Skip to main content

Deep Tissue High-resolution and Background-free Imaging with Plasmonic SAX Microscopy

  • Chapter
  • First Online:
Recent Advances in Plasmonic Probes

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 33))

  • 763 Accesses

Abstract

In the field of clinical biology, imaging biological tissues play a crucial role in understanding the nature of structural and physiological changes in their content. Traditionally, for physiological and morphological studies of infected tissues, two-dimensional surface imaging of tissue sections was the standard. However, in many situations, 3D imaging of an entire tissue region becomes mandatory for a better understanding of the condition. This requires an imaging modality that can image deep inside the tissues with better resolution. But animal tissues are notorious for scattering visible light thus making it difficult to see any anomalies beyond 100 μm depth. To decrease the scattering by the tissue, IR light can be used. But according to Abbe’s law, the resolution of a microscope system is inversely proportional to the wavelength of light used. So, as two-photon excitation uses approximately twice the one-photon wavelength, the resolution becomes approximately half of the single photon. Moreover, as we try to observe deeper, scattering makes it difficult to cope with the decrease in the contrast between the object of interest and the unwanted part of the tissue. In this chapter, we will discuss one recently developed technique called Saturation Excitation (SAX) microscopy to achieve improved resolution and background-free images from depths of animal tissues using nonlinear plasmonic nanoparticle scattering as markers. Herein, we will discuss the working principle of the SAX technique and review its potential in imaging as deep as 400 μm with improved resolution and background-free contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.M. Kwee, T.C. Kwee, Imaging in local staging of gastric cancer: A systematic review. J. Clin. Oncol. 25(15), 2107–2116 (2007). https://doi.org/10.1200/JCO.2006.09.5224

    Article  Google Scholar 

  2. L. Fass, Imaging and cancer: A review. Mol. Oncol. 2(2), 115–152 (2008). https://doi.org/10.1016/j.molonc.2008.04.001

    Article  Google Scholar 

  3. C. Cremer et al., Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnol. J. 6(9), 1037–1051 (2011). https://doi.org/10.1002/biot.201100031

    Article  Google Scholar 

  4. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005). https://doi.org/10.1038/nmeth818

    Article  Google Scholar 

  5. D.R. Miller, J.W. Jarrett, A.M. Hassan, A.K. Dunn, Deep tissue imaging with multiphoton fluorescence microscopy. Curr. Opin. Biomed. Eng. 4, 32–39 (2017). https://doi.org/10.1016/j.cobme.2017.09.004

    Article  Google Scholar 

  6. A. Feuchtinger, A. Walch, M. Dobosz, Deep tissue imaging: a review from a preclinical cancer research perspective. Histochem. Cell Biol. 146(6), 781–806 (2016). https://doi.org/10.1007/s00418-016-1495-7

    Article  Google Scholar 

  7. S.-G. Kim, W. Richter, K. Uğurbil, Limitations of temporal resolution in functional MRI. Magn. Reson. Med. 37(4), 631–636 (1997). https://doi.org/10.1002/mrm.1910370427

    Article  Google Scholar 

  8. A. Pizurica, A. Wink, E. Vansteenkiste, W. Philips, B.J. Roerdink, A review of wavelet denoising in MRI and ultrasound brain imaging. Curr. Med. Imaging Rev. 2(2), 247–260 (2006). https://doi.org/10.2174/157340506776930665

    Article  Google Scholar 

  9. W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248(4951), 73–76 (1990). https://doi.org/10.1126/science.2321027

    Article  ADS  Google Scholar 

  10. D.G. Ouzounov et al., In vivo three-photon imaging of activity of GcamP6-labeled neurons deep in intact mouse brain. Nat. Methods 14(4), 388–390 (2017). https://doi.org/10.1038/nmeth.4183

    Article  MathSciNet  Google Scholar 

  11. R.K.P. Benninger, D.W. Piston, Two-photon excitation microscopy for unit 4.11 the study of living cells and tissues. Curr. Protoc. Cell Biol. 59(1), 4–11 (2013). https://doi.org/10.1002/0471143030.cb0411s59

    Article  Google Scholar 

  12. G. Moneron, S.W. Hell, Two-photon excitation STED microscopy. Opt. Express 17(17), 14567 (2009). https://doi.org/10.1364/oe.17.014567

    Article  ADS  Google Scholar 

  13. M. Ingaramo et al., Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc. Natl. Acad. Sci. U. S. A. 111(14), 5254–5259 (2014). https://doi.org/10.1073/pnas.1314447111

    Article  ADS  Google Scholar 

  14. K. Temprine, A.G. York, H. Shroff, Three-dimensional photoactivated localization microscopy with genetically expressed probes. Methods Mol. Biol. 1251, 231–261 (2014). https://doi.org/10.1007/978-1-4939-2080-8_13

    Article  Google Scholar 

  15. G. Vicidomini, P. Bianchini, A. Diaspro, STED super-resolved microscopy. Nat. Methods 15(3), 173–182 (2018). https://doi.org/10.1038/nmeth.4593

    Article  Google Scholar 

  16. R. Sharma, M. Singh, R. Sharma, Recent advances in STED and RESOLFT super-resolution imaging techniques. Spectrochim. Acta A Mol. Biomol. Spectrosc. 231, 117715 (2020). https://doi.org/10.1016/j.saa.2019.117715

    Article  Google Scholar 

  17. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, S. Kawata, High-resolution confocal microscopy by saturated excitation of fluorescence. Phys. Rev. Lett. 99(22), 228105 (2007). https://doi.org/10.1103/PhysRevLett.99.228105

    Article  ADS  Google Scholar 

  18. S.W. Chu et al., Measurement of a saturated emission of optical radiation from gold nanoparticles: Application to an ultrahigh resolution microscope. Phys. Rev. Lett. 112(1), 017402 (2014). https://doi.org/10.1103/PhysRevLett.112.017402

    Article  ADS  Google Scholar 

  19. S.W. Chu et al., Saturation and reverse saturation of scattering in a single plasmonic nanoparticle. ACS Photonics 1(1), 32–37 (2014). https://doi.org/10.1021/ph4000218

    Article  Google Scholar 

  20. Y.T. Chen et al., Study of nonlinear plasmonic scattering in metallic nanoparticles. ACS Photonics 3(8), 1432–1439 (2016). https://doi.org/10.1021/acsphotonics.6b00025

    Article  Google Scholar 

  21. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3–4), 131–314 (2005). https://doi.org/10.1016/j.physrep.2004.11.001

    Article  ADS  Google Scholar 

  22. K.A. Willets, A.J. Wilson, V. Sundaresan, P.B. Joshi, Super-resolution imaging and plasmonics. Chem. Rev. 117(11), 7538–7582 (2017). https://doi.org/10.1021/acs.chemrev.6b00547

    Article  Google Scholar 

  23. Y.C. Ding, P. Xi, Q.S. Ren, Hacking the optical diffraction limit: Review on recent developments of fluorescence nanoscopy. Chinese Sci. Bull. 56(18), 1857–1876 (2011). https://doi.org/10.1007/s11434-011-4502-3

    Article  ADS  Google Scholar 

  24. G.R. Bullock, The current status of fixation for electron microscopy: A review. J. Microsc. 133(1), 1–15 (1984). https://doi.org/10.1111/j.1365-2818.1984.tb00458.x

    Article  MathSciNet  Google Scholar 

  25. A. Mohammed, A. Abdullah, Scanning electron microscopy (SEM): A review, (2019)

    Google Scholar 

  26. A. Stemmer, M. Beck, R. Fiolka, Widefield fluorescence microscopy with extended resolution. Histochem. Cell Biol. 130(5), 807–817 (2008). https://doi.org/10.1007/s00418-008-0506-8

    Article  Google Scholar 

  27. M. Minsky, Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988). https://doi.org/10.1002/sca.4950100403

    Article  MathSciNet  Google Scholar 

  28. M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 401(3), 273–294 (1931). https://doi.org/10.1002/andp.19314010303

    Article  MATH  Google Scholar 

  29. P.T.C. So, C.Y. Dong, B.R. Masters, K.M. Berland, Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng., 399–429 (2000)

    Google Scholar 

  30. C.J. Engelbrecht, E.H. Stelzer, Resolution enhancement in a light-sheet-based microscope (SPIM). Opt. Lett. 31(10), 1477 (2006). https://doi.org/10.1364/ol.31.001477

    Article  ADS  Google Scholar 

  31. C.G. Galbraith, J.A. Galbraith, Super-resolution microscopy at a glance. J. Cell Sci. 124(10), 1607–1611 (2011). https://doi.org/10.1242/jcs.080085

    Article  Google Scholar 

  32. T.C. Jagadale, S.-W. Chu, Super-Resolution Imaging Based on Nonlinear Plasmonic Scattering, vol 1 (Springer International Publishing, 2019)

    Google Scholar 

  33. Y. De Wilde, P.A. Lemoine, Review of NSOM microscopy for materials. AIP Conf. Proc. 931(1), 43–52 (2007). https://doi.org/10.1063/1.2799414

    Article  ADS  Google Scholar 

  34. D. Axelrod, Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11), 764–774 (2001). https://doi.org/10.1034/j.1600-0854.2001.21104.x

    Article  Google Scholar 

  35. R.M. Dickson, A.B. Cubitt, R.Y. Tsien, W.E. Moerner, On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640), 355–358 (1997). https://doi.org/10.1038/41048

    Article  ADS  Google Scholar 

  36. E. Betzig et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006). https://doi.org/10.1126/science.1127344

    Article  ADS  Google Scholar 

  37. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–795 (2006). https://doi.org/10.1038/nmeth929

    Article  Google Scholar 

  38. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19(11), 780 (1994). https://doi.org/10.1364/ol.19.000780

    Article  ADS  Google Scholar 

  39. M. Yamanaka, N.I. Smith, K. Fujita, Introduction to super-resolution microscopy. Microscopy 63(3), 177–192 (2014). https://doi.org/10.1093/jmicro/dfu007

    Article  Google Scholar 

  40. M. Yamanaka et al., SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging. Biomed. Opt. Express 2(7), 1946 (2011). https://doi.org/10.1364/boe.2.001946

    Article  Google Scholar 

  41. M. Yamanaka et al., Saturated excitation microscopy for sub-diffraction-limited imaging of cell clusters. J. Biomed. Opt. 18(12), 1 (2013). https://doi.org/10.1117/1.JBO.18.12.126002

    Article  Google Scholar 

  42. G. Deka, K. Nishida, K. Mochizuki, H.X. Ding, K. Fujita, S.W. Chu, Resolution enhancement in deep-tissue nanoparticle imaging based on plasmonic saturated excitation microscopy. APL Photonics 3(3) (2018). https://doi.org/10.1063/1.5021455

  43. K. Nishida, G. Deka, N.I. Smith, S.W. Chu, K. Fujita, Nonlinear scattering of near-infrared light for imaging plasmonic nanoparticles in deep tissue. ACS Photonics 7(8), 2139–2146 (2020). https://doi.org/10.1021/acsphotonics.0c00607

    Article  Google Scholar 

  44. Handbook of Surface Plasmon Resonance - Google Books. https://books.google.co.in/books?hl=en&lr=&id=bHEoDwAAQBAJ&oi=fnd&pg=PA15&dq=surface+plasmon+external+electric+field&ots=uiTQznh2up&sig=ss4sUp8Y3rhkBPH9DUDVZtfB4SE&redir_esc=y#v=onepage&q=surface.plasmon.external.electric%20field&f=false. Accessed 30 Apr 2021

  45. A. Kawashima et al., Enhanced magneto-optical properties of semiconductor EuS nanocrystals assisted by surface plasmon resonance of gold nanoparticles. Chem. A Eur. J. 19(43), 14438–14445 (2013). https://doi.org/10.1002/chem.201302259

    Article  Google Scholar 

  46. S. Hong, X. Li, Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions. J. Nanomater. 2013 (2013). https://doi.org/10.1155/2013/790323

  47. X. Fan, W. Zheng, D.J. Singh, Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 3(6), e179–e179 (2014). https://doi.org/10.1038/lsa.2014.60

    Article  ADS  Google Scholar 

  48. H.-Y. Wu et al., Ultrasmall all-optical plasmonic switch and its application to superresolution imaging OPEN. Mol. Imaging Cent. 2(1) (2016). https://doi.org/10.1038/srep24293

  49. S. Alizadeh, Z. Nazari, A review on gold nanoparticles aggregation and its applications. J. Chem. Rev. 2(4), 228–242 (2020). https://doi.org/10.22034/JCR.2020.108561

    Article  Google Scholar 

  50. V.V. Tuchin, Light scattering study of tissues. Physics-Uspekhi 40(5), 495–515 (1997). https://doi.org/10.1070/pu1997v040n05abeh000236

    Article  ADS  Google Scholar 

  51. J. Sanderson, Theory of contrast control in the microscope, by Jeremy Sanderson. Quekett J. Microsc. (2000). https://www.quekett.org/resources/understanding/theory-contrast-control. Accessed 21 Jun 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gitanjal Deka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deka, G., Deka, B., Nishida, K., Fujita, K., Chu, SW. (2022). Deep Tissue High-resolution and Background-free Imaging with Plasmonic SAX Microscopy. In: Biswas, R., Mazumder, N. (eds) Recent Advances in Plasmonic Probes. Lecture Notes in Nanoscale Science and Technology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-99491-4_16

Download citation

Publish with us

Policies and ethics