
Construction of Verifier Combinations
Based on Off-the-Shelf Verifiers

Dirk Beyer1 �, Sudeep Kanav1 , and Cedric Richter2

1 LMU Munich, Munich, Germany
2 Carl von Ossietzky University, Oldenburg, Germany

Abstract. Software verifiers have different strengths and weaknesses,
depending on properties of the verification task. It is well-known that
combinations of verifiers via portfolio and selection approaches can help
to combine the strengths. In this paper, we investigate (a) how to easily
compose such combinations from existing, ‘off-the-shelf’ verification tools
without changing them and (b) how much performance improvement easy
combinations can yield, regarding the effectiveness (number of solved
problems) and efficiency (consumed resources). First, we contribute a
method to systematically and conveniently construct verifier combinations
from existing tools, using the composition framework CoVeriTeam. We
consider sequential portfolios, parallel portfolios, and algorithm selections.
Second, we perform a large experiment on 8 883 verification tasks to
show that combinations can improve the verification results without
additional computational resources. All combinations are constructed
from off-the-shelf verifiers, that is, we use them as published. The result of
our work suggests that users of verification tools can achieve a significant
improvement at a negligible cost (only configure our composition scripts).

Keywords: Software verification · Program analysis · Cooperative verification ·
Tool Combinations · Portfolio · Algorithm Selection · CoVeriTeam

1 Introduction

Automatic software verification has been an active area of research for many
decades and various tools and techniques have been developed to solve the problem
of verifying software [3, 7, 9, 25, 34, 37]. The research has also been adopted in
practice [2, 22, 24, 39]. Each tool and technique has its own strengths in specific
areas. In such a scenario, it becomes obvious to combine these tools to benefit
from the strengths of individual tools, leading to a ‘meta verifier’ that solves
more problems. Most current combination approaches are hardcoded, that is, the
choice of the tools and the way to combine them is specifically programmed.

We contribute a method to construct combinations in a systematic way,
independently from the set of tools to use. As for the types of combinations,
we considered sequential and parallel portfolio [36], and algorithm selection [47].
The combinations are composed and executed with the tool CoVeriTeam [15].1

1 https://gitlab.com/sosy-lab/software/coveriteam/

c© The Author(s) 2022
E. B. Johnsen and M. Wimmer (Eds.): FASE 2022, LNCS 13241, pp. 49–70, 2022.
https://doi.org/10.1007/978-3-030-99429-7_3

https://orcid.org/0000-0003-4832-7662
https://www.sosy-lab.org/people/beyer/
https://orcid.org/0000-0001-6078-4175
https://orcid.org/0000-0003-2906-6508
https://gitlab.com/sosy-lab/software/coveriteam/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99429-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-99429-7_3


CoVeriTeam is a tool that is based on off-the-shelf atomic actors, which are
executable units based on tool archives. It provides a simple language to construct
tool combinations, and manages the download and execution of the existing tools
on the provided input. CoVeriTeam provides a library of atomic actors for many
well-known and publicly available verification tools. A new verification tool can
be easily integrated into CoVeriTeam within a few minutes of effort.

For our experimental evaluation, we selected eight of the verification tools
that participated in the 10th competition on software verification [6]. We reused
the archives submitted to this competition, and composed combinations of three
types (sequential and parallel portfolio, algorithm selection) with 2, 3, 4, and 8
verification tools: in total 12 combinations. We evaluated these 12 combinations on
a large benchmark set consisting of 8 883 verification tasks in total and compared
the results of the combinations against the results of the existing tools.

We show that all three combination approaches can lead to considerable
improvements of the performance regarding effectiveness (number of correctly
solved instances) and efficiency (consumed resources).

Contributions. We make the following contributions:

1. We show how to conveniently construct combination approaches from off-the-
shelf verification tools in a modular manner, without changing the tools.

2. We perform an extensive comparative evaluation of sequential portfolio,
parallel portfolio, and algorithm selection approaches.

3. A reproduction package containing the tools and experiment data.

2 Improving Verification by Verifier Combinations

In this study, we explore different strategies for combining verifiers to improve
the overall verification effectiveness. We focus on the most commonly applied
black-box combinations (i.e., combinations that do neither require any changes to
the existing tools nor communication between verification tools) which we briefly
describe in the following.

Verifier Combinations. Existing strategies for combining verifiers can be
generally classified into one of the following three categories: sequential portfolios
[17, 33, 53], parallel portfolios [35, 36, 40], and algorithm selectors [8, 28, 47, 48, 50].
We provide an overview over these composition strategies in Figs. 1 and 2.

Sequential Portfolio. Portfolios combine several verification algorithms by
executing them either sequentially or in parallel. A sequential portfolio (Fig. 1)
executes a set of verifiers sequentially by running one verifier after another. In
this setting, each verifier is assigned a specific time limit and the verifier runs
until it finds a solution or reaches the time limit. If the current verifier is able
to solve the given verification task, the sequential composition is stopped and
the solution is emitted. Otherwise, if a verifier runs into a timeout without, the
current algorithm is stopped and the next one is started. CPA-Seq [17, 53] and
Ultimate Automizer [33] are examples of sequential portfolios.

50 Dirk Beyer, Sudeep Kanav, and Cedric Richter



Task Verifier 1
Done

Verifier 2
Running

Verifier 3
Scheduled

Result

Time

Fig. 1: Sequential portfolio of verifiers. Each verifier runs for a certain amount of
time. If a verifier stops without computing a result (grey box), the next one is
started (white box with double borders).

Parallel Portfolio. In contrast to sequential portfolios, a parallel portfolio
(Fig. 2(a)) executes all verification algorithms in parallel, while sharing all system
resources like CPU time and memory. As soon as one algorithm solves the given
verification problem, the portfolio is stopped. Based on the assumption that
all verifiers provide only sound solutions, we can safely take the first solution
computed as the final result of the overall portfolio. PredatorHP [35, 40] is an
example of a parallel portfolio.
Algorithm Selection. To reduce spending resources on unsuccessful verifiers,
algorithm selectors (Fig. 2(b)) are designed to select the verification algorithm
that is likely well suited to solve a given verification task. More precisely, the algo-
rithm selector analyzes the given verification problem for common characteristics
(typically program features like the existence of a loop or an array) and based on
these features, selects a verification algorithm likely suited for the given problem.
Then the selected verifier is executed. Algorithm selectors were recently explored
for selecting a task-dependent verification algorithm (e.g., in PeSCo [48, 50]) or a
complete verification strategy (e.g., in CPAchecker [8]).

The above combination types have their own advantages and limitations when
applied in real-world scenarios. While algorithm selectors omit the necessity of
sharing resources, the approach heavily relies on the used selection algorithm. If
the selection algorithm is not powerful enough or the selection task is too difficult,
the selector fails to identify a verifier equipped for the given task. Although
portfolios omit this problem by assigning the verification task to several verifiers,
each verifier gets less resources, which could lead to out-of-resource failures.

3 Construction of Verifier Combinations with CoVeriTeam

CoVeriTeam [15] is a tool for creating and executing tool combinations for
cooperative verification [20]. It consists of a language for tool composition, and
an execution engine for this language. Tools are considered as verification actors
(verifiers, validators, testers, transformers), and the inputs consumed and outputs
produced by the tools as verification artifacts (programs, specifications, witnesses,
results). Verification artifacts are seen as basic objects, verification actors as
basic operations, and tool combinations as composition of these operations.

CoVeriTeam supports execution of most of the well known automated verifi-
cation tools that are publicly available. The composition operators supported by

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 51



Task
Verifier 2

Running

Verifier 1
Running

Verifier 3
Running

Result

Time

(a) Parallel Portfolio

Task
Verifier 2

Running

Verifier 1
Not used

Verifier 3
Not used

Result
Selection

Time

(b) Algorithm Selection
Fig. 2: Comparison of parallel portfolio and algorithm selection

CoVeriTeam are: SEQUENCE, PARALLEL, REPEAT, and ITE. SEQUENCE exe-
cutes the composed tools sequentially, PARALLEL in parallel, REPEAT repeatedly
till a termination condition is satisfied, ITE is an if-then-else that executes one
tool if the provided condition is true and otherwise the other. The work in this
paper uses SEQUENCE, PARALLEL, ITE, and a newly developed PORTFOLIO.

3.1 Verifier Based on Sequential Portfolio

verifier1 verifier2

c ≡ verdict 6∈ {T, F}

c?
true

false

Fig. 3: Verifier based on sequential portfolio

Figure 3 shows the construction of a sequential portfolio of two verifiers
verifier1 and verifier2 using CoVeriTeam. This construction uses two kinds of
compositions: SEQUENCE and ITE. At the outermost level, it is a sequence
of verifier1 and an actor that in itself is a composition—an ITE composition.
Let us call it ite_verifier. When we execute this composition, first, verifier1 is
executed and then ite_verifier. ite_verifier first checks if verifier1 was successful
in verification or not (i.e., verdict 6∈ {T, F}). If verifier1 was successful, then it
forwards the results, otherwise, verifier2 is executed and its results are taken.
This construction can be generalized to create sequential portfolios of arbitrary
sizes. We used it to create sequential portfolios of 2, 3, 4, and 8 verifiers.

3.2 Verifier Based on Parallel Portfolios

We developed a composition operator for parallel portfolio in CoVeriTeam. In
this composition, multiple tools are executed in parallel and the result of the

52 Dirk Beyer, Sudeep Kanav, and Cedric Richter



one that succeeds first is taken. The composition consists of a set of verification
actors of the same type (verifiers, testers, etc.), and a success condition defined
over the artifacts produced by these actors. When one actor finishes, the success
condition is evaluated: if it holds then the output of this actor is taken and the
execution of the remaining actors is stopped. Otherwise, the portfolio waits for
the next actor to finish and repeats the check. If none of the actors produce the
output that satisfies the success condition, the result of the last one is taken.

verifier1

verifier2

c?c ≡ verdict ∈ {T, F}

Fig. 4: Verifier based on parallel portfolio

Figure 4 shows a parallel portfolio of two verifiers verifier1 and verifier2. In this
case, both the verifiers are executed simultaneously. When one verifier finishes, its
result is checked for the success condition (i.e., verdict ∈ {T, F}). If the success
condition holds then the result is forwarded, otherwise, the result is discarded
and we wait for the second verifier to finish. Once a successful result is available,
the remaining executing verifiers are terminated. For our experiments, we created
parallel portfolios of 2, 3, 4, and 8 tools.

3.3 Verifier Based on Algorithm Selection

We designed and implemented a generic selection framework in CoVeriTeam for
selecting verifiers. The framework decomposes the algorithm-selection process into
two phases: (1) a feature-extraction phase, in which a feature encoder extracts a
set of predefined features for a given verification task (i.e., certain characteristics
that are believed to indicate difficulty for a verifier), and (2) selection to identify
an appropriate verifier based on the extracted features. Each phase is constructed
using CoVeriTeam actors (explained below in more detail). Figure 5 shows the
CoVeriTeam composition of a verifier based on algorithm selection.

Encoder

Classifier1

Classifier2

Comparator
Selected
Verifier

Fig. 5: Verifier based on algorithm selection

Feature Encoder. The first component of our framework is the feature encoder.
Given a verification task consisting of a program P and a specification S, the goal
of the feature encoder is to encode the problem into a meaningful feature-vector

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 53



(FV ) representation, which we can later use to select a verification tool. Typically,
the representation encodes certain features of a program which might correlate
with the performance of a verifier such as the occurrence of specific loop pat-
terns [28] or variable types [29]. In this study, we encode verification problems via
a learning-based feature encoder by employing a pretrained CSTTransformer [50].
The CSTTransformer first parses a given program P into a simplified abstract
syntax tree (AST) representation. Afterwards, a specific type of neural network
processes the AST structure to produce a vector representation. The last en-
coding step is learned by pretraining the neural network on selecting various
verification tools. While this approach was originally developed to learn a vector
representation optimized for a specific verifier composition, the authors showed
that the learned encoder can be effectively reused across many new selection
tasks, often outperforming other hand-crafted feature encoders.

Selection of Verifiers Based on the Individual Difficulty of the Tasks.
The same task might be solved with one tool in a few seconds, while another is
not able to find a solution within the given resource constraints. Therefore, to
avoid wasting resources on tools that are not well suited for a given task, the
algorithm selector aims to predict the difficulty of a task before executing a tool.
Then, the tool that is predicted to be the best suited tool for the task is executed.

Similar to previous work [28, 50], we learn to predict the difficulty of task with
hardness models [55]. Based on the previously computed vector representation, a
hardness model learns to predict the hardness of a given task for a specific tool.
In our case, this reduces to a binary classification problem of predicting whether
a tool can solve a task or not. We address this by training logistic regression
classifiers. The classifier’s confidence that a verifier will fail a particular task then
determines the hardness of the task.

Now, given a set of hardness models —each accessing the hardness of a
verification task for a specific tool— a verification tool is selected for which the
task is likely easy (i.e., the respective model outputs the lowest hardness score).
The final selection is done by a comparator implemented in CoVeriTeam that
selects a tool by comparing the hardness scores.

3.4 Extensibility

To facilitate future research and the design of novel combinations, we implemented
all combination types such that they can be easily configured and extended. Ex-
tending a combination with a new verifier only requires an actor definition for
that verifier in CoVeriTeam. Afterwards, this actor can be put in a sequential or
parallel portfolio by adding it to the composition. While our algorithm selector
can be easily used with all tools employed during our experiments, extending
a combination based on algorithm selection with a new verifier requires a bit
more effort. However, by using hardness models together with a common feature
representation we simplified the process required for configuring algorithm selec-
tion. In fact, we are able to modify the set of verifiers to select from by simply
adding or removing individual hardness models. While previous approaches to

54 Dirk Beyer, Sudeep Kanav, and Cedric Richter



CPAchecker [8] ESBMC [32] Symbiotic [23] UAutomizer [33]

CBMC [42] Divine [43] Goblint [52] UTaipan [30]

Fig. 6: Subsets of verification tools used for composition

verifier selection often require training the complete selector from scratch, our
combination can be extended by training a single hardness model.2 For training a
new model, we provide all training scripts that were used for training our hardness
models and a precomputed dataset of vector representations for SV-COMP 2021.
Therefore, to integrate a new tool in our algorithm selector, one only requires to
run the respective verifier once on (a subset of) the benchmark set. The results
then act as training examples.

4 Evaluation

We perform a thorough experimental evaluation on a large benchmark set in order
to show the potential of combinations. We address the following research questions
concerning the comparative evaluation of combinations against standalone tools:

RQ1. Can a CoVeriTeam-based sequential portfolio of verifiers perform signifi-
cantly better than standalone tools with respect to
(a) number of solved verification tasks, and
(b) resource consumption?

RQ2. Can a CoVeriTeam-based parallel portfolio of verifiers perform signifi-
cantly better than standalone tools with respect to
(a) number of solved verification tasks, and
(b) resource consumption?

RQ3. Can a CoVeriTeam-based algorithm selection of verifiers perform signifi-
cantly better than standalone tools with respect to
(a) number of solved verification tasks, and
(b) resource consumption?

4.1 Experimental Setup

Selection of Existing Verifiers. We selected eight existing verification tools
that performed well in a recent competition on software verification (SV-COMP
2021) [6]. We excluded two verifiers from consideration: VeriAbs [27] and
PeSCo [49]. VeriAbs was excluded because its license does not allow us to
use it for scientific evaluation, and PeSCo because it is a derivate of CPAchecker
that would not contribute to diversity of technology in the combinations. The
chosen set of verifiers used for the tool combinations is depicted in Fig. 6.
2 A single hardness model can be trained within a few minutes on a modern CPU.

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 55



Tool Combinations. We evaluated twelve verifier combinations: for each of
sequential portfolio, parallel portfolio, and algorithm selection, we constructed
a combination of 2, 3, 4, and 8 verifiers. These variants of combinations with
different numbers of verifiers allowed us to quantify the influence of the number
of verifiers on the performance. We constructed these subsets of verifiers to
maximize the number of tasks (from our benchmark set) that can be solved by
at least one tool in the subset. For sequential portfolios, we additionally rank
the verifiers in descending order of their success on the benchmark. We used
the results from SV-COMP 2021 to achieve this. Figure 6 illustrates the sets of
verifiers that we composed in different types of combinations.
Execution Environment. Our experiments were executed on machines with
the following configuration: one 3.4GHz CPU (IntelXeon E3-1230 v5) with
8 processing units (virtual cores), 33GB RAM, operating system Ubuntu 20.04.
Each verification run (execution of one tool or combination on one verification
task) was limited to 8 processing units, 15min of CPU time, and 15GB memory.
This configuration is the same as the configuration used in SV-COMP 2021
allowing us to use the competition results of the standalone tools for comparison.
Benchmark Selection. Our benchmark set consists of all the verification tasks
with specification unreach-call from the open-source collection of verification
tasks SV-Benchmarks3. Each verification task consists of a program written in C
and a specification. The specification is a safety property describing that an error
location should never be reached. The benchmark set includes all verification
tasks of the competition categories ReachSafety and Concurrency, and a part
of the verification tasks in category SoftwareSystems. In total, there were 8 883
verification tasks in our benchmark set. We evaluated our combinations on the
version of the benchmark set that was used in SV-COMP 2021 (tag svcomp21).
Scoring Schema. We not only count the number of results of each kind4 for the
verification tasks, but also the scores as used in the competition, because this
models what the community considers as quality. A verifier is rewarded score
points as follows: 2 score points for each correct proof, 1 score point for each
correct alarm, -32 score points for wrong proofs, and -16 score points for wrong
alarms. This schema has been used in SV-COMP [6] since a few years and has
been accepted by the verification community for judging the quality of results.
Resource Measurement and Benchmark Execution. We used the state-of-
the-art benchmarking framework BenchExec [18] for executing our benchmarks.
It executes tools in isolation, reports the resource consumption, and also enforces
the resource limitations. It provides measurements of the consumption of CPU
time, wall time, memory, and CPU energy during an execution of a tool.

4.2 Results of Existing Verifiers as Standalone

Table 1 shows the summary of results of the execution of the standalone tools on
the selected benchmark set. These results are publicly available in the respective
3 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
4 Either claims of program correctness or alarms of specification violations.

Dirk Beyer, Sudeep Kanav, and Cedric Richter56

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks


Table 1: Standalone verifiers

Verifier C
P
A
ch

ec
ke

r

E
sb

m
c

Sy
m
bi
ot

ic

U
A
ut

om
iz
er

C
bm

c

D
iv
in
e

G
ob

li
nt

U
T
ai
pa

n

Score 9 040 6 623 4 878 7 146 4 663 3 679 2 770 5 338
Correct results 5 652 4 481 3 001 4 358 3 484 2 922 1 385 3 725

Correct proofs 3 516 2 958 1 909 2 836 1 499 1 605 1 385 2 365
Correct alarms 2 136 1 523 1 092 1 522 1 985 1 317 0 1 360

Wrong results 8 29 2 2 19 41 0 24
Wrong proofs 0 22 0 1 1 12 0 23
Wrong alarms 8 7 2 1 18 29 0 1

Total resource consumption for correct results
CPU time (h) 190 57 22 97 31 60 11 81
Wall time (h) 140 57 22 59 31 15 11 52
Memory (GB) 7 000 1 800 770 4 300 1 300 2 000 120 2 700
CPU Energy (KJ) 7 700 2 500 1 000 3 500 1 300 1 500 560 3 000

Median resource consumption for correct results
CPU time (s) 61 0.84 0.81 36 0.70 17 0.78 39
Wall time (s) 32 0.84 0.84 12 0.69 9.1 0.80 13
Memory (MB) 600 53 25 450 44 670 25 430
CPU Energy (J) 590 11 11 310 9.2 150 11 330

Resource consumption of correct results per score point
CPU time (s/sp) 77 31 16 49 24 59 15 55
Wall time (s/sp) 55 31 16 30 24 14 15 35
Memory (MB/sp) 780 270 160 600 280 540 42 500
Energy (J/sp) 850 380 210 490 280 420 200 560

reproduction package of the competition [5] and on the competition web site5.
We only adjust the presentation to our needs here.

Figure 7 shows the quantile plots of the results, where the x -coordinate repre-
sents the quantile of score obtained by the tool below the run time represented
by y-coordinate. We used a logarithmic scale for time ranges between 1 and 1000
seconds, and linear scale between 0 and 1 second. The graph of a tool that solves
more verification tasks will be farther to the right, and the plot of the faster tools
would be lower. The farther on the right side a plot goes and the lower a plot
remains. the better it is. More details about these plots are given elsewhere [4].

Figure 8 shows the resource consumption for standalone tools using a parallel-
coordinates plot (each parallel coordinate represents a different variable). The
plot shows the number of unsolved tasks, and resource consumption per score
point. The lower the plot of a tool is the better it is for the user.

4.3 RQ 1: Evaluation of Sequential-Portfolio Verifier

We now present the results of the sequential-portfolio verifier against the existing
standalone verifier with the highest score: CPAchecker.
5 https://sv-comp.sosy-lab.org/2021/results/results-verified

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 57

https://sv-comp.sosy-lab.org/2021/results/results-verified


1

10

100

1000

M
in

 ti
m

e 
in

 s
CPAchecker
ESBMC
Symbiotic
UAutomizer
CBMC
DIVINE
Goblint
UTaipan

2000 0 2000 4000 6000 8000 10000
Cumulative Score

Fig. 7: Standalone verifiers: Score-based quantile plot for results

Unsolved
 tasks

0

1500

3000

4500

6000

7500

CPU time
 (s/sp)

0

30

60

90

120

150

Wall time
 (s/sp)

0

30

60

90

120

150

Memory
 (MB/sp)

Energy
 (J/sp)

0

300

600

900

1200

1500

CPAchecker
ESBMC

Symbiotic
UAutomizer

CBMC
DIVINE

GOBLINT
UTaipan

0

300

600

900

1200

1500

Fig. 8: Standalone verifiers: Parallel-coordinates plot showing unsolved tasks and
resource consumption per score point

Table 2 shows the summary of results for the sequential verifiers. The sequen-
tial portfolio, in general achieves better score than the best performing standalone
tool. The portfolio with 8 tools performs worst, which is expected because as we
increase the size of the portfolio, the amount of time allocated to each verifier
also decreases. This means that the verifiers can only solve relatively easier tasks.
The table also shows that the portfolio requires more resources to solve the tasks.
This is a side effect of the sequential portfolio, as all the resources consumed
by unsuccessful attempts to solve a given task by the verifiers in a sequence are
still counted in the resource consumption. Also, the portfolio with 8 tools has a
considerably large number of wrong results as it is reduced to fast results, instead
of the verifier earlier in the sequence. The index at which a verifier is placed plays
a key role in the performance of the sequential portfolio. If we put a verifier that
produces results fast but has more wrong results first in the sequential portfolio,
then the overall results are going to have a lot of wrong results.

Figure 9 shows the quantile plot of scores. As a portfolio is biased towards
the verifiers that compute results fast and not towards correctness, we see the
sequential portfolio combinations starting from farthest in the left, i.e., having the
most negative score, or most wrong results. CPAchecker has the least number
of wrong results, and because of it its starting point is farthest to the right.

58 Dirk Beyer, Sudeep Kanav, and Cedric Richter



Table 2: Sequential portfolios of different sizes with CPAchecker

Verifier CPAchecker Sequential Portfolio of
2 3 4 8

Score 9 040 9 198 9 519 9 522 8 349
Correct results 5 652 6 058 6 239 6 275 6 084

Correct proofs 3 516 3 780 3 920 3 903 3 721
Correct alarms 2 136 2 278 2 319 2 372 2 363

Wrong results 8 26 26 27 61
Wrong proofs 0 14 14 14 30
Wrong alarms 8 12 12 13 31

Total resource consumption for correct results
CPU time(h) 190 240 260 240 190
Wall time (h) 140 190 210 190 150
Memory (GB) 7 000 8 900 8 600 8 500 7 600
CPU Energy (KJ) 7 700 9 700 11 000 10 000 7 900

Median resource consumption for correct results
CPU time(s) 61 95 100 100 97
Wall time (s) 32 54 69 70 54
Memory (MB) 600 920 930 910 840
CPU Energy (J) 590 920 1 100 1 100 920

Resource consumption of correct results per score point
CPU time (s/sp) 77 95 97 90 82
Wall time (s/sp) 55 72 78 72 64
Memory (MB/sp) 780 970 910 890 920
CPU Energy (J/sp) 850 1 100 1 100 1 100 950

Figure 10 shows that CPAchecker is more resource efficient in comparison to the
sequential portfolio. The sequential combination with best score is performing
worst in resource efficiency.

4.4 RQ 2: Evaluation of Parallel-Portfolio Verifier

We now present the results of the parallel-portfolio verifiers. The parallel portfolio,
mostly, achieves worse score than the best performing standalone tool. But the
parallel portfolio with 3 tools scores better. The parallel portfolio is affected by
two aspects: (1) size of the parallel portfolio — if too many tools are used then
any of them would not get enough resources to verify the task, (2) selection of
tools — if there is a fast tool that produces a lot of wrong results it reduces the
score. Parallel portfolio, in general, produces more wrong results; even more than
sequential portfolio, as the tools are running in parallel, whereas in sequential
portfolio this can be somewhat mitigated by putting a more sound tool before a
less sound tool. Table 3 shows the summary of results for the parallel portfolios.

Figure 11 shows that parallel portfolios have many more wrong results when
compared to CPAchecker. Interestingly, the graph for ParPortfolio-3, the best
performing parallel portfolio, remains lower than CPAchecker, i.e., it takes less

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 59



1

10

100

1000

M
in

 ti
m

e 
in

 s
CPAchecker
SeqPortfolio-4
SeqPortfolio-8

2000 0 2000 4000 6000 8000 10000
Cumulative Score

Fig. 9: Sequential portfolios: Score-based quantile plot comparing the best and
the worst sequential portfolio (SeqPortfolio-4 and SeqPortfolio-8, respectively)
with the best performing standalone tool (CPAchecker)

Unsolved
 tasks

0

1500

3000

4500

6000

7500

CPU time
 (s/sp)

0

30

60

90

120

150

Wall time
 (s/sp)

0

30

60

90

120

150

Memory
 (MB/sp)

Energy
 (J/sp)

0

300

600

900

1200

1500

CPAchecker SeqPortfolio-4 SeqPortfolio-8

0

300

600

900

1200

1500

Fig. 10: Sequential portfolios: Parallel-coordinates plot showing unsolved tasks and
resource consumption per score point for best and worst portfolio (SeqPortfolio-4
and SeqPortfolio-8, resp.) and the best standalone tool (CPAchecker)

CPU time. This is because the parallel portfolio takes results of the most efficient
tool. Figure 12 shows that the best performing parallel portfolio performs better
than CPAchecker in terms of resource efficiency except memory consumption.

4.5 RQ 3: Evaluation of Algorithm Selection Verifier

We now present the results of the algorithm-selection verifier. Table 4 shows the
summary of results for algorithm selection: There is a clear trend of better results
with more verifiers. This is expected because our selector that was trained using
machine learning has more options to choose from, and can choose the better
one. Also, an algorithm-selection verifier does not need to share resources for the
verification task. It needs to perform the prediction, which takes some resources;
but after this step all the provided resources are available to the verifier. The
number of wrong results is also comparable with CPAchecker, as the training
process is biased towards selecting the verifiers that are correct.

In Fig. 13, all the plots start from around similar scores but at different times.
Initially, CPAchecker performs better with respect to CPU time, but after
around half the scores, algorithm selection starts being more efficient. Figure 14
shows that algorithm selection is also more resource efficient than CPAchecker.

Dirk Beyer, Sudeep Kanav, and Cedric Richter60



Table 3: Parallel portfolios of different size with CPAchecker

Verifier CPAchecker Parallel Portfolio of
2 3 4 8

Score 9 040 8 969 9 459 8 952 7 547
Correct results 5 652 6 101 6 363 6 001 5 367

Correct proofs 3 516 3 780 3 992 3 639 3 236
Correct alarms 2 136 2 321 2 371 2 362 2 131

Wrong results 8 36 35 28 42
Wrong proofs 0 21 21 15 24
Wrong alarms 8 15 14 13 18

Total resource consumption for correct results
CPU time(h) 190 160 170 250 280
Wall time (h) 140 74 61 74 64
Memory (GB) 7 000 8 900 11 000 14 000 11 000
CPU Energy (KJ) 7 700 5 400 5 200 6 500 6 400

Median resource consumption for correct results
CPU time(s) 61 18 16 70 130
Wall time (s) 32 5.2 4.6 16 23
Memory (MB) 600 430 420 1 000 1 300
CPU Energy (J) 590 140 120 470 780

Resource consumption of correct results per score point
CPU time (s/sp) 77 65 66 99 130
Wall time (s/sp) 55 30 23 30 31
Memory (MB/sp) 780 1 000 1 200 1 500 1 400
CPU Energy (J/sp) 850 600 550 720 850

4.6 Discussion

The experiments show that each of the compositions has a configuration that can
perform better than any standalone tool in terms of correctly solved tasks. Initially,
we thought that portfolios would be less resource efficient than standalone tools,
and, in particular, would not be able to solve hard tasks as the resources allocated
to each tool would be less. But the experimental data support the opposite: The
benchmark set had a few such tasks: for most of the tasks that were hard for
one tool, there was some other tool that solved it in the given time. This was
especially pronounced in the parallel portfolio. The verifiers in the portfolios have
to be selected with different strengths, otherwise there is no benefit, it might
even perform worse.

Both the portfolios prefer fast results, as there is no selector. To mitigate this,
one needs to either select the tools carefully or add a validation step.

Our algorithm selection was based on a model trained using machine learning.
The training penalized the tools that produced more incorrect results, but it did
not consider the resource consumption of these tools. In comparison to both the
portfolios, the verifier based on algorithm selection produced much less incorrect

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 61



1

10

100

1000

M
in

 ti
m

e 
in

 s
CPAchecker
ParPortfolio-3
ParPortfolio-8

2000 0 2000 4000 6000 8000 10000
Cumulative Score

Fig. 11: Parallel portfolios: Score-based quantile plot comparing the best and the
worst performing parallel portfolios (ParPortfolio-3 and ParPortfolio-8, respec-
tively) with the best performing standalone tool (CPAchecker)

Unsolved
 tasks

0

1500

3000

4500

6000

7500

CPU time
 (s/sp)

0

30

60

90

120

150

Wall time
 (s/sp)

0

30

60

90

120

150

Memory
 (MB/sp)

Energy
 (J/sp)

0

300

600

900

1200

1500

CPAchecker ParPortfolio-3 ParPortfolio-8

0

300

600

900

1200

1500

Fig. 12: Parallel portfolios: Parallel-coordinates plot showing unsolved tasks and
resource consumption per score point of best and worst portfolio (ParPortfolio-3
and ParPortfolio-8, resp.) and the best standalone tool (CPAchecker)

results. We think if we used the resource consumption data in our training,
the verifier based on selection would have consumed less resources. Our verifier
combinations are easy to construct by simply selecting tools that complement
each other well. Although this strategy is simple, we found that it still leads to
successful combinations for all evaluated combination types. Nevertheless, the
combinations can be further fine-tuned to achieve even better results.

The portfolio compositions are easy to construct, and with a well diversified
tool selection, portfolios can perform good. Also, the portfolios should not be
too large unless we are willing to increase the resources. On the other hand,
training the selection requires more preliminary work but with limited resources
and enough choice (number of tools) the selection-based verifier works better.

5 Threats to Validity

External Validity. A combination of tools can only be as good as the parts it is
combined from. Therefore, the concrete instantiation of our tool combinations is
limited by the selected tools and their configuration. We have selected eight of the

Dirk Beyer, Sudeep Kanav, and Cedric Richter62



Table 4: Algorithm-selection-based verifiers of different sizes with CPAchecker

Verifier CPAchecker Algorithm Selection of
2 3 4 8

Score 9 040 9 226 9 689 9 816 9 886
Correct results 5 652 5 904 6 086 6 125 6 214

Correct proofs 3 516 3 658 3 843 3 867 3 896
Correct alarms 2 136 2 246 2 243 2 258 2 318

Wrong results 8 15 11 8 11
Wrong proofs 0 6 4 3 3
Wrong alarms 8 9 7 5 8

Total resource consumption for correct results
CPU time(h) 190 200 200 200 210
Wall time (h) 140 160 160 150 170
Memory (GB) 7 000 6 900 6 900 6 200 6 000
CPU Energy (KJ) 7 700 8 200 8 600 8 400 9 000

Median resource consumption for correct results
CPU time(s) 61 47 48 66 55
Wall time (s) 32 30 30 35 42
Memory (MB) 600 740 700 550 420
CPU Energy (J) 590 490 500 660 620

Resource consumption of correct results per score point
CPU time (s/sp) 77 77 76 73 76
Wall time (s/sp) 55 61 61 56 63
Memory (MB/sp) 780 750 720 630 600
CPU Energy (J/sp) 850 890 890 850 910

most powerful verification tools as determined by the annual software-verification
competition, and executed them in the original configuration as submitted to
the competition. Furthermore, our evaluation results only hold for the given
benchmark set. While we have evaluated our tool combinations on programs taken
from one of the largest and diverse verification benchmarks publicly available, the
performance of the evaluated combinations might differ on other sets of tasks.

Similarly, this also impacts the training of our algorithm selector. The training
of a learning-based algorithm selector, which we employ for tool combinations
based on algorithm selection, requires a large and diverse set of verification tasks;
and each task has to be labeled with the execution results of each tool in our
combination. The used benchmarks repository6 was created by the efforts of
the verification community over many years. We are not aware of any other
benchmark set of verification tasks that is as diverse as this one. As a result, we
had to train our algorithm selector on the same dataset that we later use for
benchmarking the tool combinations. Therefore, we only showed that algorithm
selection improves the performance of verification on the given benchmark set

6 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 63

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks


1

10

100

1000

M
in

 ti
m

e 
in

 s
CPAchecker
AlgoSelection-8
AlgoSelection-2

2000 0 2000 4000 6000 8000 10000
Cumulative Score

Fig. 13: Algorithm-selection-based verifiers: Score-based quantile plot comparing
the best and the worst performing portfolio (AlgoSelection-8 and AlgoSelection-3,
respectively) with the best performing standalone tool (CPAchecker)

Unsolved
 tasks

0

1500

3000

4500

6000

7500

CPU time
 (s/sp)

0

30

60

90

120

150

Wall time
 (s/sp)

0

30

60

90

120

150

Memory
 (MB/sp)

Energy
 (J/sp)

0

300

600

900

1200

1500

CPAchecker AlgoSelection-8 AlgoSelection-2

0

300

600

900

1200

1500

Fig. 14: Algorithm-selection-based verifiers: Parallel-coordinates plot showing
unsolved tasks and resource consumption per score point of the best and the worst
performing algorithm selection (AlgoSelection-8 and AlgoSelection-2, respectively)
and the best performing standalone tool (CPAchecker)

and the selector might only generalize to a set of tasks with similarly distributed
verification tasks. For a fair comparison, we (1) restricted the training to linear
models, which are known to generalize well, (2) train only on a random subset
of the benchmark, and (3) cross validated our model over multiple benchmark
splits. The variance of selection performance between different splits was less
than 1%. Therefore, the performance of our trained algorithm selector is likely
independent of the random subset selected for training.

Finally, the evaluation of algorithm selection is dependent on the chosen
selection methodology and choosing alternative selection methods, for example,
based on hand-crafted rules, might impact the evaluation. However, the design
of hand-crafted methods is not straightforward and might require deep expert
knowledge about the tool implementation. Depending on the human designer, this
design process might in addition be biased in favor of certain tool combinations,
which could also impact the experimental results.

For sequential portfolios, we ordered verifiers in sequence according to their
performance in SV-COMP 2021. Changing the order of the tools might change
the results with respect to resource consumption as well as soundness.

Dirk Beyer, Sudeep Kanav, and Cedric Richter64



Internal Validity. We have used the same verifier archives, benchmark set, bench-
marking framework, resource limits, and infrastructure to execute our experiments
as was used in SV-COMP 2021. This minimizes the influence of a changing en-
vironment on our experiments, allowing us to compare results of our verifier
combinations to the results of the standalone tools from SV-COMP 2021.

CoVeriTeam induces an overhead of about 0.8 s for each actor in the composi-
tion, and around 44MB memory overhead [15]. It is possible that one can reduce
this overhead by using shell scripts, but we decided in favor of using CoVeriTeam
for composing tools because of the modular design. This is especially pronounced
in our algorithm-selector composition. We could have saved a few seconds if we
were using a monolithic algorithm selector instead of composing one.

6 Related Work

Combination Strategies for Software Verification. Combining verifiers to increase
the verification performance is well established in the domain of software verifica-
tion [1, 8, 20, 26, 31, 33, 46, 48, 49, 53]. In fact, the top three winning entries of the
software-verification competition SV-COMP 2021 all combine various verification
techniques to achieve their performance [6]. CPAchecker [8] combines up to six
different verification appraoches into three sequential portfolios that are task-
dependently selected with an algorithm selector. PeSCo [49] ranks verification
algorithms according to their predicted likelihood of solving a given task and then
executes them sequentially in descending order. Ultimate Automizer [33] employs
an integrated tool chain of preprocessing and verification algorithm to solve a
given task. PredatorHP [46] and UFO [1] demonstrate that parallel portfolios
can also be a promising strategy when running multiple specialized algorithms at
the same time. Even though previous work showed that internal combinations
can be successfully applied to improve the effectiveness of a single tool, we show
that similar combinations can be effectively employed to combine ‘off-the-shelf’
verifiers. This gives us the unique opportunity to further increase the number of
verifiable programs by simply combining state-of-the-art verification tools.

Cooperative methods [20] distribute the workload of a single verification task
among multiple algorithms to combine their strengths. For example, conditional
model checking [11, 12, 13, 14] runs two or more verifiers in sequence, while the
program is reduced after every step to the state space of program unexplored by
the previous algorithm. CoVeriTest [10], a tool for test-case generation based on
verification, interleaves multiple verifiers, while (partially) sharing the analysis
state between algorithms. MetaVal [19] integrates verification tools for witness
validation (i.e., to check whether a previous verifier obtained a comprehensible
result) by instrumenting the produced witness into the verified program. While
cooperative methods are effective for reducing the workload of a verification task,
employing cooperative methods at tool level would require to exchange analysis
information between tools. In general, existing verification tools are not well
suited for this type of cooperation, which lead us to explore black-box verifier

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 65



combinations. In addition, we showed that non-cooperative methods can improve
the verification effectiveness without the need to adapt the employed tools.
Combining Algorithms Beyond Software Verification. The idea of combining algo-
rithms to improve performance have been successfully applied in many research ar-
eas including SAT solving [51, 54, 56], constraint-satisfaction programs [21, 45, 57]
and combinatorial-search problems [41]. Employed approaches traditionally fo-
cused on portfolio-based approaches [21, 51, 54], but recent techniques started
to integrate algorithm selectors for either selecting single algorithms [45, 56] or
portfolios of algorithms [44, 57]. For example, earlier works in SAT solving [51, 54]
focused on parallel-portfolio solvers, while later works such as SATzilla [56] fur-
ther improves the solving process by selecting a task-dependent solver. However,
existing techniques often employ hybrid strategies between portfolios and algo-
rithm selection to achieve state-of-the-art performance. Therefore, Kashgarani
and Kothoff [38] have recently shown that parallel portfolios are generally bottle-
necked by the available resources and that a pure algorithm selector that selects
a single algorithm performs better. While we observed that portfolios of software
verifiers are also restricted by available resources (i.e., the performance generally
stops to improve after a certain portfolio size), we found that all evaluated
combination types yield a similar performance gain when configured correctly.

7 Conclusion

This paper describes a method to construct combinations of verification tools in
a systematic and modular way. The method does not require any changes to the
verification tools that are used to construct the combinations. Our experimental
evaluation shows that all three considered combinations (sequential portfolio,
parallel portfolio, and algorithm selection) can lead to performance improvements.
The improvements can be significant although the construction does not require
significant development effort, because we use CoVeriTeam for the combination
and execution of verification tools. We hope that our contribution makes it easy
for practitioners to get access to the best performance out of the latest research
and development efforts in software verification.

Declarations

Data Availability Statement. A reproduction package including all our results
is available at Zenodo [16]. Additionally, the result tables are also available on a
supplementary web page for convenient browsing.7

Funding Statement. This work was funded in part by the Deutsche Forschungs-
gesellschaft (DFG) — 418257054 (Coop).
Acknowledgement. We thank Tobias Kleinert for implementing the parallel
portfolio combination in CoVeriTeam.

7 https://www.sosy-lab.org/research/coveriteam-combinations

Dirk Beyer, Sudeep Kanav, and Cedric Richter66

http://gepris.dfg.de/gepris/projekt/418257054
https://www.sosy-lab.org/research/coveriteam-combinations


References

1. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: Ufo: A framework for
abstraction- and interpolation-based software verification. In: Proc. CAV, pp. 672–
678. LNCS 7358, Springer (2012). https://doi.org/10.1007/978-3-642-31424-7_48

2. Ball, T., Rajamani, S.K.: The Slam project: Debugging system software via static
analysis. In: Proc. POPL. pp. 1–3. ACM (2002). https://doi.org/10.1145/503272.
503274

3. Beckert, B., Hähnle, R.: Reasoning and verification: State of the art and current
trends. IEEE Intelligent Systems 29(1), 20–29 (2014). https://doi.org/10.1109/MIS.
2014.3

4. Beyer, D.: Second competition on software verification (Summary of SV-COMP
2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013). https://doi.
org/10.1007/978-3-642-36742-7_43

5. Beyer, D.: Results of the 10th Intl. Competition on Software Verification (SV-COMP
2021). Zenodo (2021). https://doi.org/10.5281/zenodo.4458215

6. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP 2021). In:
Proc. TACAS (2). pp. 401–422. LNCS 12652, Springer (2021). https://doi.org/10.
1007/978-3-030-72013-1_24, preprint available.

7. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS.
LNCS 13244, Springer (2022)

8. Beyer, D., Dangl, M.: Strategy selection for software verification based on boolean
features: A simple but effective approach. In: Proc. ISoLA. pp. 144–159. LNCS 11245,
Springer (2018). https://doi.org/10.1007/978-3-030-03421-4_11

9. Beyer, D., Gulwani, S., Schmidt, D.: Combining model checking and data-flow
analysis. In: Handbook of Model Checking, pp. 493–540. Springer (2018). https:
//doi.org/10.1007/978-3-319-10575-8_16

10. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In:
Proc. FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/
978-3-030-16722-6_23

11. Beyer, D., Jakobs, M.C.: Fred: Conditional model checking via reducers and folders.
In: Proc. SEFM. pp. 113–132. LNCS 12310, Springer (2020). https://doi.org/10.
1007/978-3-030-58768-0_7

12. Beyer, D., Jakobs, M.C., Lemberger, T.: Difference verification with conditions. In:
Proc. SEFM. pp. 133–154. LNCS 12310, Springer (2020). https://doi.org/10.1007/
978-3-030-58768-0_8

13. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construction
of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018). https://doi.
org/10.1145/3180155.3180259

14. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Combining verifiers in
conditional model checking via reducers. In: Proc. SE. pp. 151–152. LNI P-292, GI
(2019). https://doi.org/10.18420/se2019-46

15. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative
verification systems. In: Proc. TACAS. Springer (2022)

16. Beyer, D., Kanav, S., Richter, C.: Reproduction Package for Article ‘Construction
of Verifier Combinations Based on Off-the-Shelf Verifiers’. Zenodo (2022). https:
//doi.org/10.5281/zenodo.5812021

17. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software
verification. In: Proc. CAV. pp. 184–190. LNCS 6806, Springer (2011). https:
//doi.org/10.1007/978-3-642-22110-1_16

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 67

https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1109/MIS.2014.3
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.5281/zenodo.4458215
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-72013-1_24
https://www.sosy-lab.org/research/pub/2021-TACAS.Software_Verification_10th_Comparative_Evaluation_SV-COMP_2021.pdf
https://doi.org/10.1007/978-3-030-03421-4_11
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-319-10575-8_16
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/978-3-030-58768-0_7
https://doi.org/10.1007/978-3-030-58768-0_8
https://doi.org/10.1007/978-3-030-58768-0_8
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.18420/se2019-46
https://doi.org/10.5281/zenodo.5812021
https://doi.org/10.5281/zenodo.5812021
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16


18. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https://doi.org/10.
1007/s10009-017-0469-y

19. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/
978-3-030-53291-8_10

20. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA (1). pp. 143–167. LNCS 12476,
Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_8

21. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: Twenty-First International Joint Conference on Artificial
Intelligence (2009)

22. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software
verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015). https://doi.
org/10.1007/978-3-319-17524-9_1

23. Chalupa, M., Jašek, T., Novák, J., Řechtáčková, A., Šoková, V., Strejček, J.:
Symbiotic 8: Beyond symbolic execution (competition contribution). In: Proc.
TACAS (2). pp. 453–457. LNCS 12652, Springer (2021). https://doi.org/10.1007/
978-3-030-72013-1_31

24. Chong, N., Cook, B., Eidelman, J., Kallas, K., Khazem, K., Monteiro, F.R.,
Schwartz-Narbonne, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.: Code-level
model checking in the software development workflow at Amazon Web Services.
Softw. Pract. Exp. 51(4), 772–797 (2021). https://doi.org/10.1002/spe.2949

25. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking.
Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

26. Dangl, M., Löwe, S., Wendler, P.: CPAchecker with support for recursive programs
and floating-point arithmetic (competition contribution). In: Proc. TACAS. pp. 423–
425. LNCS 9035, Springer (2015). https://doi.org/10.1007/978-3-662-46681-0_34

27. Darke, P., Agrawal, S., Venkatesh, R.: VeriAbs: A tool for scalable verification
by abstraction (competition contribution). In: Proc. TACAS (2). pp. 458–462.
LNCS 12652, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_32

28. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics for
benchmarking of verification tools. Formal Methods in System Design 50(2-3),
289–316 (2017). https://doi.org/10.1007/s10703-016-0264-5

29. Demyanova, Y., Veith, H., Zuleger, F.: On the concept of variable roles and its
use in software analysis. In: Proc. FMCAD. pp. 226–230. IEEE (2013). https:
//doi.org/10.1109/FMCAD.2013.6679414

30. Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schüssele, F.: Ultimate Taipan
with symbolic interpretation and fluid abstractions (competition contribution). In:
Proc. TACAS (2). pp. 418–422. LNCS 12079, Springer (2020). https://doi.org/10.
1007/978-3-030-45237-7_32

31. Filliâtre, J.C., Paskevich, A.: Why3: Where programs meet provers. In: Programming
Languages and Systems. pp. 125–128. Springer (2013). https://doi.org/10.1007/
978-3-642-37036-6_8

32. Gadelha, M.Y.R., Monteiro, F.R., Cordeiro, L.C., Nicole, D.A.: Esbmc v6.0: Ver-
ifying C programs using k -induction and invariant inference (competition con-
tribution). In: Proc. TACAS (3). pp. 209–213. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_15

Dirk Beyer, Sudeep Kanav, and Cedric Richter68

https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1007/978-3-030-72013-1_31
https://doi.org/10.1002/spe.2949
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-662-46681-0_34
https://doi.org/10.1007/978-3-030-72013-1_32
https://doi.org/10.1007/s10703-016-0264-5
https://doi.org/10.1109/FMCAD.2013.6679414
https://doi.org/10.1109/FMCAD.2013.6679414
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-030-45237-7_32
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-030-17502-3_15


33. Heizmann, M., Chen, Y.F., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y.,
Nutz, A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate Au-
tomizer and the search for perfect interpolants (competition contribution). In:
Proc. TACAS (2). pp. 447–451. LNCS 10806, Springer (2018). https://doi.org/10.
1007/978-3-319-89963-3_30

34. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research.
J. ACM 50(1), 63–69 (2003). https://doi.org/10.1145/602382.602403

35. Holík, L., Kotoun, M., Peringer, P., Šoková, V., Trtík, M., Vojnar, T.: Predator
shape analysis tool suite. In: Proc. HVC. pp. 202–209. LNCS 10028 (2016). https:
//doi.org/10.1007/978-3-319-49052-6_13

36. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard compu-
tational problems. Science 275(7), 51–54 (1997). https://doi.org/10.1126/science.
275.5296.51

37. Jhala, R., Majumdar, R.: Software model checking. ACM Computing Surveys 41(4)
(2009). https://doi.org/10.1145/1592434.1592438

38. Kashgarani, H., Kotthoff, L.: Is algorithm selection worth it? comparing selecting
single algorithms and parallel execution. In: AAAI Workshop on Meta-Learning
and MetaDL Challenge. pp. 58–64. PMLR (2021)

39. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

40. Kotoun, M., Peringer, P., Šoková, V., Vojnar, T.: Optimized PredatorHP and the
SV-COMP heap and memory safety benchmark (competition contribution). In:
Proc. TACAS. pp. 942–945. LNCS 9636, Springer (2016). https://doi.org/10.1007/
978-3-662-49674-9_66

41. Kotthoff, L.: Algorithm selection for combinatorial search problems: A survey. In:
Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary
Approach, pp. 149–190. LNCS 10101, Springer (2016). https://doi.org/10.1007/
978-3-319-50137-6_7

42. Kröning, D., Tautschnig, M.: Cbmc: C bounded model checker (competition
contribution). In: Proc. TACAS. pp. 389–391. LNCS 8413, Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_26

43. Lauko, H., Štill, V., Ročkai, P., Barnat, J.: Extending Divine with symbolic verifi-
cation using SMT (competition contribution). In: Proc. TACAS (3). LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_14

44. Lindauer, M., Hoos, H., Hutter, F.: From sequential algorithm selection to parallel
portfolio selection. In: International Conference on Learning and Intelligent Opti-
mization. pp. 1–16. Springer (2015). https://doi.org/10.1007/978-3-319-19084-6_1

45. Minton, S.: Automatically configuring constraint satisfaction programs: A case
study. Constraints 1(1-2), 7–43 (1996). https://doi.org/10.1007/BF00143877

46. Peringer, P., Šoková, V., Vojnar, T.: PredatorHP revamped (not only) for interval-
sized memory regions and memory reallocation (competition contribution). In: Proc.
TACAS (2). pp. 408–412. LNCS 12079, Springer (2020). https://doi.org/10.1007/
978-3-030-45237-7_30

47. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976). https://doi.org/10.1016/S0065-2458(08)60520-3

48. Richter, C., Hüllermeier, E., Jakobs, M.C., Wehrheim, H.: Algorithm selection for
software validation based on graph kernels. Autom. Softw. Eng. 27(1), 153–186
(2020). https://doi.org/10.1007/s10515-020-00270-x

Construction of Verifier Combinations Based on Off-the-Shelf Verifiers 69

https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1145/602382.602403
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1126/science.275.5296.51
https://doi.org/10.1126/science.275.5296.51
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-662-49674-9_66
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-030-17502-3_14
https://doi.org/10.1007/978-3-319-19084-6_1
https://doi.org/10.1007/BF00143877
https://doi.org/10.1007/978-3-030-45237-7_30
https://doi.org/10.1007/978-3-030-45237-7_30
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/s10515-020-00270-x


49. Richter, C., Wehrheim, H.: PeSCo: Predicting sequential combinations of veri-
fiers (competition contribution). In: Proc. TACAS (3). pp. 229–233. LNCS 11429,
Springer (2019). https://doi.org/10.1007/978-3-030-17502-3_19

50. Richter, C., Wehrheim, H.: Attend and represent: a novel view on algorithm
selection for software verification. In: Proc. ASE. pp. 1016–1028 (2020). https:
//doi.org/10.1145/3324884.3416633

51. Roussel, O.: Description of ppfolio (2011). Proc. SAT Challenge p. 46 (2012)
52. Saan, S., Schwarz, M., Apinis, K., Erhard, J., Seidl, H., Vogler, R., Vojdani, V.: Gob-

lint: Thread-modular abstract interpretation using side-effecting constraints (com-
petition contribution). In: Proc. TACAS (2). pp. 438–442. LNCS 12652, Springer
(2021). https://doi.org/10.1007/978-3-030-72013-1_28

53. Wendler, P.: CPAchecker with sequential combination of explicit-state analysis
and predicate analysis (competition contribution). In: Proc. TACAS. pp. 613–615.
LNCS 7795, Springer (2013). https://doi.org/10.1007/978-3-642-36742-7_45

54. Wotzlaw, A., van der Grinten, A., Speckenmeyer, E., Porschen, S.: pfoliouzk: Solver
description. Proceedings of SAT Challenge p. 45 (2012)

55. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical hardness models for SAT. In:
International Conference on Principles and Practice of Constraint Programming.
pp. 696–711. Springer (2007). https://doi.org/10.1007/978-3-540-74970-7_49

56. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based algo-
rithm selection for SAT. JAIR 32, 565–606 (2008). https://doi.org/10.1613/jair.2490

57. Yun, X., Epstein, S.L.: Learning algorithm portfolios for parallel execution. In:
International Conference on Learning and Intelligent Optimization. pp. 323–338.
Springer (2012). https://doi.org/10.1007/978-3-642-34413-8_23

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Dirk Beyer, Sudeep Kanav, and Cedric Richter70

https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1145/3324884.3416633
https://doi.org/10.1145/3324884.3416633
https://doi.org/10.1007/978-3-030-72013-1_28
https://doi.org/10.1007/978-3-642-36742-7_45
https://doi.org/10.1007/978-3-540-74970-7_49
https://doi.org/10.1613/jair.2490
https://doi.org/10.1007/978-3-642-34413-8_23
http://creativecommons.org/licenses/by/4.0/

	Construction of Verifier Combinations Based on Off-the-Shelf Verifiers
	1 Introduction
	2 Improving Verification by Verifier Combinations
	3 Construction of Verifier Combinations with CoVeriTeam
	3.1 Verifier Based on Sequential Portfolio
	3.2 Verifier Based on Parallel Portfolios
	3.3 Verifier Based on Algorithm Selection
	3.4 Extensibility

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results of Existing Verifiers as Standalone
	4.3 RQ 1: Evaluation of Sequential-Portfolio Verifier
	4.4 RQ 2: Evaluation of Parallel-Portfolio Verifier
	4.5 RQ 3: Evaluation of Algorithm Selection Verifier
	4.6 Discussion

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References




