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Abstract. Traceability is the capability to represent, understand and analyze the
relationships between software artefacts. Traceability is at the core of many soft-
ware engineering activities. This is a blessing in disguise as traceability research
is scattered among various research subfields, which impairs a global view and
integration of the different innovations around the recording, identification, eval-
uation and management of traces. This also limits the adoption of traceability
solutions in industry.
In this sense, the goal of this paper is to present a characterization of the trace-
ability mechanism as a feature model depicting the shared and variable elements
in any traceability proposal. The features in the model are derived from a sur-
vey of papers related to traceability published in the literature. We believe this
feature model is useful to assess and compare different proposals and provide a
common terminology and background. Beyond the feature model, the survey we
conducted also help us to identify a number of challenges to be solved in order
to move traceability forward, especially in a context where, due to the increasing
importance of AI techniques in Software Engineering, traces are more important
than ever in order to be able to reproduce and explain AI decisions.

1 Introduction

The need for traceability has always been salient in software and systems development.
Across the years, there has been a continuous interest in developing techniques to fa-
cilitate the representation and analysis of traces and links between related artefacts. It
helps explaining their execution and evolution as required in many software engineer-
ing activities and disciplines such as code-generation, program understanding, software
maintenance, and debugging.

The importance of traceability was first recognized in system engineering, espe-
cially related to the development and certification of critical systems where it is a pri-
mary concern. As an example, traceability is part of any certification mechanism in all
commercial software-based aerospace systems as stated in documents like the RTCA
DO-178C (2012) [76,62]. The consideration of various levels of abstraction in software
development and the meaning of verification in model-based development paradigm
– which figures abstract representations (models) as the core artefact for conceptual-
ization – was later introduced with companion documents (specifically, DO-331). The
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automotive industry has followed the same path with the construction of an international
standard for functional safety, the ISO-26262 [46].

Despite these important evidences on the need for explicit (and automated) tracing
abilities in software development, traceability is not widely adopted, even less auto-
mated. There is little feedback from its concrete use in industry beyond the critical
domains above [75] and when existing, it ends up being mostly a manual process [55].
Moreover, with no standard definition or representation of traces, it is difficult to bridge
the gaps between the different partial traceability solutions existing in research sub-
fields [4,102,101]. Even the software engineering body of knowledge does not seem to
properly consider the power of traceability as it only mentions traceability once [16].

The foundation for an effective modelling of traceability is disseminated among a
profuse literature. Approaches vary greatly in their means and goals. Moreover, most
focus on specific pairs of artefacts and therefore remain difficult to integrate in different
industrial scenarios. Note also that this happens in a context where artificial intelligence
techniques are being integrated in development processes, raising the need for more
powerful reproducibility and explainability concerns, both requiring the assistance of
traceability mechanisms.

This paper aims to provide a comprehensive perspective on the state of the art of
traceability techniques in software development and their limitations. With the short-
term goal of facilitating the evaluation and comparison of current solutions. And the
mid-term goal of accelerating the development of new traceability solutions that could
benefit from the existing ones thanks to our new conceptualization in the form of a
feature model describing the potential dimensions and concerns a traceability solution
may wish to consider. We do not create the feature model only based on our (partial)
knowledge and expertise in the domain. Instead, we ground our classification with a
survey of the published literature in this field. According to this survey, we group the
traceability features in three main dimensions: trace definition, trace identification and
trace management, with the corresponding feature hierarchies for each of them.

The paper is organized as follows. After a brief introduction, we discuss in Section 2
an overview of the scientific work related to traceability. We then remind some basic
terminology in Section 3. Section 4 describes how we conducted our literature review
and Section 5 presents a detailed feature model derived from the survey of the retrieved
works. This analysis also helps us to propose a number of discussion points and open
challenges in Section 6 before concluding this work.

2 State of the art of software traceability

Traceability was proposed, from the very beginning of software engineering, to ensure
that a system being developed actually reflects its design. Already in the original NATO
working conference, quality projects were praised for making "the system that they are
designing contain explicit traces of the design process" [81]. From that point on, trace-
ability has been studied from a myriad of perspectives, dimensions and applications.

Historically, traceability historically started in requirement engineering. The very
idea to follow the impact of changes in the requirements to other artefacts (and back-
ward) was then and remains today the most prominent goal [35]. Precise and rich re-
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quirements allow a proper follow up of their later implementations [21]. Through time,
the advantages of using traces – i.e., the record of (inter-)dependencies between arte-
facts, has revealed to be applicable to most if not all sphere of software maintenance.
The use of traces spans from software certification and testing, feature location, de-
bugging, code generation, and so on. With the proliferation of traceability purposes,
some authors explicitly asked for better sharing of experiences in using traceability
[36] and evaluating the solutions existing so far [91]. Surveys and literature reviews
trying to group and compare them began to appear as well, though most of them fo-
cused on specific subareas such as requirement engineering [35,15], model-driven de-
velopment [32,101,70,86,63], software product lines [96,3], benchmarking [91], and
information retrieval [23,13,39]. To complement these scientific surveys, Konigs et al.
survey industrial application of traceability approaches, showing its limited penetra-
tion [52]. Neumuller et al. show that the adoption is worse in small businesses where
traceability is even less automated [67]. Finally, Charalampidou et al. add to the conclu-
sion of other surveys that "although many studies include some empirical validation",
there is still much to be done with respect to validation and reproducibility [20].

This is aggravated by the fact that, as pointed out above, many of the proposals
belong to different research subfields, which limits the discovery and awareness of al-
ternative solutions. For instance, authors point out that researchers in requirement en-
gineering and in model-based development do not communicate enough among each
others [101,70,85]. This lack of communication and shared understanding is one of the
open challenges in the traceability domain [22,4,28]. To solve this issue, several works
aim at proposing specific traceability models. Unfortunately, many investigations suffer
a lack of generalizability due the specific nature of the problem being solved (e.g., certi-
fication conformity [51], model transformation coevolution [38]), or the specific nature
of the solution considered (e.g., w.r.t. its language: SysML [65], w.r.t. its engineering
field: SPL [3], agile [60]).

As an example, the automatic identification of trace links is one of the most stud-
ied features. There are plenty of proposals but as they are evaluated using different
datasets and configurations, they cannot be directly compared [89,39,13]. Another ex-
ample would be model-driven engineering, where the use of traceability specific lan-
guages together with automated model transformation appears as an ideal soil to grow
end-to-end traceability. This led authors to present classifications and terminologies
for a systematic perspective on the tracing of MDE development [70,28,85]. Never-
theless, proposals tend to focus on a specific model-driven engineering problem: the
co-evolution of models and transformations [2] instead of aiming for more general so-
lutions. Mustafa et al. argue that "the main issues in traceability nowadays are building
traceability models that can accommodate the capturing of traceability information and
providing common semantics for trace links" [63]. As a result of this confusing situa-
tion, authors asked for more standardized practices. Two proposals gather terminology
for fundamental and model based terminology [36,45]. We take our general knowledge
about traceability from them and add to their definitions an actionable categorization
for existing and coming traceability approaches.

We agree with these authors that this lack of de juro / de facto standard is hampering
the benefits of current solutions and hindering evolution in the field. This paper intends
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to cover this gap by proposing a traceability characterization that stems from the anal-
ysis of existing proposals. We believe this model can be useful to researchers trying to
improve traceability techniques in any subfield and to practitioners looking for a way to
compare and choose the traceability solution that best suits their needs.

3 Towards a common traceablility terminology

A clear conclusion from the previous section is the lack of a common agreed upon con-
ceptualization for traceability that helps evaluating, comparing and reusing traceability
solutions over a variety of scenarios and application domains. Thus, the incoherency
problem still arises in traceability research [100]. Even if an individual article makes a
claim that withstood rigorous testing and statistical analysis, it might not use the same
words as an adjacent article, or it would use the same words but intend different mean-
ings. For instance, the term traceability is used to designate both the ability to trace
system elements, and the traceability links (the relations) themselves [15,4].

Therefore, before proposing our global traceability feature model to classify trace-
ability solutions, we first recap the different usages of the key traceability concepts and
propose a unified definition that we will use in the rest of the paper.

3.1 Traceability components

Traceability research refers mainly to a definition from Gotel et al. that defines trace-
ability as the ability to describe and follow the life-cycle of a requirement, from its
initial specification to the design and code elements of the system implementing it [35].
This is still the most popular meaning for traceability [15,7] even if modeling ap-
proaches try to generalize this notion by seeing traceability as a valuable tool to link
all types of linking artefacts at either the same or different levels of abstraction [56,95].

Regardless of the specific interpretation of traceability, we observe a division of
knowledge into four main areas:

– Strategizing traceability. It involves defining the explicit traceability purpose for
the project at hand and how to best reach that goal. Maro et al. address the impor-
tance of a coherent strategy. The authors propose an introductory methodology to
"provide support for establishing a traceability strategy that allows the organization
to achieve its goals and measure the impact of [its] traceability strategy" [60].

– Trace and artefact representation. It covers the design / adaptation of a language
to be used to define the traces and decisions regarding its syntax, expressiveness,
variability, integration, etc. For instance, this can be done by means of creating a
full traceability domain-specific language.

– Trace link identification. It designates the identification of traces in a software
system, be it a post-requirement assisted elicitation, a live record during a system
execution or an automatic AI-based inference process. This latter approach is the
motto right now to help the identification of links between heterogeneous artefacts.

– Trace management. It refers to the ways to use and maintain the traces. This in-
cludes tool support for the persistence, retrieval, and analysis of traces.
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The first area is a high-level concern that influences the requirements of the other
three to cover the specific needs of a project. These three will therefore be used to
structure our feature model later on. Note that the representation component should be
part of any traceability solution as it is the base component to be able to, at the very
least, express traceability information.

3.2 Traceability glossary

We propose some general definitions for the most frequently encountered traceability
terms while searching for and studying solutions for traceability in any of the above
categories. These definitions, mostly borrowed from past literature [36,45], aim to en-
compass the different uses and dimensions of traceability depicted above. Our set of
terms is not exhaustive but provide a common core generic enough to be then adapted
to specific scenarios. This is also why we try to be precise with the definitions, while
also offering room for slightly different (but compatible) interpretations.

– Traceability is the ability to trace different artefacts of a system (of systems). Gotel
et al. define traceability as "requirements traceability [which] refers to the ability to
describe and follow the life of a requirement, in both a forwards and backwards di-
rection" [35]. Gotel’s definition has been extended to MDE software traceability as
"any relationship that exists between artifacts involved in the software engineering
life cycle" [1].

– A trace is a path from one artefact to another. A trace is composed of atomic trace
links that directly relate artefacts to each others. The representation of traces, their
data structure and behaviour, is defined in a traceability grammar or metamodel [25]
depending on how the trace language is defined. In any case, the language definition
specifies the concepts and relationships available to define traces. As discussed
before, no standard language has emerged yet.

– An artefact can be any element of a system - e.g., unstructured documentation,
source code, design diagrams, test cases and suites... The nature of artefacts follows
two main dimensions: the life cycle phase they belong to (e.g., specification, design,
implementation, test), and their type (e.g., unstructured natural language, grammar-
based code, model-based artefact). The granularity of artefacts is the level to
which artefacts can be decomposed into sub parts. We call a fragment, the resulting
product of the decomposition of an artefact. A fragment can be itself broken down
into smaller parts (or sub-fragments), and so on.

– A trace link is a direct relationship between two artefacts. Links can be typed to
better support the heterogeneous nature of traceability applications. The type of the
link can help express the rationale behind the relationship - it informs not only how
artefacts are linked but also why [55]. Typing is a primary concern in conceptual
modeling in general [68]. This definition of a link is consistent with the concept of
link in popular modeling languages like UML or SysML.
Links can be explicit or implicit. An implicit link shows artefacts bondage at a
syntactic or semantic level without the need for an explicit link to be part of the
model (e.g., a binary class and its respective source code artefact are implicitly
"linked" to each other, yet this bondage is not part of any language or grammar
definition) [70].
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Fig. 1: Survey Process.

– An agent is the (human) actor accountable for an artefact, or a link.
– Trace integrity is the degree of reliability that bares a trace. It is an indirect mea-

sure that includes, for example, both the age of a trace, the volatility of artefacts
targeted by the trace, and the automation level of tracing features.

On top of these concepts, a recent work, by Holtmann et al., makes a distinction
between a foundational and a specifically model-based terminology [45]. This latter
add a specification for model and language scope definitions, as well as a distinction
between relational and referential trace links.

– Intra/Inter model trace links differentiate between relations that links elements
of the same instance of the language and relations linking elements from distinct
instances. This distinction was first introduced by Lindval et al. [54].

– Intra/Inter DSL differentiate between relations that links elements in models based
on the same language and relations that links elements in models from different lan-
guages.

– The distinction between Relational and Referential trace links lies in the instan-
tiation (or not) of the instance link. "A relational trace link is represented by a
dedicated node with incident directed edges pointing to the trace artifact nodes"
whereas "a referential trace link is a directed edge from one trace artifact node to
another trace artifact node". In the latter case, a trace link is commonly represented
as a property of the source artefact.

Some of these concepts will explicitly appear in our feature traceability model while
others act as requirements and usages that should be supported/facilitated by the fea-
tures in the model and taken into account when choosing a specific traceability solu-
tion depending on how well that solution covers the specific features of interest for the
project at hand.

4 Traceability Survey method
In this section we depict the methodology we followed to collect papers proposing
traceability solutions, including at the very least the core representation component
(see previous section). The analysis of these papers will give rise to the feature model
we will present next.

The selection process combined the manual selection of a few approaches based
on our own experience working in this field and/or covered by other meta-studies
[36,4,22,39] together with a systematic literature search mining bibliographic data sources
following the literature review process established by Kitchenham and Charters [49].
Fig. 1 depicts the three main steps of the process.
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4.1 Data source and search strategy

We used DBLP [10] as our core electronic database to search for primary studies on
traceability. To avoid missing possibly relevant approaches, we decided not to put a
specific period constraint for the search, but we limited the scope of the search to papers
of five pages or more to avoid opinion and vision papers, posters, tool demos and other
types of short papers to reduce the number of results while maximizing their quality.

Based on the topic of this survey, we defined the terms of the search query accord-
ing to the recommendations of Kitchenham and Charters [49]. We apply the query on
the title and abstract of potential relevant publications. As using very generic terms like
“trace” or “traceability” returned thousands of results, we decided to combine in the
search query trace-related keywords with language-related ones since we target trace-
ability proposals that, at the very least, discuss how traces need to be represented /
expressed and not only discuss their application to some specific domain without go-
ing deep into the details. As many traceability languages are model-based, we included
model, modeling, and other core MDE concepts as part of the language variations. This
resulted in a total of 203 papers.

Here is the exact query we applied:
.*(([Tt]rac(eability|ing))|([Tt]race[rs])).* AND
.*(([Mm]odel[- ])(([Dd]riven)|([Bb]ased))|
MD[DAE]|Model[l]ing|[Tt]ransformation| DSL|[Ll]anguage).*

4.2 Pruning

In what follows, we describe our inclusion and exclusion criteria. We further explain
how we applied these criteria on the previous set of papers.

Inclusion criteria Exclusion criteria
1. the paper is a technical contribution
2. the paper is about tracing in software engineering
3. traceability is the main concern of the paper

1. the paper is not a primary study

Before we applied these criteria on the potential papers fetched by our query, we re-
moved automatically papers of less than 5 pages long. We also automatically extracted
papers whose titles mentioned "biology", "education", "kinetics", "logistics", "physi-
ology", "physics", "neuroscience", "agriculture", and "food" which appeared each in a
couple of results. We manually examined the 183 papers left and excluded 40 papers
that did not fulfill the criteria or were duplicates.

4.3 Snowballing

At the end of the previous steps, we double-checked that we did not miss any potentially
relevant approach due to a number of reasons, e.g., some workshop papers are only
indexed by ACM or papers that may be using different synonyms for traceability like
“composition” or “extension”.
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Finally, we added papers we were aware of based on direct knowledge or from
other surveys we had read (if not already in the result set) and a few more we found
by snowballing on the selected papers references. They amount to a total of 10 more
papers. This lead to a final result of 159 papers. Among them, there are 41 journal
articles, 82 in conference proceedings, and 36 workshop reports (see Table 1). Fig. 2
shows the chronological distribution of the selected publications.
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Fig. 2: Papers selected related to traceability and modeling.

Publication type
Journal 41
Conference 82
Workshop 36

Table 1: Publication types of the selected papers.

4.4 Threats to validity in the selection process

We acknowledge limitations in the execution of our survey method. First, we only used
DBLP as a source database. Yet, it is recognized as a representative electronic database
for scientific publications on software engineering and already contains more than five
million publications from over two million authors. Setting the limit based on the num-
ber of pages alone to elude short papers is another threat to validity. Yet, it is a repro-
ducible practice that limits the number of papers to analyse and thus helps concentrate
on the topic rather than the engineering of the survey. Then, the vocabulary related to
traceability is scattered among various fields of application with their respective nu-
ances. We mitigate the risk of missing papers by manually adding papers that were not
using variations of this term but were still referenced by papers that did. Still, focusing
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on traceability as a key term was also a conscious decision as we wanted to characterize
the works in this field, focusing on those papers that define themselves as part of it.

5 A feature model to characterize software traceability

This section presents our feature model describing the traceability features and dimen-
sions found in the analysis of the literature. Our feature model groups them by similar-
ity and provides additional descriptions on the most important aspects of each one, e.g.,
different existing alternative implementation of the same feature and/or the most/the
least studied ones in each group. Next subsections provide some background on feature
modeling and then zoom in to each of the three main dimensions of traceability: trace
representation, trace identification, and trace management.

5.1 Introduction to feature modelling

A feature model leverages features as the abstraction mechanism to reason about prod-
uct variability. It is a hierarchically arranged set of features, where relationships be-
tween a parent feature and its child features may be categorized as: and – all sub-
features must be selected, alternative – only one subfeature can be selected, inclusive
or – one or more can be selected, mandatory, and optional [48]. Each feature represents
an increment in product functionality.

Feature modeling is a technique that has been intensively used for documenting the
points of variability in a software product line, how the points of variability constraint
one another, and what constitutes a complete configuration of the system. But beyond
product lines, feature models are also more and more used to shed light on complex do-
mains by representing the core concerns and variation points in a complex ecosystems
(e.g., [17]), as we do in this paper.

5.2 Trace definition and representation

All approaches must discuss their representation of trace artefacts even if they can differ
on the type of traces they consider and the application they target. Representations are
so diverse that our survey selected more than 80 papers mentioning their own distinct
definition for traceability – with 20 metamodels effectively depicted in those papers.
Some researchers present generic graph-based representations [87,37] while others
focus on representations much more specific to a concrete application like a metamodel
for change impact analysis [34] or multi-model consistency [94]. In both cases, what
traceability approaches target and how they represent a trace is differently approached.

Fig. 3 shows the hierarchy of features related to the definition and the representation
of trace artefacts. A peculiar focus is put on the typing of traces’ relationships. Typing
relationships is important to add semantics to the trace so that the engineer can know not
only what the linked artefacts are but also why they are linked. As such, it facilitates the
application of traceability solutions to specific domains. We also detail the genericity
of the language, the nature of the artefacts covered by the traceability proposal, and the
possibility to annotate traces with quality properties.
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Fig. 3: Features related to the representation of a trace.

We would like to remark the contribution of model-based approaches for traceabil-
ity in this section. The use of MDE tooling such as ATL [84,47], or the Eclipse Mod-
eling Framework (EMF) allows the automated generation of traceability information
as a side effect of executing operations [32,101]. The modeling community has pro-
posed metamodels for end-to-end traceability [43,41], as well as metamodels specific
to engineering domains such as model transformation [47,3,97,11] or software prod-
uct line [47,97]. Paige et al. call for more flexible modeling where models of different
formats are associated to each others’ with annotations that allow automated bond or
dependency inference between both application and engineering domains [89,72].

Language Languages specific to traceability provide the ability to represent trace arte-
facts with increased relevance and accuracy. Yet, they often suffer the limitation to be
built ad hoc and lack a significant power of reusability into other domains. Among these
domain-specific languages for traceability, some authors attempt a generic definition of
traceability [43,6] while others provide a language specific to a single domain, e.g.,
traceability for software product lines [3].
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We found few studies interested in the use of general-purpose software language
for traceability - even though this would be appealing to industrial partners interested
in instrumenting their legacy systems code with traceability information to facilitate
future evolution or migrations [65]. Representing traces in spreadsheets, text files, or
databases, shows better learning curves than using a domain specific language, but at
the cost of a cognitive gap between software engineers and domain experts. As an un-
fortunate consequence, "the maintenance costs turns out to grow accordingly [to the
usability of generic representations] and team members fail to keep the trace artefacts
up-to-date" [21].

A potential sweet spot lies in the making of orthogonal approaches that “plug” trace-
ability concerns on top of other languages to benefit from an existing language structure
while keeping most of the benefits of using a DSL.

Artefacts targeted We distinguish between the nature of the artefacts targeted by trace-
ability purposes and their granularity as both dimensions are important. For the nature
aspect, on the one hand, investigations differ on the development phase they target.
Linking requirement specifications to design and code level predominate in the litera-
ture with more than 50% of the papers in the survey addressing requirement traceability.
Other phases such as test and verification are targeted as well but in a lesser proportion
(10 approaches). On the other hand, the type of the artefacts is important to deduce the
level of potential generalization to other phases of the software lifecycle. Papers focus
on four different types: unstructured document, structured as grammar-, and model-
based artefacts, and binaries.

With regard to the granularity of the artefacts targeted, i.e., their level of decompo-
sition, few approaches go for a customizable granularity to adapt to artefact hierarchies
[43,60] while most of the others focus on specific types of artefacts (e.g., to concentrate
their work on specific optimizations of trace identification).

Relationship types As many authors have demonstrated, offering to the user the abil-
ity to define personalized types of relations between the artefacts of a system fosters
the comprehensibility of the traces produced [68]. We distinguish between approaches
offering predefined types and approaches allowing custom typing. Often the predefined
types relate to the field of software engineering (implements, inherits, uses, executes
...), but not only. For example, Maletic et al. mention that a separation between causal,
non causal, and navigation relationships can be appropriate [57]. Predefined types al-
low increased monitoring and user-friendliness to developers. They are found in most
contributions relating the optimization of trace identification. On the other hand, allow-
ing users to define the types of relationships specific to their area of expertise helps to
fill the gap between the design and the use of tracing functionalities [102].

Obviously a fixed typing facilitates the analysis of the traces as the potential set of
semantics and interpretations are fixed while offering domain-specific types increases
the usability and comprehensibility of the approach. As an example, SysMLv2 is of-
fering a more powerful mechanism to define links between artefacts compared to the
previous SysML version (where we had a sole dependency-like mechanism).

The literature shows also a distinction between approaches considering relation-
ships with multiple sources and targets and relationships allowing only a single source.
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Trace quality In most of the papers, quality aspects are barely mentioned. It seems
quality of the generated traces is not a major focus, or at least storing and annotating
the traces with such information is not. Yet, a few studies mention coverage and in-
tegrity. The coverage of a set of execution traces is used in approaches for software
testing [33]. Coverage is also used by Rath et al. who address the problem of missing
links between commits and issues with a classifier they train on textual commit infor-
mation to identify missing links between issues and commits (i.e., a lack in the cov-
erage indicates such missing links) [82]. Matrix-based visualizations are particularly
fit to assist coverage related tasks (See Section 5.4). Integrity of traces is addressed in
work on model transformation where co-evolution figures an automatic verification of
their coherence with other (versatile) software artefacts [94,92]. In the same manner,
Heisig et al. tag links which ends artefacts have been modified or deleted to inform
the user of such changes [43]. The co-evolution of traces implies measuring distances
between artefacts (syntactic, cognitive, geographic, cultural...) [9]. It also refers to the
analysis of the changes of the system that impact traceability artefacts [34,98]. In our
survey, nine papers address artefacts co-evolution and 17 tackle model transformation
limitations. These latter are a valuable tool to automate co-evolution tasks. In the many
studies focusing on the optimization of link identification, the quality of the results is
mainly evaluated with precision and recall measurements and never rely on inherent
trace artefacts characteristics. Few researchers include a user feedback [13].

5.3 Trace identification
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Fig. 4: Features related to the identification of trace links

Fig. 4 shows the hierarchy of features related to the identification of traces with four
main possible categories: the manual elicitation of traces, their live record during execu-
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tion and evolution, rule-based alternatives to assist the user with automation potential,
and AI-augmented identification with domain contextualization.

Manual elicitation Manual elicitation makes possible to create traces in an ad hoc
manner. As an example, one of our industrial partner chose to hire a developer to elicit
trace links necessary for a certification commitment. This was chosen rather than a
(semi-)automated approach, as they were not convinced the effort of augmenting an
existing tool would pay off for that specific project.

Recording instrumentation Teams can instrument the live record of traces during the
execution and the evolution of software artefacts. This way traces recording the sys-
tem changes are a side-effect of those same changes. There are initiatives to instrument
existing languages such as ATL with rich log generation [84,31], while others con-
sider trace record an aspect that can be weaved with current existing languages [78,84].
Ziegenhagen et al. mix execution traces with metadatas [103], and use developer inter-
action records [104] to enrich existing traceability artefact.

Model transformations are considered the hearth and soul of software modeling and,
consequently, numerous studies attempt to enrich trace generation during transforma-
tion execution [97,83,31]. This ubiquitous integration (see Fig. 5, bottom branch) allows
a semantically rich tracing of target and source artefacts [71]. Unfortunately, this option
can only be applied when the system is being built, not when the system is already in
place.

Identification rules Once a system is in place, teams can identify rules that help re-
trieve and maintain traceability relations [64,93]. Nentwich et al. describe a novel se-
mantics for first-order logic that produces links instead of truth values and give an ac-
count of their content management strategy that provides rule-based link generation and
consistency check [66]. At the model level, Grammel et al. use a graph-based model
matching technique to exploit metamodel matching techniques for the generation of
trace links for arbitrary source and target models [37], and Saada et al. recover execu-
tion traces of model transformation using genetic algorithms [83].

Domain contextualization Back in 1992, Borillo et al. published an article on the
use of information retrieval techniques for linguistics applied to spatial software engi-
neering [14]. This precursor work opened the box for AI-augmented traceability where
machine learning algorithms help extract knowledge specific to the application domain
(later called domain-contextualized traceability [40]). This is specially useful when the
source (or target) of the trace link is an unstructured document or when such document
is key to infer traces among other artefacts.

Today, domain contextualization by means of machine learning for topic modeling,
word embedding, and more generally knowledge extraction from unorganized text doc-
uments, is the most popular traceability feature [39,102]. This collective effort made
the identification of bonds between requirement specifications and other artefacts pos-
sible with a gradually improving precision [5,23]. Studies on domain contextualization
are separated into three subgroups according to the type of tools used (algebraic infor-
mation retrieval models, statistical language models, and neural networks). For exam-
ple, Florez et al. derive fine-grained requirement to source code links [30], Rath et al.
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complete missing links between commits and issues [82], Marcus et al. identify links
between documentation and source code [59]. An interesting publication from Poshy-
vanyk et al. shows that mixing expertise both in information retrieval techniques and
engineering domains gives far better results than when taken separately [79]. McMillan
et al. add that using structural information together with textual information benefits au-
tomated link recovery (between requirements and source code) [61]. In total, we found
22 approaches dedicated to this topic alone in our survey. We do not discuss in this paper
the techniques related to data collection and training optimization. These are important
features for automated learning which are discussed in depth in specialized literature.

Teams are also using genetic algorithms to cope with the variety of algorithms and
parameters these approaches use [58,73], and structural information to foster method-
ologies interweaving [74]. Unfortunately, a common critique rose against these positive
results. Too many teams compete with each others to accomplish a better precision and
recall when there is no standard to the effective quantification of tracing artefacts into
such variables. Too few attempt at qualifying the overall relation between these mea-
surement and the effective impact on software development [22].

In that regard, Shin et al. propose a set of guidelines for benchmarking automated
traceability techniques. Their evaluation (of 24 approaches) shows that methods of eval-
uation (when they are used appropriately) sometimes are not suitable to other applica-
tion domains and that the variation in results across project is not investigated [91]. This
corroborate Borg et al. who, in a systematic literature mapping on information retrieval
approaches to traceability, notice that there are no empirical evidence that any IR model
outperforms another consistently [13]. The ability to continuously improve the learning
process is mentioned in the literature but we found no evidence of its application.

Tool assessment Very few of the traceability approaches have been empirically as-
sessed on industrial use cases. The actual trend to report solely for precision and recall
values indicates an important issue in the automated identification of traces and may
justify the weak investment of industry in this sector [13,69].

Borg et al. published a taxonomy for information retrieval techniques applied to
traceability [12]. They emphasize the importance of the assessment of the tooling used
to derive or identify traces. More specifically, the authors draw a differentiation between
two orthogonal dimensions: the evaluation context that precises where in the context
the tool is assessed (e.g., at a technical, work task, or project level); and, the study
environment that shows the kind of data used to fulfil the assessment (e.g., proprietary,
open source, or academic). These features will affect the measurable attributes used for
the assessment as well as their generalizability.

5.4 Trace management

Fig. 5 shows the hierarchy of features related to the management of trace artefacts: their
maintenance, integrity, persistence, and integration in running software systems.

Trace Maintenance Trace links may be affected by changes on the artefacts they link
(directly or transitively) and therefore can easily become obsolete. This gradual decay
must be seriously taken into account to avoid having to re-elicit traces every time they
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Fig. 5: Tool support for traceability management.

need to be analyzed. A manual maintenance is not always impossible but not typically
feasible in practice due to the amount of information such inspections would involve.
Co-evolution techniques [64,26,80] attempt to tackle the burden to maintain trace links
up-to-date [88,19].

Beyond being able to manipulate traces, we also need to offer proper ways to vi-
sualize and inspect them [29]. The use of graphical representations stimulates human
perception and the integration of such technique in traceability frameworks is a useful
feature to augment user awareness [43]. On the other hand, matrix-based views offer a
valuable perspective to understand and analyse traces [53]. They are particularly effi-
cient in assisting the visualization of coverage characteristics of traceability [33,82].

In parallel, allowing a rich formulation of queries to assist the exploration of ex-
isting traces will help with reducing the amount of information users need to navigate
through [19]. More precisely, structured text, in the form of metamodel instances or
XML sheets allows query-based mining of trace datasets [24]. Interaction wise, hyper-
text links is a de facto standard to browse trace links. Indeed, following links through
successive clicks has become almost natural. Querying relies on the type of represen-
tation of traceability artefacts: SQL-like languages benefit from a long history of infor-
mation mining while dedicated languages offers better legibility. Genetic programming
has also permitted the automation of query formulation [77].

Trace Integrity To cope with the decay and volatility mentioned above, ways to de-
termine the integrity of existing traces are greatly needed. Work on these questions, al-
though called out loudly by literature studies, is scarce in practice [101,4]. The first op-
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tion is given with manual annotation or vetting of trace links to inform about their level
of reliability. Annotations allow a qualitative and quantitative evaluation [18]. This is
the case for back-propagation of verification and validation results between design and
requirements [42]. Some approaches enable the definition of invariant rules while ma-
nipulating traces or their targets [19]. If the invariant is violated, an exception for that
trace is automatically generated. For example, we could define a rule that is violated
when a change occurs in an artefact targeted by a trace if the corresponding link was
identified more than two versions prior to the current version. In the same vein, Heisig
et al. tag trace links when their target (or source) artefacts are modified or deleted [43].
Thanks to the ubiquitous integration of the tool, warning is raised consequently in EMF.

Trace persistence Many different storage alternatives exist for traceability artefacts.
An option is to use SQL-like grammar to store and retrieve traces with the power of
database tooling, or to use XML documents to represent trace matrix in a transformable
format [57,27]. The industry uses a lot of informal format and link representations often
remains implemented in spreadsheets, text files, databases or requirement management
tools. These links deteriorate quickly during a project as time pressured team members
fail to update them. Researchers aiming at a reusable approach favour model-based rep-
resentations able to express specifically defined concepts related to traceability (often
in a specific domain of application). The burden of maintaining traces coherent is eased
in model-based solutions [21].

Another concern lies in the recording of trace evolution. The trace creation should
be recorded, with the successive changes that affect it, for evolution analysis. Integrity
measures respective to evolution events (e.g., creation, modification) should be recorded
as well to evaluate their evolution during a period of time. Rahimi et al. ensure the co-
evolution of artefacts and traces [80] using a set of heuristics coupled with refactoring
detection and information retrieval technique to detect change scenarios between con-
tiguous versions of software systems.

System integration Like most of the MDE approaches, Helming et al. use the same
modeling language for both traceability and system artefacts [44]. Tracing features are
embedded in the language. The conjunct use of EMF and a dedicated traceability meta-
model (both written in Ecore) facilitates the integration of traceability features includ-
ing graphical versions to stimulate human perception and standard analysis of traces
in native environment. Galvao et al. in their seminal work on traceability and MDE
call for more loosely coupled traceability support that can integrate external relation-
ship with independent representations (in another, ideally common language) [32] as
also elaborated by Azevedo et al. [6]. Finally, the SysMLv2 implementation committee
is calling for orthogonal implementation of features such as traceability, annotations
and comment through meta-level libraries in order to keep concerns separated at design
level.
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6 Discussion

The feature model is a first step towards the shared understanding of all dimensions
involved in a traceability solution. Ideally, a company interested in a certain set of such
dimensions could try to create its perfect traceability solution by combining the top
solutions for each dimension. But this is not yet a real possibility as those solution would
be difficult to combine and, more importantly, several of the features in the feature
model do not really have a great solution yet. This section elaborates on this discussion
by presenting some open challenges in software traceability research.

Common traceability metamodel. We have counted over 20 different traceability
metamodel proposals. Nevertheless, some are solutions limited to the specific problems
the authors present as case studies. And these metamodels are rarely reused, if ever. This
proliferation is a challenge to make different traceability solutions interoperate. The
research community should agree in a unified proposal that facilitates the composability
of traceability solutions.

Security of trace data. Considering that traceability is a major aspect in certifica-
tion and other critical applications, it is surprising to see so little interest in security
concerns in relationship to trace artefacts. We believe security mechanisms (even sim-
ple rule-based access control) for traceability are needed to control who can modify
what trace data, given the implication such changes can have.

Library of trace types and semantics. We already mentioned the importance of
having a rich set of types for traces to let engineers express the reasons behind the
creation of a given trace. But at the same time, complete freedom makes reusability of
analysis techniques difficult. We would like to see a rich yet predefined set of types for
traces that could then be imported in new traceability projects.

Usefulness of identified traces. Managing a large number of traces is time-consuming.
As such, we should make sure every explicit trace is actually useful. So far, algorithms
aimed at automatically identifying traces are compared based on standard properties
like precision and recall. But they should be evaluated on “usefulness”: are those traces
useful for the end-user? or are they simply redundant noise?

Verification, validation and testing of traces. Our ample literature on verification,
validation and testing methods for software engineering should be extended to deal with
trace data, especially from a temporal perspective. Reasoning on outdated and poten-
tially incorrect trace data could have strong damaging impacts on the system as a whole.
So far, very few approaches target these aspects except in coevolution in model-driven
engineering. A recent study shows that the ability to justify with evidences and uncer-
tainty evaluation the quality and integrity of traces is a prerequisite to robust and reliable
traceability [8]. Given the effort required to create traces in the first place, it is important
to instill more confidence to practitioners unsure if creating traces is worthwhile.

Traceability as core concern in general languages. Another important step to-
wards the mainstream adoption of traceability in industry is the integration of the com-
mon traceability metamodel in popular modeling languages like UML or SysML, in the
form of a profile (to be able to directly reuse existing modeling tools available for those
languages) or new packages in the respective standards. This way, traceability would
become a core concern and a primary class modeling primitive in software develop-
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ment while still being a rich concept and not just a variation of the simple generic plain
dependency relationship we can use right now in those languages.

Working together with the industry. Orthogonal to all the others, we (the re-
search community) should aim at more frequent exchanges with practitioners to better
understand why they still create traces manually instead of reusing any of the dozens of
existing solutions. Some reasons have been already hinted in this paper, but there might
be others we are not aware of. If we want traceability research to transfer to industry,
more and better communication flows should be part of the agenda.

7 Conclusion

Our survey reveals a continuous interest in traceability even if, often, it does not have
the spotlight it deserves given the key role it plays in a good deal of software engi-
neering tasks 4. Work relating to traceability is indeed disseminated within established
research communities (e.g., debugging, SPL). Existing conceptualizations vary greatly
depending on the community to which its authors belong to as well as the objectives
they aim at. As a consequence, a clear and measurable idea of the costs and benefits
to software traceability is slow to emerge. To help visualize, classify and compare the
different traceability approaches, we propose a feature model covering all important
traceability aspects, as derived from a thorough analysis of the traceability literature.
Following the existing body of work, we put special emphasis in separating how traces
are represented from how they are identified and managed.

Beyond the feature model, our analysis highlights several limitations of current
traceability approaches that should be further developed. We believe advancing on those
aspects is especially important, even more given the new traceability challenges posed
by the growing use of AI in Software Engineering (e.g. in terms of reproducibility and
explainability of the AI decisions) [90,99]. In this sense, we hope this paper serves as
a “wake-up call” to make sure new AI for SE proposals come together with a proper
traceability mechanism that assists engineers in evaluating and understanding the im-
pact of the new AI components in the software engineering process instead of having
to blindly trust them.

As further work, we plan to start working on the above-mentioned aspects starting
with a collaboration with some of the authors of other proposals to map and bridge their
algorithms and techniques to our modular and quality-focused metamodel in order to
combine the benefits of a unified and generic approach with those of a more domain-
specific representation. We will also study how better embed traceability concepts into
mainstream modeling languages (like UML or SysML) to further facilitate its adoption.

Acknowledgements: This work has been partially funded by the Spanish gov-
ernment (LOCOSS project - PID2020-114615RB-I00), and receives support from the
ECSEL Joint Undertaking (AIDOaRt - grant agreement No 101007350).

4 As an example, ICSE’18 awarded a trace-based paper as the most influential paper in the
past 10 years [50]. The work introduced a novel trace-based approach to debugging. Though
the focus was on the debugging aspect of the paper, traceability was the key to achieve that
debugging improvement. The word "trace" alone is mentioned 46 times in the 10 pages paper.
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