1,V2’), while the access MSTORE(64,128) has no
dependencies as it is the unique memory operation.

Importantly, the notion of pre-order between memory instructions can also be
naturally extended to all other operations that occur in the specification of the
target stack. These operations are handled as uninterpreted functions and have to
be called in the right order to build the result that is required in the target stack.
Therefore, we propose a novel implementation (both in SYRUP and GASOL) that
extends the pre-order @ to uninterpreted functions by adding A @ B also when:

iv) (uninterpreted-functions) A and B are uninterpreted functions that occur in
the target stack as B(. . . , A(. . .), . . .).

While in the case of uninterpreted functions the pre-order is used for improving
performance, for memory operations the use of the pre-order is mandatory for
soundness, since it is what ensures that the obtained block after optimization has
the same final state (in the stack, memory and storage) than the original block.

3.4 Bounding the Operations Position

As we will show in the next section, a solution to our SMT encoding assigns a
position in the final instruction list to each operation such that the target stack
is obtained. A key element for the performance of the encoding we propose in
this paper is based on extracting from the instruction pre-order @, upper and
lower bounds to the position the operations can take in the instruction list. The
lower bound for a given function is obtained by inspecting the subterm where it
occurs in the target stack and analyzing its operands to detect the earliest point
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in which the result of all them can be placed in the stack, taking into account
that shared subcomputations can be obtained using a DUP opcode. On the other
hand, the upper bound for a function is obtained by inspecting the position in
the target stack they occur and analyzing the operations that use the term that
is headed by this function, to obtain the latest point in which this term could be
computed. From this analysis, we obtain both the upper UB(ι) and lower LB(ι)
bounds for every uninterpreted (which includes the load) and store operation ι,
which are extensively used in the encoding provided in the next section.

4 Max-SMT Superoptimization

This section describes the second stage of the optimization process (named Max
SMT in Fig. 1) that consists in producing, from the SMS and the dependencies,
a Max-SMT encoding such that any valid model corresponds to a bytecode
equivalent to the initial one and optimized for the selected criterion.

4.1 Stack Representation in the SMT Encoding

The stack representation is the same as in [7]: the stack can hold non-negative
integer constants in the range {0, . . . , 2256−1}, matching the 256-bit words in the
EVM; initial stack variables s0, . . . , sk−1, represent the initial (unknown) elements
of the stack; and fresh variables sk, . . . , sv abstract each different subterm (built
from opcodes and the initial stack variables) that appears in the SMS. A stack
variable of the form si is represented in the encoding as the integer constant
2256 + i, so that all stack elements in the model are integer values. To represent
the contents of the stack after applying a sequence of instructions, a bound on
the number of operations bo and the size of the stack bs must be given. These
numbers are statically computed by considering the size of the initial block and
the maximum number of stack elements involved. Then, propositional variables
ui,j , with i ∈ {0, . . . , bs−1} and j ∈ {0, . . . , bo}, are used to denote whether there
exists an element at position i in the stack after executing the first j operations,
where the element u0,j refers to the topmost element of the stack. Quantified
variables xi,j ∈ Z are introduced to identify the word at position i after applying
j operations, following the same format as ui,j .

An instruction ι ∈ I in the encoding can be either a basic stack opcode
(POP, SWAPk, . . .), a distinct expression that appears in the SMS or the extra
instruction NOP that represents the possibility no opcode has been applied. A
mapping θ is introduced to link every instruction in I to a non-negative integer
in {0, . . . ,mι}, where mι + 1 = |I|. This way, we can introduce the existentially
quantified variables tj , with tj ∈ {0, . . . ,mι} and j ∈ {0, . . . , bo − 1}, to denote
that the instruction ι is applied at step j when tj = θ(ι). There is a special case
to be considered when identifying the instructions from an SMS: each expression
containing a single occurrence of an opcode in Wbase (see [23]) is considered as an
independent expression with a different ι. Opcodes in Wbase consume no operand
from top of the stack and have lower gas cost and equal byte count as DUPk, so we
can safely assume that in an optimal block such expressions are never duplicated.
For efficiency reasons, we also apply the reciprocal: any other expression is forced
to appear exactly once in our solution, as our experiments show that duplicating
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the expression is always better than computing it more than once. However, note
that this may not hold, in general, when the cost of the expression is low or the
size of the operating stack is high, and hence, although is highly unlikely, we may
lose some better solutions. From this assumption, we have that every ι we have
introduced must appear exactly once in every model, which simplifies greatly
both the pre-order encoding and the gas model used. The following example
illustrates how the SMS is processed and the relevance of considering Wbase:

Example 4. Consider a modified version of Ex. 1, in which S = [ISZERO(CALLVALUE),
CALLVALUE] but M,St are both empty. b0, bs are bounded to 3 and 2 resp., as
three instructions are enough to compute the given SMS and it reaches a stack
size of two elements. Each application of CALLVALUE is considered independently,
as CALLVALUE ∈ Wbase . Variables s0 := 2256, s1 := 2256 + 1, s2 := 2256 + 2 are
introduced to represent the stack variable obtained from CALLVALUE0, CALLVALUE1
and ISZERO(CALLVALUE1). GASOL creates the following θ map:

θ := {PUSH : 0, POP : 1, NOP : 2, DUP1 : 3, SWAP1 : 4,

CALLVALUE0 : 5, CALLVALUE1 : 6, ISZERO(CALLVALUE1) : 7}
The optimal sequence is CALLVALUE CALLVALUE ISZERO, which consumes 7 units of
gas. It improves the cost of L46-L48, which consumes 8 due to the use of DUP1.

The set of instructions I can be split in four subsets IS ] IU ] IC ] ISt:

– IS contains the basic stack operations: PUSH, POP, NOP, DUPk, and SWAPk, with
k ∈ {1, . . . ,min(bs − 1, 16)}. DUPk and SWAPk are restricted by bs because
they cannot deal with elements that go beyond the maximum stack size.

– IU contains the non-commutative uninterpreted functions that appear in the
SMS. Its subset IL ⊆ IU denotes the set of load instructions.

– IC contains the commutative uninterpreted functions in the SMS.

– ISt contains the write operations in memory structures.

The encoding for subsets IS ] IU ] IC was already considered in [7], whereas
ISt was left out. Instead, blocks were split when an opcode belonging to ISt was
found. The inclusion of ISt instructions in the model leads to more savings in
gas, as more optimizations can be applied in larger blocks (those correspond to
optimizations of type (a) in the classification given in Sec. 1).

For each ι ∈ I and each possible position j in the sequence of instructions, we
add a constraint to represent the impact of this combination on the stack. These
constraints match the semantics of τ when projecting onto the stack component,
so that we encode the elements of the stack after executing ι in terms of the
ones before its execution. They follow the structure tj = θ(ι) ⇒ Cι(j), where
Cι(j) expresses the changes in the stack after applying ι. The constraints for
IS ] IU ] IC are detailed in [7], our extension in this section is only to include
the constraints to reflect the impact of storage operations on the stack. For this
purpose, we use an auxiliary predicate Move (already used in [7]) to denote that
all elements in the stack are moved two positions to the right in the resulting
stack state. Thus, we have the following constraint for each position j and each
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ι ∈ ISt, where o0 and o1 denote the position and value stored:

CSt(j, ι) := tj = θ(ι)⇒ u0,j ∧ u1,j ∧ x0,j = o0 ∧ x1,j = o1 ∧
Move(j, 2, bs − 1,−2) ∧ ¬ubs−1,j+1 ∧ ¬ubs−2,j+1

Finally, we express the contents of the stack before executing the instructions
of the block (initial stack) and after having executed them (target stack) by
assigning the corresponding values (whether constants or stack variables) to
ui,0, xi,0 and to ui,bo , xi,bo respectively. The overall SMT encoding for the stack
representation is denoted as CSFS and it is encoded using QF LIA logic.

Example 5. Following Ex. 4, GASOL generates the constraint shown below to
update the contents of the stack after applying ι = ISZERO(CALLVALUE1) at step 2:

Cι(2, ι) := t2 = 7⇒ u0,2 ∧ x0,2 = 2256 + 1 ∧
u0,3 ∧ x0,3 = 2256 + 2 ∧ u1,3 = u1,2 ∧ x1,3 = x1,2

4.2 Encoding the Pre-order Relation

Once the stack representation has been formalized, we also need to consider the
conflicts that appear among memory operations as part of our encoding, as well as
the dependencies between uninterpreted functions. All this is made by encoding
the pre-order relation given in Sec. 3.3. We consider each pair of instructions ι, ι′

s.t. ι @ ι′. We aim to prevent conflicting operations from appearing in the wrong
order in a model, by imposing that ι cannot occur in the assignment after ι′.

Our proposed approach consists in introducing a variable lθ(ι) for every
instruction ι ∈ IC ∪ IU ∪ ISt := Ilord to track the position it appears in a
sequence. This information is useful for specifying multiple conditions in the
encoding that are difficult to reflect otherwise. Firstly, these variables implicitly
enforce that ι must be tied to exactly one position, and thus, included in every
sequence exactly once. Besides, we can narrow the positions in which ι can appear
by using LB(ι), UB(ι) bounds. Finally, as QF LIA supports ordering among
variables, the order between conflicting instructions can be encoded as a plain
comparison between their positions. Hence, the following constraints are derived:

LP (ι) := LB(ι) ≤ lθ(ι) ≤ UB(ι) ∧
∧

LB(ι)≤j≤ UB(ι)

(lθ(ι) = j)⇔ (tj = θ(ι))

Llord(ι, ι
′) := lθ(ι) < lθ(ι′) where ι @ ι′

Regarding memory operations, there is no need to consider special cases. The
whole encoding can be expressed as follows:

CSMS := CSFS ∧
∧

ι∈Ilord

LP (ι) ∧
∧
ι@ι′

Llord(ι, ι
′)

4.3 Optimization using Max-SMT

As in [7], we formulate the problem of finding an optimal block as a partial
weighted Max-SMT problem. In this section we show that the same encoding
for gas optimization can be used in the presence of memory operations and
that other optimization criterion, like bytes-size, can be included as well in
our framework. Basically, in our Max-SMT problem, the hard constraints that
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must be satisfied by every model are those constraints for computing the SMS;
and the soft constraints are used to find the optimal solution: a set of pairs
{[C1, ω1], . . . , [Cn, ωn]}, where Ci denotes an SMT clause and ωi its weight. The
Max-SMT solver minimizes the weights of the falsified soft constraints. The
weights of soft constraints presented in [7] match the gas spent for the sequence of
instructions, thus ensuring an optimal model corresponds to a block that spends
the least possible amount of gas. This gas encoding is also included in GASOL,
but instructions in Ilord are removed from the soft constraints. Hard constraints
already assert the exact number of times these instructions must appear in a
sequence and therefore, they only add unnecessary extra cost that may harm the
search of an optimality proof.

However, gas consumption is not the only relevant objective to consider when
optimizing the code. When a contract is deployed, a fee of 200 units of gas must
be paid for each non-zero byte of the EVM binary code. The desired trade-off
between the initial deployment cost and invoking transactions can be specified in
solc by setting the expected number of contract runs. In some cases, this leads to
solc intentionally not fully replacing expressions that have a constant result by
the value they represent if this constant is a large number, since the needed PUSH

instructions will need many more non-zero bytes and hence will increment the
deployment gas cost. For instance, if we want to have 2256 − 1 on the top of the
stack we can either push a zero and perform the bitwise NOT operation, which
has gas cost 6 and non-zero bytes length 2 or push 2256 − 1 directly which has
gas cost 3 but non-zero bytes length 33.

When the bytes-size criterion is selected, we disable the application of the
simplification rules of [7] that increase the byte-size and, besides, propose the
next approach based on the bytes-size model for the Max-SMT encoding. This
model is fairly simple except for the handling of the PUSH related instructions,
denoted as IP in what follows. All instructions that are not in IP use exactly
one byte. Instead PUSHx instructions take one byte to specify the opcode itself,
and x bytes to include the pushed value. A first attempt to encode the weight
of the PUSHx we tried was based on precisely describing the size in bytes based
on the corresponding 32 options that x can take in terms of number of bytes.
(recall that in EVM we have 256-bit words). This encoding is precise, but did
not work in practice. An alternative, much simpler encoding, is based on the
observation that numerical values can only appear in a model because at least
once the corresponding PUSHx instruction is made. Later on, this value can be
repeated using DUP, which has a minimal cost wrt. size of bytes, but if the
block is large, some SWAP operation may also be needed. To make the encoding
perform well in practice, we need to associate a single constant weight to all PUSHx
operations, that is high enough to avoid models where expensive PUSHx operations
are performed more than once instead of duplicating them. Our experiments have
shown that a weight of 5 is enough to obtain optimal results for the sizes of blocks
that the Max-SMT is able to handle. Then, we can assume NOP instructions cost
0 units, instructions in Ip costs 5 units and the remaining instructions cost 1 unit.
Hence, three disjoint sets are introduced to match previous costs: W0 := {NOP},
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W5 := Ip and W1 := IS \ (W0 ]W5). Ω′ bytes-size model is followed directly:

Ω′SMS :=
⋃

06j<bo

{[tj = θ(NOP), 1], [
∨

ι∈W0]W1

tj = θ(ι), 4]}

Example 6. The optimized bytecode returned by GASOL for the gas criterion
is PUSH24* PUSH 80 PUSH 40 MSTORE PUSH 1 SLOAD PUSH32* AND PUSH21* OR PUSH32* AND OR PUSH 1 SSTORE

CALLVALUE CALLVALUE ISZERO (using * to skip large constants), which achieves a reduction
of 5905 units wrt. the original version and is proven optimal. For the bytes-size
criterion, GASOL times out due to the larger size of the block when size-increasing
simplification rules are disabled. This issue will be discussed in Sec. 5.

5 Implementation and Experiments

This section provides further implementation details and describes our experimen-
tal evaluation. The GASOL tool is implemented in Python and uses as Max-SMT
solver OptiMathSAT (OMS) [13] version 1.6.3 (which is the optimality framework
of MathSAT). The aim of the experiments is to assess the effectiveness of our
proposal by comparing it with the previous tool SYRUP. A timeout is given to the
tools to specify the maximum amount of time that they can use for the analysis of
each block. The timeout given to GASOL must be larger than for SYRUP because
it works on less and larger blocks in order to analyze the same contract. We
have used as timeout for SYRUP 10 sec, and for GASOL, we use 10*(#store+1)
sec, as this would correspond to the addition of the times in SYRUP given to
the partitioned blocks. It should be noted though that the cost of the search to
be performed grows exponentially with the number of additional instructions.
Therefore, in spite of giving a similar timeout, GASOL might time out in cases
in which it has to deal with rather large blocks, while SYRUP does not on the
corresponding smaller partitioned blocks. For this reason, we have implemented
two additional versions: gasolall splits the blocks at all stores as SYRUP, and
gasol24 splits at store instructions only those blocks that have a size larger than
24 instructions. This is because we have observed during experimentation that
the SMT search does not terminate in a reasonable time from that size on. The
24-partitioning starts from the end of the block and splits it if it finds a store. If
the partitioned sub-block (from the start) still has a size larger than 24, further
partitioning is done again if a new store is found from its end, and so on. Still,
depending on where the stores are, the resulting blocks can have sizes larger than
24, as it happens in SYRUP as well. Further experimentation will be needed
to come up with intelligent heuristics for the partitioning. The gasol versions
implement all techniques described in the paper, including the SMT encoding
dependencies between uninterpreted functions as described in Sec. 3.3. We have
the following versions of GASOL and SYRUP in the evaluation: (1) syrupcav is
the original tool from [7], (2) gasolall splits the blocks at all stores as in syrupcav,
(3) gasol24 performs the 24-partitioning described above, (4) gasolnone does not
perform any additional partitioning of blocks, and (5) gasolbest uses gasolall,
gasol24, and gasolnone, as a portfolio of possible optimization results (running
them in parallel) and keeps the best result.

We run the tools using the gas usage and the bytes-size criteria in Sec. 4.3.
As already mentioned, SYRUP in [7] did not include the bytes-size criterion,
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Gnormal Gtimeout %Gtotal Tgas Bnormal Btimeout %Btotal Tbytes

syrupcav 35689 11129 0.62% 142,93 – – – –

gasolall 36344 11975 0.64% 120,21 3712 2213 2.64% 200,17

gasol24 38765 12336 0.68% 327,36 4315 2238 2.92% 558,48

gasolnone 39977 0 0.53% 850,75 3871 0 1.72% 1194,38

gasolbest 41307 13197 0.72% 933,66 4676 2692 3.28% 1313,36

Table 2: Overall gains in gas and bytes-size and overheads

marked as “–” in the figures. Experiments have been performed on an Intel Core
i7-7700T at 4.2GHz x 8 and 64Gb of memory, running Ubuntu 16.04.

The benchmark set. We have downloaded the last 30 verified smart contracts
from Etherscan that were compiled using the version 8 of solc and whose source
code was available as of June 21, 2021. The reason for this selection is twofold:
(1) we require version 8 in order to be able to apply the latest solc optimizer and
start from a worst-case scenario in which we have the most possible optimized
version and, this way, assess if there is room for further optimization and, in
particular, for the two types of gains achievable by GASOL (see Sec. 1), (2)
we want to make a random choice (e.g., the last 30) rather than picking up
contracts favorable to us. The benchmarks in [7] require using an old version
of the compiler (at most 4), hence the last solc optimizer cannot be activated.
The source code of GASOL as well as the smart contracts analyzed are available
at https://github.com/costa-group/gasol-optimizer. We provide the results of
analyzing the compiled smart contracts generated by the version 0.8.9 of solc with
the complete optimization options. The total number of blocks, given by BLK,
for the 30 contracts is 12,378. Within them, there are 1,044 SSTORE instructions,
6,631 MSTORE and 43 MSTORE8. These memory instructions are used by SYRUP to
split the basic blocks, while GASOL does not split them always as explained above.
This results on 15,416 blocks when considering the additional 24-partitioning,
13,030 without partitioning at stores by gasolnone, and 20,467 blocks by syrupcav
and gasolall. As in [7] all tools split blocks at instructions like LOGX or CODECOPY .

Efficiency gains and performance overhead. Table 2 shows the overall gas and
size gains and the optimization time (in minutes). The total gas consumed by all
contracts before running the optimizers is 7,538,907, and the bytes-size is 224,540.
As it is customary, we are calculating such gas (resp. size) as the sum of the gas
(resp. size) consumed by all EVM instructions in the considered contracts.4 For
those EVM instructions that do not consume a constant and fixed amount of gas,
such as SSTORE, EXP or SHA3, we choose the lower bound that they may consume.
Column Gnormal refers to the gains for the blocks that do not timeout giving no
solution, Gtimeout represents the gas saved by the optimized blocks that reached
the timeout in gasolnone with no result (note that Gnormal is the complementary
of Gtimeout), and Gtotal the total gains computed as the sum of the previous
two, given as a percentage wrt. the initial gas consumption. Columns B have the
analogous meanings for size and T gives the time in minutes. The first observation
is that our proposal of using dependencies in gasolall pays off, as we achieve larger

4 Estimating the actual gains of executing transactions on the involved contracts is a
research problem on its own which has been subject of other work, e.g., [6,16,19,24].
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#B Alrg Optg Betg Nong Toutg Alrb Optb Betb Nonb Toutb
syrupcav 20467 70.54 27.01 0.47 0.08 1.9 – – – – –

gasolall 20467 70.63 27.36 0.64 0.35 1.02 83.25 12.83 1.2 0.69 2.03

gasol24 15416 62.2 33.79 1.47 0.91 1.63 75.48 16.29 3.21 1.78 3.24

gasolnone 13030 65.48 25.3 3.81 0.34 5.07 73.44 11.7 3.1 2.57 9.19

Table 3: Optimization report (%) for SYRUP and GASOL

gains than syrupcav in less time. The second observation is that the gains in gas
of GASOL are notably larger for blocks that do not time out Gnormal, as a larger
search space can be explored. However, those blocks that would require a larger
timeout might behave worse than the syrupcav and gasolall versions working on
smaller blocks, as the original bytecode is taken as the optimization result in case
of timeout. This sometimes happens in the version gasol24, and more often in
gasolnone. The problem is exacerbated for the bytes-size criterion because larger
blocks are considered as a result of skipping size-increasing simplification rules.
Even in Bnormal the gain is smaller for gasolnone than for gasol24. This is because
Bnormal includes timeouts for which a solution is found. Our solution to mitigate
the huge computation demands required in these cases is in row gasolbest that
runs in parallel gasolall, gasol24 and gasolnone and returns the best result. As it
can be seen, gasolbest clearly outperforms the other systems in gas and size gains.
As regards the overhead, it is also the most expensive option, as it reaches the
timeout more often than the other systems and these timeouts are accumulated to
the time. However, as superoptimizers are often used as offline optimization tools,
which are run only prior to deployment, we argue that the gains compensate the
further optimization time. Finally, it remains to be investigated the interaction
between the two optimization criteria, namely how the reduction in bytes-size
affects the gas consumption and vice versa.

Impact of phases 1 and 2. We would also like to estimate how much is gained in
gasolbest by applying the simplification rules and how much is gained by the SMT
encoding. Regarding the simplification rules on memory, gasolbest has applied 6
rules on storage and 11 on memory: 15 of them correspond to the rule i) (4 on
storage and 11 on memory) described in Def. 2, and 2 to the rule ii) (both on
storage). Rule iii) is never applied on this benchmark set, but we have applied
it when optimizing other real smart contracts. As regards the percentage of the
gains, 14.6% of the gas savings come from applying the memory rules, 34.4%
from the stack rules and 51% is saved by the use of the Max-SMT solver. As
in [7], the gains due to each phase are roughly half (i.e., 50% each). Regarding the
simplification rules on stack for the gas criterion, their application has increased
11.4% in gasolbest because it works on larger blocks and has more opportunities
to apply them. However, when selecting the bytes-size criteria, there are less
simplification rules applied (namely 96% less) as when the rules generate larger
code in terms of size they are not applied (see Sec. 4.3).

Optimality results. Table 3 provides additional detailed information, which is
also part of the optimization report of Fig. 1. Column #B shows the total
number of blocks analyzed in each case, depending on the partitioning. In the
remaining columns, we show the percentages of: Column Alr blocks that are
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already optimal, i.e., those blocks that cannot be optimized because they already
consume the minimal amount of gas; Opt blocks that have been optimized and
the SMT solver has proved the optimality of the solution, i.e., they consume
the minimum amount of gas needed to generate the provided SMS; Bet blocks
that have been optimized and therefore, consume less gas than the original ones,
but the solution is not proved to be optimal; Non blocks that have not been
optimized and the solver has not been able to prove if they are optimal, i.e., the
solution found is the original one but it may exist a better one; Tout blocks
where the solver reached the timeout without finding a model. The subscripts b

are the analogous for the bytes-size criterion. We can observe in the table that
gasolnone times out in more cases due to the larger sizes of the blocks that it
optimizes, but the percentages of blocks for which it finds a better and optimal
solution are notably high. It should also be noted that the results of SYRUP (and
gasolall) and, to a lesser extent, of gasol24 wrt. optimality are weaker. This is
because they work on strictly smaller blocks and hence they can prove optimality
for the partitioned blocks, but when glued together, the optimality may be lost.
This is also the reason why the results for gasolbest are not included, because it
mixes different notions of optimality and the concepts are not well-defined. Due
to this weaker optimality, the Opt and Bet results are only slightly better for
GASOL than for SYRUP. However, the truly important aspect is that the actual
gas and size gains for GASOL in Table 2 are notably larger.

6 Conclusions and Future Work

We have presented GASOLv2, a Max-SMT based superoptimizer for Ethereum
smart contracts that uses the assembly json exchange format of the solc compiler
for a direct integration into it. GASOLv2 extends the Max-SMT approach of
SYRUP [7] with memory and storage operations, which constitute the most chal-
lenging and relevant features left out in SYRUP’s approach. GASOLv2 is part of
the GASOL project [3] that aims at developing a GAS Optimization tooLkit that
will integrate inter-block optimizations [5] as well. Namely, the initial optimizer [5]
of the GASOL project uses inter-block analysis to detect storage accesses that can
be replaced by cheaper memory accesses, thus making global optimizations that
are orthogonal and complementary to our intra-block ones. As part of our future
work, we plan to investigate potential synergies among the different proposals
to optimization for smart contracts. This includes also the cooperation with the
solc optimizer [4] that incorporates classical compiler optimizations (e.g., dead
code elimination, constant propagation, etc.) from which our superoptimizer
is already benefiting (since we are applying the solc optimizer). In the other
order of application, we expect also gains when applying classical analyses after
superoptimization. For instance, we have also observed that after applying rule
simplification (i) in Def. 2 and eliminating load instructions, we might leave
store operations on memory locations that will never be accessed again, and that
could be eliminated afterwards by applying an inter-block analysis ensuring that
there are no further access to such memory location. The combination of the
techniques and tools thus seems a promising direction for future research.
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