
A Survey-driven Feature Model for Software
Traceability Approaches

Edouard Romari Batot�1, Sebastien Gérard2, and Jordi Cabot1,3

1 SOM-IN3 - Universitat Oberta de Catalunya, Barcelona, España –
{ebatot,jcabot}@uoc.edu

2 CEA LIST, Paris France – sebastien.gerard@cea.fr
3 ICREA, Barcelona, España – jordi.cabot@icrea.cat

Abstract. Traceability is the capability to represent, understand and analyze the
relationships between software artefacts. Traceability is at the core of many soft-
ware engineering activities. This is a blessing in disguise as traceability research
is scattered among various research subfields, which impairs a global view and
integration of the different innovations around the recording, identification, eval-
uation and management of traces. This also limits the adoption of traceability
solutions in industry.
In this sense, the goal of this paper is to present a characterization of the trace-
ability mechanism as a feature model depicting the shared and variable elements
in any traceability proposal. The features in the model are derived from a sur-
vey of papers related to traceability published in the literature. We believe this
feature model is useful to assess and compare different proposals and provide a
common terminology and background. Beyond the feature model, the survey we
conducted also help us to identify a number of challenges to be solved in order
to move traceability forward, especially in a context where, due to the increasing
importance of AI techniques in Software Engineering, traces are more important
than ever in order to be able to reproduce and explain AI decisions.

1 Introduction

The need for traceability has always been salient in software and systems development.
Across the years, there has been a continuous interest in developing techniques to fa-
cilitate the representation and analysis of traces and links between related artefacts. It
helps explaining their execution and evolution as required in many software engineer-
ing activities and disciplines such as code-generation, program understanding, software
maintenance, and debugging.

The importance of traceability was first recognized in system engineering, espe-
cially related to the development and certification of critical systems where it is a pri-
mary concern. As an example, traceability is part of any certification mechanism in all
commercial software-based aerospace systems as stated in documents like the RTCA
DO-178C (2012) [76,62]. The consideration of various levels of abstraction in software
development and the meaning of verification in model-based development paradigm
– which figures abstract representations (models) as the core artefact for conceptual-
ization – was later introduced with companion documents (specifically, DO-331). The

c© The Author(s) 2022
E. B. Johnsen and M. Wimmer (Eds.): FASE 2022, LNCS 13241, pp. 23–48, 2022.
https://doi.org/10.1007/978-3-030-99429-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99429-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-99429-7_2

24 E. R. Batot et al.

automotive industry has followed the same path with the construction of an international
standard for functional safety, the ISO-26262 [46].

Despite these important evidences on the need for explicit (and automated) tracing
abilities in software development, traceability is not widely adopted, even less auto-
mated. There is little feedback from its concrete use in industry beyond the critical
domains above [75] and when existing, it ends up being mostly a manual process [55].
Moreover, with no standard definition or representation of traces, it is difficult to bridge
the gaps between the different partial traceability solutions existing in research sub-
fields [4,102,101]. Even the software engineering body of knowledge does not seem to
properly consider the power of traceability as it only mentions traceability once [16].

The foundation for an effective modelling of traceability is disseminated among a
profuse literature. Approaches vary greatly in their means and goals. Moreover, most
focus on specific pairs of artefacts and therefore remain difficult to integrate in different
industrial scenarios. Note also that this happens in a context where artificial intelligence
techniques are being integrated in development processes, raising the need for more
powerful reproducibility and explainability concerns, both requiring the assistance of
traceability mechanisms.

This paper aims to provide a comprehensive perspective on the state of the art of
traceability techniques in software development and their limitations. With the short-
term goal of facilitating the evaluation and comparison of current solutions. And the
mid-term goal of accelerating the development of new traceability solutions that could
benefit from the existing ones thanks to our new conceptualization in the form of a
feature model describing the potential dimensions and concerns a traceability solution
may wish to consider. We do not create the feature model only based on our (partial)
knowledge and expertise in the domain. Instead, we ground our classification with a
survey of the published literature in this field. According to this survey, we group the
traceability features in three main dimensions: trace definition, trace identification and
trace management, with the corresponding feature hierarchies for each of them.

The paper is organized as follows. After a brief introduction, we discuss in Section 2
an overview of the scientific work related to traceability. We then remind some basic
terminology in Section 3. Section 4 describes how we conducted our literature review
and Section 5 presents a detailed feature model derived from the survey of the retrieved
works. This analysis also helps us to propose a number of discussion points and open
challenges in Section 6 before concluding this work.

2 State of the art of software traceability

Traceability was proposed, from the very beginning of software engineering, to ensure
that a system being developed actually reflects its design. Already in the original NATO
working conference, quality projects were praised for making "the system that they are
designing contain explicit traces of the design process" [81]. From that point on, trace-
ability has been studied from a myriad of perspectives, dimensions and applications.

Historically, traceability historically started in requirement engineering. The very
idea to follow the impact of changes in the requirements to other artefacts (and back-
ward) was then and remains today the most prominent goal [35]. Precise and rich re-

A Survey-driven Feature Model for Software Traceability Approaches

quirements allow a proper follow up of their later implementations [21]. Through time,
the advantages of using traces – i.e., the record of (inter-)dependencies between arte-
facts, has revealed to be applicable to most if not all sphere of software maintenance.
The use of traces spans from software certification and testing, feature location, de-
bugging, code generation, and so on. With the proliferation of traceability purposes,
some authors explicitly asked for better sharing of experiences in using traceability
[36] and evaluating the solutions existing so far [91]. Surveys and literature reviews
trying to group and compare them began to appear as well, though most of them fo-
cused on specific subareas such as requirement engineering [35,15], model-driven de-
velopment [32,101,70,86,63], software product lines [96,3], benchmarking [91], and
information retrieval [23,13,39]. To complement these scientific surveys, Konigs et al.
survey industrial application of traceability approaches, showing its limited penetra-
tion [52]. Neumuller et al. show that the adoption is worse in small businesses where
traceability is even less automated [67]. Finally, Charalampidou et al. add to the conclu-
sion of other surveys that "although many studies include some empirical validation",
there is still much to be done with respect to validation and reproducibility [20].

This is aggravated by the fact that, as pointed out above, many of the proposals
belong to different research subfields, which limits the discovery and awareness of al-
ternative solutions. For instance, authors point out that researchers in requirement en-
gineering and in model-based development do not communicate enough among each
others [101,70,85]. This lack of communication and shared understanding is one of the
open challenges in the traceability domain [22,4,28]. To solve this issue, several works
aim at proposing specific traceability models. Unfortunately, many investigations suffer
a lack of generalizability due the specific nature of the problem being solved (e.g., certi-
fication conformity [51], model transformation coevolution [38]), or the specific nature
of the solution considered (e.g., w.r.t. its language: SysML [65], w.r.t. its engineering
field: SPL [3], agile [60]).

As an example, the automatic identification of trace links is one of the most stud-
ied features. There are plenty of proposals but as they are evaluated using different
datasets and configurations, they cannot be directly compared [89,39,13]. Another ex-
ample would be model-driven engineering, where the use of traceability specific lan-
guages together with automated model transformation appears as an ideal soil to grow
end-to-end traceability. This led authors to present classifications and terminologies
for a systematic perspective on the tracing of MDE development [70,28,85]. Never-
theless, proposals tend to focus on a specific model-driven engineering problem: the
co-evolution of models and transformations [2] instead of aiming for more general so-
lutions. Mustafa et al. argue that "the main issues in traceability nowadays are building
traceability models that can accommodate the capturing of traceability information and
providing common semantics for trace links" [63]. As a result of this confusing situa-
tion, authors asked for more standardized practices. Two proposals gather terminology
for fundamental and model based terminology [36,45]. We take our general knowledge
about traceability from them and add to their definitions an actionable categorization
for existing and coming traceability approaches.

We agree with these authors that this lack of de juro / de facto standard is hampering
the benefits of current solutions and hindering evolution in the field. This paper intends

25

to cover this gap by proposing a traceability characterization that stems from the anal-
ysis of existing proposals. We believe this model can be useful to researchers trying to
improve traceability techniques in any subfield and to practitioners looking for a way to
compare and choose the traceability solution that best suits their needs.

3 Towards a common traceablility terminology

A clear conclusion from the previous section is the lack of a common agreed upon con-
ceptualization for traceability that helps evaluating, comparing and reusing traceability
solutions over a variety of scenarios and application domains. Thus, the incoherency
problem still arises in traceability research [100]. Even if an individual article makes a
claim that withstood rigorous testing and statistical analysis, it might not use the same
words as an adjacent article, or it would use the same words but intend different mean-
ings. For instance, the term traceability is used to designate both the ability to trace
system elements, and the traceability links (the relations) themselves [15,4].

Therefore, before proposing our global traceability feature model to classify trace-
ability solutions, we first recap the different usages of the key traceability concepts and
propose a unified definition that we will use in the rest of the paper.

3.1 Traceability components

Traceability research refers mainly to a definition from Gotel et al. that defines trace-
ability as the ability to describe and follow the life-cycle of a requirement, from its
initial specification to the design and code elements of the system implementing it [35].
This is still the most popular meaning for traceability [15,7] even if modeling ap-
proaches try to generalize this notion by seeing traceability as a valuable tool to link
all types of linking artefacts at either the same or different levels of abstraction [56,95].

Regardless of the specific interpretation of traceability, we observe a division of
knowledge into four main areas:

– Strategizing traceability. It involves defining the explicit traceability purpose for
the project at hand and how to best reach that goal. Maro et al. address the impor-
tance of a coherent strategy. The authors propose an introductory methodology to
"provide support for establishing a traceability strategy that allows the organization
to achieve its goals and measure the impact of [its] traceability strategy" [60].

– Trace and artefact representation. It covers the design / adaptation of a language
to be used to define the traces and decisions regarding its syntax, expressiveness,
variability, integration, etc. For instance, this can be done by means of creating a
full traceability domain-specific language.

– Trace link identification. It designates the identification of traces in a software
system, be it a post-requirement assisted elicitation, a live record during a system
execution or an automatic AI-based inference process. This latter approach is the
motto right now to help the identification of links between heterogeneous artefacts.

– Trace management. It refers to the ways to use and maintain the traces. This in-
cludes tool support for the persistence, retrieval, and analysis of traces.

E. R. Batot et al.26

The first area is a high-level concern that influences the requirements of the other
three to cover the specific needs of a project. These three will therefore be used to
structure our feature model later on. Note that the representation component should be
part of any traceability solution as it is the base component to be able to, at the very
least, express traceability information.

3.2 Traceability glossary

We propose some general definitions for the most frequently encountered traceability
terms while searching for and studying solutions for traceability in any of the above
categories. These definitions, mostly borrowed from past literature [36,45], aim to en-
compass the different uses and dimensions of traceability depicted above. Our set of
terms is not exhaustive but provide a common core generic enough to be then adapted
to specific scenarios. This is also why we try to be precise with the definitions, while
also offering room for slightly different (but compatible) interpretations.

– Traceability is the ability to trace different artefacts of a system (of systems). Gotel
et al. define traceability as "requirements traceability [which] refers to the ability to
describe and follow the life of a requirement, in both a forwards and backwards di-
rection" [35]. Gotel’s definition has been extended to MDE software traceability as
"any relationship that exists between artifacts involved in the software engineering
life cycle" [1].

– A trace is a path from one artefact to another. A trace is composed of atomic trace
links that directly relate artefacts to each others. The representation of traces, their
data structure and behaviour, is defined in a traceability grammar or metamodel [25]
depending on how the trace language is defined. In any case, the language definition
specifies the concepts and relationships available to define traces. As discussed
before, no standard language has emerged yet.

– An artefact can be any element of a system - e.g., unstructured documentation,
source code, design diagrams, test cases and suites... The nature of artefacts follows
two main dimensions: the life cycle phase they belong to (e.g., specification, design,
implementation, test), and their type (e.g., unstructured natural language, grammar-
based code, model-based artefact). The granularity of artefacts is the level to
which artefacts can be decomposed into sub parts. We call a fragment, the resulting
product of the decomposition of an artefact. A fragment can be itself broken down
into smaller parts (or sub-fragments), and so on.

– A trace link is a direct relationship between two artefacts. Links can be typed to
better support the heterogeneous nature of traceability applications. The type of the
link can help express the rationale behind the relationship - it informs not only how
artefacts are linked but also why [55]. Typing is a primary concern in conceptual
modeling in general [68]. This definition of a link is consistent with the concept of
link in popular modeling languages like UML or SysML.
Links can be explicit or implicit. An implicit link shows artefacts bondage at a
syntactic or semantic level without the need for an explicit link to be part of the
model (e.g., a binary class and its respective source code artefact are implicitly
"linked" to each other, yet this bondage is not part of any language or grammar
definition) [70].

A Survey-driven Feature Model for Software Traceability Approaches 27

DBLP

dataset

Traceability

papers

Non Software

engineering

> 7 millions entries 203 papers 159 papers

Inclusion with

keyword search Pruning Snowballing

Manual

addition

143 papers

Fig. 1: Survey Process.

– An agent is the (human) actor accountable for an artefact, or a link.
– Trace integrity is the degree of reliability that bares a trace. It is an indirect mea-

sure that includes, for example, both the age of a trace, the volatility of artefacts
targeted by the trace, and the automation level of tracing features.

On top of these concepts, a recent work, by Holtmann et al., makes a distinction
between a foundational and a specifically model-based terminology [45]. This latter
add a specification for model and language scope definitions, as well as a distinction
between relational and referential trace links.

– Intra/Inter model trace links differentiate between relations that links elements
of the same instance of the language and relations linking elements from distinct
instances. This distinction was first introduced by Lindval et al. [54].

– Intra/Inter DSL differentiate between relations that links elements in models based
on the same language and relations that links elements in models from different lan-
guages.

– The distinction between Relational and Referential trace links lies in the instan-
tiation (or not) of the instance link. "A relational trace link is represented by a
dedicated node with incident directed edges pointing to the trace artifact nodes"
whereas "a referential trace link is a directed edge from one trace artifact node to
another trace artifact node". In the latter case, a trace link is commonly represented
as a property of the source artefact.

Some of these concepts will explicitly appear in our feature traceability model while
others act as requirements and usages that should be supported/facilitated by the fea-
tures in the model and taken into account when choosing a specific traceability solu-
tion depending on how well that solution covers the specific features of interest for the
project at hand.

4 Traceability Survey method
In this section we depict the methodology we followed to collect papers proposing
traceability solutions, including at the very least the core representation component
(see previous section). The analysis of these papers will give rise to the feature model
we will present next.

The selection process combined the manual selection of a few approaches based
on our own experience working in this field and/or covered by other meta-studies
[36,4,22,39] together with a systematic literature search mining bibliographic data sources
following the literature review process established by Kitchenham and Charters [49].
Fig. 1 depicts the three main steps of the process.

28 E. R. Batot et al.

4.1 Data source and search strategy

We used DBLP [10] as our core electronic database to search for primary studies on
traceability. To avoid missing possibly relevant approaches, we decided not to put a
specific period constraint for the search, but we limited the scope of the search to papers
of five pages or more to avoid opinion and vision papers, posters, tool demos and other
types of short papers to reduce the number of results while maximizing their quality.

Based on the topic of this survey, we defined the terms of the search query accord-
ing to the recommendations of Kitchenham and Charters [49]. We apply the query on
the title and abstract of potential relevant publications. As using very generic terms like
“trace” or “traceability” returned thousands of results, we decided to combine in the
search query trace-related keywords with language-related ones since we target trace-
ability proposals that, at the very least, discuss how traces need to be represented /
expressed and not only discuss their application to some specific domain without go-
ing deep into the details. As many traceability languages are model-based, we included
model, modeling, and other core MDE concepts as part of the language variations. This
resulted in a total of 203 papers.

Here is the exact query we applied:
.*(([Tt]rac(eability|ing))|([Tt]race[rs])).* AND
.*(([Mm]odel[-])(([Dd]riven)|([Bb]ased))|
MD[DAE]|Model[l]ing|[Tt]ransformation| DSL|[Ll]anguage).*

4.2 Pruning

In what follows, we describe our inclusion and exclusion criteria. We further explain
how we applied these criteria on the previous set of papers.

Inclusion criteria Exclusion criteria
1. the paper is a technical contribution
2. the paper is about tracing in software engineering
3. traceability is the main concern of the paper

1. the paper is not a primary study

Before we applied these criteria on the potential papers fetched by our query, we re-
moved automatically papers of less than 5 pages long. We also automatically extracted
papers whose titles mentioned "biology", "education", "kinetics", "logistics", "physi-
ology", "physics", "neuroscience", "agriculture", and "food" which appeared each in a
couple of results. We manually examined the 183 papers left and excluded 40 papers
that did not fulfill the criteria or were duplicates.

4.3 Snowballing

At the end of the previous steps, we double-checked that we did not miss any potentially
relevant approach due to a number of reasons, e.g., some workshop papers are only
indexed by ACM or papers that may be using different synonyms for traceability like
“composition” or “extension”.

A Survey-driven Feature Model for Software Traceability Approaches 29

Finally, we added papers we were aware of based on direct knowledge or from
other surveys we had read (if not already in the result set) and a few more we found
by snowballing on the selected papers references. They amount to a total of 10 more
papers. This lead to a final result of 159 papers. Among them, there are 41 journal
articles, 82 in conference proceedings, and 36 workshop reports (see Table 1). Fig. 2
shows the chronological distribution of the selected publications.

2 0 1 1 0 0 0 1 0 0 2 2 1 1

5

10

3

8

22

6

16
17

13

8
7

8

5

13

7

1
9

9
2

19
93

1
9

9
4

19
95

1
9

9
6

19
97

1
9

9
8

19
99

2
0

0
0

20
01

2
0

0
2

20
03

2
0

0
4

20
05

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

Fig. 2: Papers selected related to traceability and modeling.

Publication type
Journal 41
Conference 82
Workshop 36

Table 1: Publication types of the selected papers.

4.4 Threats to validity in the selection process

We acknowledge limitations in the execution of our survey method. First, we only used
DBLP as a source database. Yet, it is recognized as a representative electronic database
for scientific publications on software engineering and already contains more than five
million publications from over two million authors. Setting the limit based on the num-
ber of pages alone to elude short papers is another threat to validity. Yet, it is a repro-
ducible practice that limits the number of papers to analyse and thus helps concentrate
on the topic rather than the engineering of the survey. Then, the vocabulary related to
traceability is scattered among various fields of application with their respective nu-
ances. We mitigate the risk of missing papers by manually adding papers that were not
using variations of this term but were still referenced by papers that did. Still, focusing

E. R. Batot et al.30

on traceability as a key term was also a conscious decision as we wanted to characterize
the works in this field, focusing on those papers that define themselves as part of it.

5 A feature model to characterize software traceability

This section presents our feature model describing the traceability features and dimen-
sions found in the analysis of the literature. Our feature model groups them by similar-
ity and provides additional descriptions on the most important aspects of each one, e.g.,
different existing alternative implementation of the same feature and/or the most/the
least studied ones in each group. Next subsections provide some background on feature
modeling and then zoom in to each of the three main dimensions of traceability: trace
representation, trace identification, and trace management.

5.1 Introduction to feature modelling

A feature model leverages features as the abstraction mechanism to reason about prod-
uct variability. It is a hierarchically arranged set of features, where relationships be-
tween a parent feature and its child features may be categorized as: and – all sub-
features must be selected, alternative – only one subfeature can be selected, inclusive
or – one or more can be selected, mandatory, and optional [48]. Each feature represents
an increment in product functionality.

Feature modeling is a technique that has been intensively used for documenting the
points of variability in a software product line, how the points of variability constraint
one another, and what constitutes a complete configuration of the system. But beyond
product lines, feature models are also more and more used to shed light on complex do-
mains by representing the core concerns and variation points in a complex ecosystems
(e.g., [17]), as we do in this paper.

5.2 Trace definition and representation

All approaches must discuss their representation of trace artefacts even if they can differ
on the type of traces they consider and the application they target. Representations are
so diverse that our survey selected more than 80 papers mentioning their own distinct
definition for traceability – with 20 metamodels effectively depicted in those papers.
Some researchers present generic graph-based representations [87,37] while others
focus on representations much more specific to a concrete application like a metamodel
for change impact analysis [34] or multi-model consistency [94]. In both cases, what
traceability approaches target and how they represent a trace is differently approached.

Fig. 3 shows the hierarchy of features related to the definition and the representation
of trace artefacts. A peculiar focus is put on the typing of traces’ relationships. Typing
relationships is important to add semantics to the trace so that the engineer can know not
only what the linked artefacts are but also why they are linked. As such, it facilitates the
application of traceability solutions to specific domains. We also detail the genericity
of the language, the nature of the artefacts covered by the traceability proposal, and the
possibility to annotate traces with quality properties.

A Survey-driven Feature Model for Software Traceability Approaches 31

Trace representation

Domain specific language

Generic for traceability

Unstructured document

Grammar-based artefact

Executable

Model-based artefact

Artefact type##

Artefacts targeted
Granularity Pre-defined

Composable

Nature

Development process

Artefact type

#

##

Customizable

Development process
Design

Implementation

Test

Configuration

Specification Requirement

Certification#

Trace quality

Cardinality Multiple source and target

Single source

Typing
Generic

Domain specific

CustomizableRelationships

Single (pair)

Language

Temporal characteristics

Precision & Recall

Co-evolution

Change impact analysis

Automated transformation

Relevance

Coverage

Integrity Automation level

Artefacts’ versatility

User Feedback

Legend
optional

alternative
(or)

alternative
(xor)

mandatory

Fig. 3: Features related to the representation of a trace.

We would like to remark the contribution of model-based approaches for traceabil-
ity in this section. The use of MDE tooling such as ATL [84,47], or the Eclipse Mod-
eling Framework (EMF) allows the automated generation of traceability information
as a side effect of executing operations [32,101]. The modeling community has pro-
posed metamodels for end-to-end traceability [43,41], as well as metamodels specific
to engineering domains such as model transformation [47,3,97,11] or software prod-
uct line [47,97]. Paige et al. call for more flexible modeling where models of different
formats are associated to each others’ with annotations that allow automated bond or
dependency inference between both application and engineering domains [89,72].

Language Languages specific to traceability provide the ability to represent trace arte-
facts with increased relevance and accuracy. Yet, they often suffer the limitation to be
built ad hoc and lack a significant power of reusability into other domains. Among these
domain-specific languages for traceability, some authors attempt a generic definition of
traceability [43,6] while others provide a language specific to a single domain, e.g.,
traceability for software product lines [3].

E. R. Batot et al.32

We found few studies interested in the use of general-purpose software language
for traceability - even though this would be appealing to industrial partners interested
in instrumenting their legacy systems code with traceability information to facilitate
future evolution or migrations [65]. Representing traces in spreadsheets, text files, or
databases, shows better learning curves than using a domain specific language, but at
the cost of a cognitive gap between software engineers and domain experts. As an un-
fortunate consequence, "the maintenance costs turns out to grow accordingly [to the
usability of generic representations] and team members fail to keep the trace artefacts
up-to-date" [21].

A potential sweet spot lies in the making of orthogonal approaches that “plug” trace-
ability concerns on top of other languages to benefit from an existing language structure
while keeping most of the benefits of using a DSL.

Artefacts targeted We distinguish between the nature of the artefacts targeted by trace-
ability purposes and their granularity as both dimensions are important. For the nature
aspect, on the one hand, investigations differ on the development phase they target.
Linking requirement specifications to design and code level predominate in the litera-
ture with more than 50% of the papers in the survey addressing requirement traceability.
Other phases such as test and verification are targeted as well but in a lesser proportion
(10 approaches). On the other hand, the type of the artefacts is important to deduce the
level of potential generalization to other phases of the software lifecycle. Papers focus
on four different types: unstructured document, structured as grammar-, and model-
based artefacts, and binaries.

With regard to the granularity of the artefacts targeted, i.e., their level of decompo-
sition, few approaches go for a customizable granularity to adapt to artefact hierarchies
[43,60] while most of the others focus on specific types of artefacts (e.g., to concentrate
their work on specific optimizations of trace identification).

Relationship types As many authors have demonstrated, offering to the user the abil-
ity to define personalized types of relations between the artefacts of a system fosters
the comprehensibility of the traces produced [68]. We distinguish between approaches
offering predefined types and approaches allowing custom typing. Often the predefined
types relate to the field of software engineering (implements, inherits, uses, executes
...), but not only. For example, Maletic et al. mention that a separation between causal,
non causal, and navigation relationships can be appropriate [57]. Predefined types al-
low increased monitoring and user-friendliness to developers. They are found in most
contributions relating the optimization of trace identification. On the other hand, allow-
ing users to define the types of relationships specific to their area of expertise helps to
fill the gap between the design and the use of tracing functionalities [102].

Obviously a fixed typing facilitates the analysis of the traces as the potential set of
semantics and interpretations are fixed while offering domain-specific types increases
the usability and comprehensibility of the approach. As an example, SysMLv2 is of-
fering a more powerful mechanism to define links between artefacts compared to the
previous SysML version (where we had a sole dependency-like mechanism).

The literature shows also a distinction between approaches considering relation-
ships with multiple sources and targets and relationships allowing only a single source.

A Survey-driven Feature Model for Software Traceability Approaches 33

Trace quality In most of the papers, quality aspects are barely mentioned. It seems
quality of the generated traces is not a major focus, or at least storing and annotating
the traces with such information is not. Yet, a few studies mention coverage and in-
tegrity. The coverage of a set of execution traces is used in approaches for software
testing [33]. Coverage is also used by Rath et al. who address the problem of missing
links between commits and issues with a classifier they train on textual commit infor-
mation to identify missing links between issues and commits (i.e., a lack in the cov-
erage indicates such missing links) [82]. Matrix-based visualizations are particularly
fit to assist coverage related tasks (See Section 5.4). Integrity of traces is addressed in
work on model transformation where co-evolution figures an automatic verification of
their coherence with other (versatile) software artefacts [94,92]. In the same manner,
Heisig et al. tag links which ends artefacts have been modified or deleted to inform
the user of such changes [43]. The co-evolution of traces implies measuring distances
between artefacts (syntactic, cognitive, geographic, cultural...) [9]. It also refers to the
analysis of the changes of the system that impact traceability artefacts [34,98]. In our
survey, nine papers address artefacts co-evolution and 17 tackle model transformation
limitations. These latter are a valuable tool to automate co-evolution tasks. In the many
studies focusing on the optimization of link identification, the quality of the results is
mainly evaluated with precision and recall measurements and never rely on inherent
trace artefacts characteristics. Few researchers include a user feedback [13].

5.3 Trace identification

Identification rules
Trace identification

Statistical language models

Neural networks

Algebraic IR models

Parameter manipulation

Vector space

LSI

LSTM

Topic labeling

LDA

Tree representation

Domain contextualisation

Model-matching

Genetic derivation

Manual elicitation

Execution log

Dynamic tracingLive record

Co-evolution

Continuous learning

Mnemonics

Tool assessment

University

Open source

Proprietary environment

Study environment

Evaluation context Work task

Project context

Technical context
Legend

optional

alternative
(or)

alternative
(xor)

mandatory

Fig. 4: Features related to the identification of trace links

Fig. 4 shows the hierarchy of features related to the identification of traces with four
main possible categories: the manual elicitation of traces, their live record during execu-

E. R. Batot et al.34

tion and evolution, rule-based alternatives to assist the user with automation potential,
and AI-augmented identification with domain contextualization.

Manual elicitation Manual elicitation makes possible to create traces in an ad hoc
manner. As an example, one of our industrial partner chose to hire a developer to elicit
trace links necessary for a certification commitment. This was chosen rather than a
(semi-)automated approach, as they were not convinced the effort of augmenting an
existing tool would pay off for that specific project.

Recording instrumentation Teams can instrument the live record of traces during the
execution and the evolution of software artefacts. This way traces recording the sys-
tem changes are a side-effect of those same changes. There are initiatives to instrument
existing languages such as ATL with rich log generation [84,31], while others con-
sider trace record an aspect that can be weaved with current existing languages [78,84].
Ziegenhagen et al. mix execution traces with metadatas [103], and use developer inter-
action records [104] to enrich existing traceability artefact.

Model transformations are considered the hearth and soul of software modeling and,
consequently, numerous studies attempt to enrich trace generation during transforma-
tion execution [97,83,31]. This ubiquitous integration (see Fig. 5, bottom branch) allows
a semantically rich tracing of target and source artefacts [71]. Unfortunately, this option
can only be applied when the system is being built, not when the system is already in
place.

Identification rules Once a system is in place, teams can identify rules that help re-
trieve and maintain traceability relations [64,93]. Nentwich et al. describe a novel se-
mantics for first-order logic that produces links instead of truth values and give an ac-
count of their content management strategy that provides rule-based link generation and
consistency check [66]. At the model level, Grammel et al. use a graph-based model
matching technique to exploit metamodel matching techniques for the generation of
trace links for arbitrary source and target models [37], and Saada et al. recover execu-
tion traces of model transformation using genetic algorithms [83].

Domain contextualization Back in 1992, Borillo et al. published an article on the
use of information retrieval techniques for linguistics applied to spatial software engi-
neering [14]. This precursor work opened the box for AI-augmented traceability where
machine learning algorithms help extract knowledge specific to the application domain
(later called domain-contextualized traceability [40]). This is specially useful when the
source (or target) of the trace link is an unstructured document or when such document
is key to infer traces among other artefacts.

Today, domain contextualization by means of machine learning for topic modeling,
word embedding, and more generally knowledge extraction from unorganized text doc-
uments, is the most popular traceability feature [39,102]. This collective effort made
the identification of bonds between requirement specifications and other artefacts pos-
sible with a gradually improving precision [5,23]. Studies on domain contextualization
are separated into three subgroups according to the type of tools used (algebraic infor-
mation retrieval models, statistical language models, and neural networks). For exam-
ple, Florez et al. derive fine-grained requirement to source code links [30], Rath et al.

A Survey-driven Feature Model for Software Traceability Approaches 35

complete missing links between commits and issues [82], Marcus et al. identify links
between documentation and source code [59]. An interesting publication from Poshy-
vanyk et al. shows that mixing expertise both in information retrieval techniques and
engineering domains gives far better results than when taken separately [79]. McMillan
et al. add that using structural information together with textual information benefits au-
tomated link recovery (between requirements and source code) [61]. In total, we found
22 approaches dedicated to this topic alone in our survey. We do not discuss in this paper
the techniques related to data collection and training optimization. These are important
features for automated learning which are discussed in depth in specialized literature.

Teams are also using genetic algorithms to cope with the variety of algorithms and
parameters these approaches use [58,73], and structural information to foster method-
ologies interweaving [74]. Unfortunately, a common critique rose against these positive
results. Too many teams compete with each others to accomplish a better precision and
recall when there is no standard to the effective quantification of tracing artefacts into
such variables. Too few attempt at qualifying the overall relation between these mea-
surement and the effective impact on software development [22].

In that regard, Shin et al. propose a set of guidelines for benchmarking automated
traceability techniques. Their evaluation (of 24 approaches) shows that methods of eval-
uation (when they are used appropriately) sometimes are not suitable to other applica-
tion domains and that the variation in results across project is not investigated [91]. This
corroborate Borg et al. who, in a systematic literature mapping on information retrieval
approaches to traceability, notice that there are no empirical evidence that any IR model
outperforms another consistently [13]. The ability to continuously improve the learning
process is mentioned in the literature but we found no evidence of its application.

Tool assessment Very few of the traceability approaches have been empirically as-
sessed on industrial use cases. The actual trend to report solely for precision and recall
values indicates an important issue in the automated identification of traces and may
justify the weak investment of industry in this sector [13,69].

Borg et al. published a taxonomy for information retrieval techniques applied to
traceability [12]. They emphasize the importance of the assessment of the tooling used
to derive or identify traces. More specifically, the authors draw a differentiation between
two orthogonal dimensions: the evaluation context that precises where in the context
the tool is assessed (e.g., at a technical, work task, or project level); and, the study
environment that shows the kind of data used to fulfil the assessment (e.g., proprietary,
open source, or academic). These features will affect the measurable attributes used for
the assessment as well as their generalizability.

5.4 Trace management

Fig. 5 shows the hierarchy of features related to the management of trace artefacts: their
maintenance, integrity, persistence, and integration in running software systems.

Trace Maintenance Trace links may be affected by changes on the artefacts they link
(directly or transitively) and therefore can easily become obsolete. This gradual decay
must be seriously taken into account to avoid having to re-elicit traces every time they

E. R. Batot et al.36

Trace management

Embedded features

External language

Persistence
Format

Repository

SQL-like

XML

Validity duration

Evolution

Model

Change history

Integrity measure

Visualization
Graphic

Textual
DSL

XML

Trace maintenance Dedicated language

SQL-like

Modeling activities

Database

Operations Read-only

Dashboard

Trace Integrity

Link vetting

Automation level

Rule based

Model checking

Automatic

Manual

Query formulation Genetic exploration

Legend
optional

alternative
(or)

alternative
(xor)

mandatory

Orthogonal

System integration

Fig. 5: Tool support for traceability management.

need to be analyzed. A manual maintenance is not always impossible but not typically
feasible in practice due to the amount of information such inspections would involve.
Co-evolution techniques [64,26,80] attempt to tackle the burden to maintain trace links
up-to-date [88,19].

Beyond being able to manipulate traces, we also need to offer proper ways to vi-
sualize and inspect them [29]. The use of graphical representations stimulates human
perception and the integration of such technique in traceability frameworks is a useful
feature to augment user awareness [43]. On the other hand, matrix-based views offer a
valuable perspective to understand and analyse traces [53]. They are particularly effi-
cient in assisting the visualization of coverage characteristics of traceability [33,82].

In parallel, allowing a rich formulation of queries to assist the exploration of ex-
isting traces will help with reducing the amount of information users need to navigate
through [19]. More precisely, structured text, in the form of metamodel instances or
XML sheets allows query-based mining of trace datasets [24]. Interaction wise, hyper-
text links is a de facto standard to browse trace links. Indeed, following links through
successive clicks has become almost natural. Querying relies on the type of represen-
tation of traceability artefacts: SQL-like languages benefit from a long history of infor-
mation mining while dedicated languages offers better legibility. Genetic programming
has also permitted the automation of query formulation [77].

Trace Integrity To cope with the decay and volatility mentioned above, ways to de-
termine the integrity of existing traces are greatly needed. Work on these questions, al-
though called out loudly by literature studies, is scarce in practice [101,4]. The first op-

A Survey-driven Feature Model for Software Traceability Approaches 37

tion is given with manual annotation or vetting of trace links to inform about their level
of reliability. Annotations allow a qualitative and quantitative evaluation [18]. This is
the case for back-propagation of verification and validation results between design and
requirements [42]. Some approaches enable the definition of invariant rules while ma-
nipulating traces or their targets [19]. If the invariant is violated, an exception for that
trace is automatically generated. For example, we could define a rule that is violated
when a change occurs in an artefact targeted by a trace if the corresponding link was
identified more than two versions prior to the current version. In the same vein, Heisig
et al. tag trace links when their target (or source) artefacts are modified or deleted [43].
Thanks to the ubiquitous integration of the tool, warning is raised consequently in EMF.

Trace persistence Many different storage alternatives exist for traceability artefacts.
An option is to use SQL-like grammar to store and retrieve traces with the power of
database tooling, or to use XML documents to represent trace matrix in a transformable
format [57,27]. The industry uses a lot of informal format and link representations often
remains implemented in spreadsheets, text files, databases or requirement management
tools. These links deteriorate quickly during a project as time pressured team members
fail to update them. Researchers aiming at a reusable approach favour model-based rep-
resentations able to express specifically defined concepts related to traceability (often
in a specific domain of application). The burden of maintaining traces coherent is eased
in model-based solutions [21].

Another concern lies in the recording of trace evolution. The trace creation should
be recorded, with the successive changes that affect it, for evolution analysis. Integrity
measures respective to evolution events (e.g., creation, modification) should be recorded
as well to evaluate their evolution during a period of time. Rahimi et al. ensure the co-
evolution of artefacts and traces [80] using a set of heuristics coupled with refactoring
detection and information retrieval technique to detect change scenarios between con-
tiguous versions of software systems.

System integration Like most of the MDE approaches, Helming et al. use the same
modeling language for both traceability and system artefacts [44]. Tracing features are
embedded in the language. The conjunct use of EMF and a dedicated traceability meta-
model (both written in Ecore) facilitates the integration of traceability features includ-
ing graphical versions to stimulate human perception and standard analysis of traces
in native environment. Galvao et al. in their seminal work on traceability and MDE
call for more loosely coupled traceability support that can integrate external relation-
ship with independent representations (in another, ideally common language) [32] as
also elaborated by Azevedo et al. [6]. Finally, the SysMLv2 implementation committee
is calling for orthogonal implementation of features such as traceability, annotations
and comment through meta-level libraries in order to keep concerns separated at design
level.

E. R. Batot et al.38

6 Discussion

The feature model is a first step towards the shared understanding of all dimensions
involved in a traceability solution. Ideally, a company interested in a certain set of such
dimensions could try to create its perfect traceability solution by combining the top
solutions for each dimension. But this is not yet a real possibility as those solution would
be difficult to combine and, more importantly, several of the features in the feature
model do not really have a great solution yet. This section elaborates on this discussion
by presenting some open challenges in software traceability research.

Common traceability metamodel. We have counted over 20 different traceability
metamodel proposals. Nevertheless, some are solutions limited to the specific problems
the authors present as case studies. And these metamodels are rarely reused, if ever. This
proliferation is a challenge to make different traceability solutions interoperate. The
research community should agree in a unified proposal that facilitates the composability
of traceability solutions.

Security of trace data. Considering that traceability is a major aspect in certifica-
tion and other critical applications, it is surprising to see so little interest in security
concerns in relationship to trace artefacts. We believe security mechanisms (even sim-
ple rule-based access control) for traceability are needed to control who can modify
what trace data, given the implication such changes can have.

Library of trace types and semantics. We already mentioned the importance of
having a rich set of types for traces to let engineers express the reasons behind the
creation of a given trace. But at the same time, complete freedom makes reusability of
analysis techniques difficult. We would like to see a rich yet predefined set of types for
traces that could then be imported in new traceability projects.

Usefulness of identified traces. Managing a large number of traces is time-consuming.
As such, we should make sure every explicit trace is actually useful. So far, algorithms
aimed at automatically identifying traces are compared based on standard properties
like precision and recall. But they should be evaluated on “usefulness”: are those traces
useful for the end-user? or are they simply redundant noise?

Verification, validation and testing of traces. Our ample literature on verification,
validation and testing methods for software engineering should be extended to deal with
trace data, especially from a temporal perspective. Reasoning on outdated and poten-
tially incorrect trace data could have strong damaging impacts on the system as a whole.
So far, very few approaches target these aspects except in coevolution in model-driven
engineering. A recent study shows that the ability to justify with evidences and uncer-
tainty evaluation the quality and integrity of traces is a prerequisite to robust and reliable
traceability [8]. Given the effort required to create traces in the first place, it is important
to instill more confidence to practitioners unsure if creating traces is worthwhile.

Traceability as core concern in general languages. Another important step to-
wards the mainstream adoption of traceability in industry is the integration of the com-
mon traceability metamodel in popular modeling languages like UML or SysML, in the
form of a profile (to be able to directly reuse existing modeling tools available for those
languages) or new packages in the respective standards. This way, traceability would
become a core concern and a primary class modeling primitive in software develop-

A Survey-driven Feature Model for Software Traceability Approaches 39

ment while still being a rich concept and not just a variation of the simple generic plain
dependency relationship we can use right now in those languages.

Working together with the industry. Orthogonal to all the others, we (the re-
search community) should aim at more frequent exchanges with practitioners to better
understand why they still create traces manually instead of reusing any of the dozens of
existing solutions. Some reasons have been already hinted in this paper, but there might
be others we are not aware of. If we want traceability research to transfer to industry,
more and better communication flows should be part of the agenda.

7 Conclusion

Our survey reveals a continuous interest in traceability even if, often, it does not have
the spotlight it deserves given the key role it plays in a good deal of software engi-
neering tasks 4. Work relating to traceability is indeed disseminated within established
research communities (e.g., debugging, SPL). Existing conceptualizations vary greatly
depending on the community to which its authors belong to as well as the objectives
they aim at. As a consequence, a clear and measurable idea of the costs and benefits
to software traceability is slow to emerge. To help visualize, classify and compare the
different traceability approaches, we propose a feature model covering all important
traceability aspects, as derived from a thorough analysis of the traceability literature.
Following the existing body of work, we put special emphasis in separating how traces
are represented from how they are identified and managed.

Beyond the feature model, our analysis highlights several limitations of current
traceability approaches that should be further developed. We believe advancing on those
aspects is especially important, even more given the new traceability challenges posed
by the growing use of AI in Software Engineering (e.g. in terms of reproducibility and
explainability of the AI decisions) [90,99]. In this sense, we hope this paper serves as
a “wake-up call” to make sure new AI for SE proposals come together with a proper
traceability mechanism that assists engineers in evaluating and understanding the im-
pact of the new AI components in the software engineering process instead of having
to blindly trust them.

As further work, we plan to start working on the above-mentioned aspects starting
with a collaboration with some of the authors of other proposals to map and bridge their
algorithms and techniques to our modular and quality-focused metamodel in order to
combine the benefits of a unified and generic approach with those of a more domain-
specific representation. We will also study how better embed traceability concepts into
mainstream modeling languages (like UML or SysML) to further facilitate its adoption.

Acknowledgements: This work has been partially funded by the Spanish gov-
ernment (LOCOSS project - PID2020-114615RB-I00), and receives support from the
ECSEL Joint Undertaking (AIDOaRt - grant agreement No 101007350).

4 As an example, ICSE’18 awarded a trace-based paper as the most influential paper in the
past 10 years [50]. The work introduced a novel trace-based approach to debugging. Though
the focus was on the debugging aspect of the paper, traceability was the key to achieve that
debugging improvement. The word "trace" alone is mentioned 46 times in the 10 pages paper.

E. R. Batot et al.40

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM
Systems Journal 45(3), 515–526 (2006). https://doi.org/10.1147/sj.453.0515, https://doi.
org/10.1147/sj.453.0515

2. Amar, B., Leblanc, H., Coulette, B., Dhaussy, P.: Automatic co-evolution of models using
traceability. Communications in Computer and Information Science 170 (2013)

3. Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.C., Rummler, A., Sousa, A.:
A model-driven traceability framework for software product lines. Software and Systems
Modeling 9(4), 427–451 (2010), https://doi.org/10.1007/s10270-009-0120-9

4. Antoniol, G., Cleland-Huang, J., Hayes, J.H., Vierhauser, M.: Grand challenges of trace-
ability: The next ten years. CoRR abs/1710.03129 (2017), http://arxiv.org/abs/1710.03129

5. Arunthavanathan, A., Shanmugathasan, S., Ratnavel, S., Thiyagarajah, V., Perera, I., Mee-
deniya, D., Balasubramaniam, D.: Support for traceability management of software arte-
facts using natural language processing. In: 2016 Moratuwa Engineering Research Confer-
ence (MERCon). pp. 18–23 (April 2016). https://doi.org/10.1109/MERCon.2016.7480109

6. Azevedo., B., Jino., M.: Modeling traceability in software development: A metamodel and
a reference model for traceability. In: Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering - Volume 1: ENASE,. pp. 322–
329. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007715103220329

7. Badreddin, O., Sturm, A., Lethbridge, T.C.: Requirement traceability: A model-based ap-
proach. In: 2014 IEEE 4th International Model-Driven Requirements Engineering Work-
shop (MoDRE). pp. 87–91 (Aug 2014). https://doi.org/10.1109/MoDRE.2014.6890829

8. Batot, E.R., Gerard, S., Cabot, J.: (Not) yet another metamodel for software traceability. In:
Proceedings of the 13th System Analysis and Modelling Conference. p. 1–10. SAM ’21,
Association for Computing Machinery (2021)

9. Bjarnason, E., Smolander, K., Engström, E., Runeson, P.: A theory of distances
in software engineering. Inf. Softw. Technol. 70(C), 204–219 (February 2016).
https://doi.org/10.1016/j.infsof.2015.05.004, https://doi.org/10.1016/j.infsof.2015.05.004

10. advisory board, T.D.: The dblp team: Monthly snapshot release of july 2020. DBLP - Com-
puter science bibliography. (July 2020), https://dblp.org/xml/release/dblp-2020-0701.xml.
gz, https://dblp.org/xml/release/dblp-2020-0701.xml.gz

11. Bondé, L., Boulet, P., Dekeyser, J.L.: Traceability and Interoperability at Different Levels of
Abstraction in Model-Driven Engineering, pp. 263–276. Springer Netherlands, Dordrecht
(2006)

12. Borg, M., Runeson, P., Brodén, L.: Evaluation of traceability recovery in context: A
taxonomy for information retrieval tools. In: 16th International Conference on Eval-
uation Assessment in Software Engineering (EASE 2012). pp. 111–120 (May 2012).
https://doi.org/10.1049/ic.2012.0014

13. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of infor-
mation retrieval approaches to software traceability. Empirical Software Engineering 19(6),
1565–1616 (2014), https://doi.org/10.1007/s10664-013-9255-y

14. Borillo, M., Borillo, A., Castell, N., Latour, D., Toussaint, Y., Verdejo, M.F.: Applying
linguistic engineering to spatial software engineering: The traceability problem. In: Pro-
ceedings of the 10th European Conference on Artificial Intelligence. p. 593–595. ECAI
’92, USA (1992)

15. Bouillon, E., Mäder, P., Philippow, I.: A survey on usage scenarios for requirements trace-
ability in practice. In: Requirements Engineering: Foundation for Software Quality, pp.
158–173. Springer Berlin Heidelberg (2013), https://doi.org/10.1007/978-3-642-37422-7_
12

A Survey-driven Feature Model for Software Traceability Approaches 41

https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1007/s10270-009-0120-9
http://arxiv.org/abs/1710.03129
https://doi.org/10.1109/MERCon.2016.7480109
https://doi.org/10.5220/0007715103220329
https://doi.org/10.1109/MoDRE.2014.6890829
https://doi.org/10.1016/j.infsof.2015.05.004
https://doi.org/10.1016/j.infsof.2015.05.004
https://dblp.org/xml/release/dblp-2020-0701.xml.gz
https://dblp.org/xml/release/dblp-2020-0701.xml.gz
https://doi.org/10.1049/ic.2012.0014
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/978-3-642-37422-7_12
https://doi.org/10.1007/978-3-642-37422-7_12

16. Bourque, P., Fairley, R.E. (eds.): SWEBOK: Guide to the Software Engineering Body of
Knowledge. IEEE Computer Society, Los Alamitos, CA, version 3.0 edn. (2014), http:
//www.swebok.org/

17. Brunelière, H., Burger, E., Cabot, J., Wimmer, M.: A feature-based survey of model view
approaches. Softw. Syst. Model. 18(3), 1931–1952 (2019). https://doi.org/10.1007/s10270-
017-0622-9, https://doi.org/10.1007/s10270-017-0622-9

18. Buchmann, R.A., Karagiannis, D.: Modelling mobile app requirements for semantic trace-
ability. Requirements Eng 22(1), 41–75 (jul 2015). https://doi.org/10.1007/s00766-015-
0235-1, https://doi.org/10.1007%2Fs00766-015-0235-1

19. Bünder, H., Rieger, C., Kuchen, H.: A domain-specific language for configurable
traceability analysis. In: Proceedings of the 5th International Conference on Model-
Driven Engineering and Software Development. SCITEPRESS - Science and Technology
Publications (2017). https://doi.org/10.5220/0006138503740381, https://doi.org/10.5220%
2F0006138503740381

20. Charalampidou, S., Ampatzoglou, A., Karountzos, E., Avgeriou, P.: Empirical studies
on software traceability: A mapping study. Journal of Software: Evolution and Pro-
cess (2020). https://doi.org/https://doi.org/10.1002/smr.2294, https://onlinelibrary.wiley.
com/doi/abs/10.1002/smr.2294, e2294 JSME-19-0120.R2

21. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best practices for
automated traceability. Computer 40(6), 27–35 (2007)

22. Cleland-Huang, J., Gotel, O.C.Z., Huffman Hayes, J., Mäder, P., Zisman, A.: Software
traceability: Trends and future directions. In: Future of Software Engineering Proceedings.
p. 55–69. FOSE 2014, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2593882.2593891, https://doi.org/10.1145/2593882.2593891

23. De Lucia, A., Marcus, A., Oliveto, R., Poshyvanyk, D.: Information retrieval methods
for automated traceability recovery. Software and Systems Traceability pp. 71–98 (2012),
https://doi.org/10.1007/978-1-4471-2239-5_4

24. Dietrich, T., Cleland-Huang, J., Shin, Y.: Learning effective query transformations
for enhanced requirements trace retrieval. In: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE). pp. 586–591 (Nov 2013).
https://doi.org/10.1109/ASE.2013.6693117

25. Drivalos, N., Kolovos, D.S., Paige, R.F., Fernandes, K.J.: Engineering a dsl for software
traceability. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) Software Language Engineer-
ing. pp. 151–167. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

26. Drivalos-Matragkas, N., Kolovos, D.S., Paige, R.F., Fernandes, K.J.: A state-based ap-
proach to traceability maintenance. In: Proceedings of the 6th ECMFA Traceability Work-
shop. p. 23–30. ECMFA-TW ’10, Association for Computing Machinery, New York, NY,
USA (2010). https://doi.org/10.1145/1814392.1814396, https://doi.org/10.1145/1814392.
1814396

27. Elamin, R., Osman, R.: Implementing traceability repositories as graph databases
for software quality improvement. In: 2018 IEEE International Conference
on Software Quality, Reliability and Security (QRS). pp. 269–276 (2018).
https://doi.org/10.1109/QRS.2018.00040

28. Feldmann, S., Kernschmidt, K., Wimmer, M., Vogel-Heuser, B.: Managing inter-model
inconsistencies in model-based systems engineering: Application in automated produc-
tion systems engineering. In: Software Engineering 2020. vol. 153, pp. 105–134 (2019).
https://doi.org/10.1016/j.jss.2019.03.060, https://doi.org/10.1016/j.jss.2019.03.060

29. Fittkau, F., Waller, J., Wulf, C., Hasselbring, W.: Live trace visualization for com-
prehending large software landscapes: The explorviz approach. In: 2013 First IEEE
Working Conference on Software Visualization (VISSOFT). pp. 1–4 (Sep 2013).
https://doi.org/10.1109/VISSOFT.2013.6650536

E. R. Batot et al.42

http://www.swebok.org/
http://www.swebok.org/
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1007/s00766-015-0235-1
https://doi.org/10.1007/s00766-015-0235-1
https://doi.org/10.1007%2Fs00766-015-0235-1
https://doi.org/10.5220/0006138503740381
https://doi.org/10.5220%2F0006138503740381
https://doi.org/10.5220%2F0006138503740381
https://doi.org/https://doi.org/10.1002/smr.2294
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2294
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2294
https://doi.org/10.1145/2593882.2593891
https://doi.org/10.1145/2593882.2593891
https://doi.org/10.1007/978-1-4471-2239-5_4
https://doi.org/10.1109/ASE.2013.6693117
https://doi.org/10.1145/1814392.1814396
https://doi.org/10.1145/1814392.1814396
https://doi.org/10.1145/1814392.1814396
https://doi.org/10.1109/QRS.2018.00040
https://doi.org/10.1016/j.jss.2019.03.060
https://doi.org/10.1016/j.jss.2019.03.060
https://doi.org/10.1109/VISSOFT.2013.6650536

30. Florez, J.M.: Automated fine-grained requirements-to-code traceability link recovery. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). pp. 222–225 (May 2019). https://doi.org/10.1109/ICSE-
Companion.2019.00087

31. la Fosse, T.B., Tisi, M., Mottu, J.M.: Injecting execution traces into a model-driven
framework for program analysis. In: Software Technologies: Applications and Foun-
dations, pp. 3–13. Springer International Publishing (2018), https://doi.org/10.1007%
2F978-3-319-74730-9_1

32. Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven engineering.
In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC
2007). pp. 313–313 (Oct 2007). https://doi.org/10.1109/EDOC.2007.42

33. Gannous, A., Andrews, A.: Integrating safety certification into model-based
testing of safety-critical systems. In: 2019 IEEE 30th International Sympo-
sium on Software Reliability Engineering (ISSRE). pp. 250–260 (Oct 2019).
https://doi.org/10.1109/ISSRE.2019.00033

34. Goknil, A., Kurtev, I., van den Berg, K., Spijkerman, W.: Change impact analysis for
requirements: A metamodeling approach. Information and Software Technology 56(8),
950 – 972 (2014). https://doi.org/https://doi.org/10.1016/j.infsof.2014.03.002, http://www.
sciencedirect.com/science/article/pii/S0950584914000615

35. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability problem. In:
Proceedings of IEEE International Conference on Requirements Engineering. pp. 94–101
(April 1994). https://doi.org/10.1109/ICRE.1994.292398

36. Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grünbacher, P., Dekht-
yar, A., Antoniol, G., Maletic, J., Mäder, P.: Traceability Fundamentals - Software and
Systems Traceability, pp. 3–22. Springer London, London (2012), https://doi.org/10.1007/
978-1-4471-2239-5_1

37. Grammel, B., Kastenholz, S., Voigt, K.: Model matching for trace link generation in model-
driven software development. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
Model Driven Engineering Languages and Systems - 15th International Conference, MOD-
ELS 2012, Innsbruck, Austria, September 30-October 5, 2012. Proceedings. Lecture Notes
in Computer Science, vol. 7590, pp. 609–625. Springer (2012). https://doi.org/10.1007/978-
3-642-33666-9_39, https://doi.org/10.1007/978-3-642-33666-9_39

38. Guana, V., Stroulia, E.: End-to-end model-transformation comprehension through fine-
grained traceability information. Softw Syst Model Systems Modeling 18(2), 1305–1344
(jun 2017). https://doi.org/10.1007/s10270-017-0602-0

39. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability using
deep learning techniques. In: Proceedings of the 39th International Conference on Software
Engineering. p. 3–14. ICSE ’17, IEEE Press (2017). https://doi.org/10.1109/ICSE.2017.9,
https://doi.org/10.1109/ICSE.2017.9

40. Guo, Q., Chen, S., Xie, X., Ma, L., Hu, Q., Liu, H., Liu, Y., Zhao, J., Li, X.: An empirical
study towards characterizing deep learning development and deployment across different
frameworks and platforms. In: 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE (nov 2019)

41. Haidrar, S., Anwar, A., Roudies, O.: Towards a generic framework for require-
ments traceability management for SysML language. In: 2016 4th IEEE Interna-
tional Colloquium on Information Science and Technology (CiSt). IEEE (oct 2016).
https://doi.org/10.1109/cist.2016.7805044, https://doi.org/10.1109%2Fcist.2016.7805044

42. Hegedus, A., Bergmann, G., Rath, I., Varro, D.: Back-annotation of simula-
tion traces with change-driven model transformations. In: 2010 8th IEEE Interna-
tional Conference on Software Engineering and Formal Methods. IEEE (sep 2010).
https://doi.org/10.1109/sefm.2010.28, https://doi.org/10.1109%2Fsefm.2010.28

A Survey-driven Feature Model for Software Traceability Approaches 43

https://doi.org/10.1109/ICSE-Companion.2019.00087
https://doi.org/10.1109/ICSE-Companion.2019.00087
https://doi.org/10.1007%2F978-3-319-74730-9_1
https://doi.org/10.1007%2F978-3-319-74730-9_1
https://doi.org/10.1109/EDOC.2007.42
https://doi.org/10.1109/ISSRE.2019.00033
https://doi.org/https://doi.org/10.1016/j.infsof.2014.03.002
http://www.sciencedirect.com/science/article/pii/S0950584914000615
http://www.sciencedirect.com/science/article/pii/S0950584914000615
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1007/978-3-642-33666-9_39
https://doi.org/10.1007/978-3-642-33666-9_39
https://doi.org/10.1007/978-3-642-33666-9_39
https://doi.org/10.1007/s10270-017-0602-0
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1109/ICSE.2017.9
https://doi.org/10.1109/cist.2016.7805044
https://doi.org/10.1109%2Fcist.2016.7805044
https://doi.org/10.1109/sefm.2010.28
https://doi.org/10.1109%2Fsefm.2010.28

43. Heisig, P., Steghöfer, J.P., Brink, C., Sachweh, S.: A generic traceability metamodel
for enabling unified end-to-end traceability in software product lines. In: Proceed-
ings of the 34th ACM/SIGAPP Symposium on Applied Computing. p. 2344–2353.
SAC ’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3297280.3297510, https://doi.org/10.1145/3297280.3297510

44. Helming, J., Koegel, M., Naughton, H., David, J., Shterev, A.: Traceability-based change
awareness. In: Model Driven Engineering Languages and Systems. vol. 5795, pp. 372–376.
Springer Berlin Heidelberg (10 2009)

45. Holtmann, J., Steghöfer, J.P., Rath, M., Schmelter, D.: Cutting through the jun-
gle: Disambiguating model-based traceability terminology. In: 2020 IEEE 28th In-
ternational Requirements Engineering Conference (RE). pp. 8–19 (Aug 2020).
https://doi.org/10.1109/RE48521.2020.00014

46. ISO: Road vehicles – Functional safety (2011)
47. Jiménez, Á., Vara, J.M., Bollati, V.A., Marcos, E.: Model-driven development of model

transformations supporting traces generation. In: Building Sustainable Information Sys-
tems, pp. 233–245. Springer US (2013), https://doi.org/10.1007%2F978-1-4614-7540-8_
18

48. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-;oriented reuse
method with domain-;specific reference architectures. Annals of Software Engineering
5(1), 143 (1998). https://doi.org/10.1023/A:1018980625587, https://doi.org/10.1023/A:
1018980625587

49. Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman,
S.: Systematic literature reviews in software engineering – a systematic lit-
erature review. Information and Software Technology 51(1), 7 – 15 (2009).
https://doi.org/https://doi.org/10.1016/j.infsof.2008.09.009, http://www.sciencedirect.com/
science/article/pii/S0950584908001390

50. Ko, A.J., Myers, B.A.: Debugging reinvented: Asking and answering why and why not
questions about program behavior. In: Proceedings of the 30th International Conference on
Software Engineering. p. 301–310. ICSE ’08, Association for Computing Machinery, New
York, NY, USA (2008). https://doi.org/10.1145/1368088.1368130, https://doi.org/10.1145/
1368088.1368130

51. Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.: Safety case impact as-
sessment in automotive software systems: An improved model-based approach. In: Lec-
ture Notes in Computer Science, pp. 69–85. Springer International Publishing (2017),
https://doi.org/10.1007/978-3-319-66266-4_5

52. Königs, S.F., Beier, G., Figge, A., Stark, R.: Traceability in systems engineer-
ing – review of industrial practices, state-of-the-art technologies and new re-
search solutions. Advanced Engineering Informatics 26(4), 924 – 940 (2012).
https://doi.org/https://doi.org/10.1016/j.aei.2012.08.002, http://www.sciencedirect.com/
science/article/pii/S1474034612000766

53. Li, W., Hayes, J.H., Yang, F., Imai, K., Yannelli, J., Carnes, C., Doyle, M.:
Trace matrix analyzer (tma). In: 2013 7th International Workshop on Traceabil-
ity in Emerging Forms of Software Engineering (TEFSE). pp. 44–50 (May 2013).
https://doi.org/10.1109/TEFSE.2013.6620153

54. Lindval, M., Sandahl, K.: Practical implications of traceability. Software: Practice and Ex-
perience 26(10), 1161–1180 (1996)

55. Mader, P., Gotel, O., Philippow, I.: Motivation matters in the traceability trenches. In: 2009
17th IEEE International Requirements Engineering Conference. pp. 143–148 (Aug 2009).
https://doi.org/10.1109/RE.2009.23

E. R. Batot et al.44

https://doi.org/10.1145/3297280.3297510
https://doi.org/10.1145/3297280.3297510
https://doi.org/10.1109/RE48521.2020.00014
https://doi.org/10.1007%2F978-1-4614-7540-8_18
https://doi.org/10.1007%2F978-1-4614-7540-8_18
https://doi.org/10.1023/A:1018980625587
https://doi.org/10.1023/A:1018980625587
https://doi.org/10.1023/A:1018980625587
https://doi.org/https://doi.org/10.1016/j.infsof.2008.09.009
http://www.sciencedirect.com/science/article/pii/S0950584908001390
http://www.sciencedirect.com/science/article/pii/S0950584908001390
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1007/978-3-319-66266-4_5
https://doi.org/https://doi.org/10.1016/j.aei.2012.08.002
http://www.sciencedirect.com/science/article/pii/S1474034612000766
http://www.sciencedirect.com/science/article/pii/S1474034612000766
https://doi.org/10.1109/TEFSE.2013.6620153
https://doi.org/10.1109/RE.2009.23

56. Mader, P., Philippow, I., Riebisch, M.: A traceability link model for the unified process.
In: Eighth ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD 2007). vol. 3, pp. 700–705 (July
2007). https://doi.org/10.1109/SNPD.2007.342

57. Maletic, J.I., Collard, M.L., Simoes, B.: An xml based approach to support the evolution
of model-to-model traceability links. In: Proceedings of the 3rd International Workshop on
Traceability in Emerging Forms of Software Engineering. p. 67–72. TEFSE ’05, Associa-
tion for Computing Machinery (2005)

58. Marcén, A.C., Lapeña, R., Pastor, O., Cetina, C.: Traceability link recovery between re-
quirements and models using an evolutionary algorithm guided by a learning to rank
algorithm: Train control and management case. J. Syst. Softw. 163, 110519 (2020).
https://doi.org/10.1016/j.jss.2020.110519, https://doi.org/10.1016/j.jss.2020.110519

59. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links using
latent semantic indexing. In: 25th International Conference on Software Engineering, 2003.
Proceedings. pp. 125–135 (May 2003). https://doi.org/10.1109/ICSE.2003.1201194

60. Maro, S., Steghöfer, J.P., Bozzelli, P., Muccini, H.: TracIMo: a traceability introduction
methodology and its evaluation in an agile development team. Requirements Engineering
(August 2021)

61. McMillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural analy-
sis of software artifacts for traceability link recovery. In: 2009 ICSE Workshop on
Traceability in Emerging Forms of Software Engineering. pp. 41–48 (May 2009).
https://doi.org/10.1109/TEFSE.2009.5069582

62. Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or formal verifica-
tion: Do-178c alternatives and industrial experience. IEEE Software 30(3), 50–57 (2013).
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2013.43

63. Mustafa, N., Labiche, Y.: The need for traceability in heterogeneous systems:
A systematic literature review. In: 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC). vol. 1, pp. 305–310 (July 2017).
https://doi.org/10.1109/COMPSAC.2017.237

64. Mäder, P., Gotel, O., Philippow, I.: Rule-based maintenance of post-requirements traceabil-
ity relations. In: 2008 16th IEEE International Requirements Engineering Conference. pp.
23–32 (Sep 2008). https://doi.org/10.1109/RE.2008.24

65. Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., Coq, T.: A sysml-based approach
to traceability management and design slicing in support of safety certification: Frame-
work, tool support, and case studies. Information and Software Technology 54(6),
569 – 590 (2012). https://doi.org/https://doi.org/10.1016/j.infsof.2012.01.005, http://www.
sciencedirect.com/science/article/pii/S095058491200016X, special Section: Engineering
Complex Software Systems through Multi-Agent Systems and Simulation

66. Nentwich, C., Capra, L., Emmerich, W., Finkelsteiin, A.: Xlinkit: A consistency checking
and smart link generation service. ACM Trans. Internet Technol. 2(2), 151–185 (May 2002)

67. Neumuller, C., Grunbacher, P.: Automating software traceability in very small
companies: A case study and lessons learne. In: 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06). pp. 145–156 (2006).
https://doi.org/10.1109/ASE.2006.25

68. Olivé, A.: Representation of generic relationship types in conceptual modeling. In: Pid-
duck, A.B., Ozsu, M.T., Mylopoulos, J., Woo, C.C. (eds.) Advanced Information Systems
Engineering. pp. 675–691. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

69. Oliver, A., Odena, A., Raffel, C., Cubuk, E.D., Goodfellow, I.J.: Realistic evaluation of
deep semi-supervised learning algorithms. CoRR abs/1804.09170 (2018), http://arxiv.org/
abs/1804.09170

A Survey-driven Feature Model for Software Traceability Approaches 45

https://doi.org/10.1109/SNPD.2007.342
https://doi.org/10.1016/j.jss.2020.110519
https://doi.org/10.1016/j.jss.2020.110519
https://doi.org/10.1109/ICSE.2003.1201194
https://doi.org/10.1109/TEFSE.2009.5069582
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2013.43
https://doi.org/10.1109/COMPSAC.2017.237
https://doi.org/10.1109/RE.2008.24
https://doi.org/https://doi.org/10.1016/j.infsof.2012.01.005
http://www.sciencedirect.com/science/article/pii/S095058491200016X
http://www.sciencedirect.com/science/article/pii/S095058491200016X
https://doi.org/10.1109/ASE.2006.25
http://arxiv.org/abs/1804.09170
http://arxiv.org/abs/1804.09170

70. Paige, R., Olsen, G., Kolovos, D., Zschaler, S., Power, C.: Building model-driven engineer-
ing traceability classifications. In: Computer Science (01 2010)

71. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K.,
Zschaler, S.: Rigorous identification and encoding of trace-links in model-driven engi-
neering. Software & Systems Modeling 10(4), 469–487 (2011), https://doi.org/10.1007/
s10270-010-0158-8

72. Paige, R.F., Zolotas, A., Kolovos, D.: The changing face of model-driven engineering. In:
Present and Ulterior Software Engineering, pp. 103–118. Springer International Publishing
(2017), https://doi.org/10.1007/978-3-319-67425-4_7

73. Panichella, A., Dit, B., Oliveto, R., Penta, M.D., Poshynanyk, D., Lucia, A.D.: How to
effectively use topic models for software engineering tasks? an approach based on genetic
algorithms. In: 2013 35th International Conference on Software Engineering (ICSE). pp.
522–531 (May 2013). https://doi.org/10.1109/ICSE.2013.6606598

74. Panichella, A., McMillan, C., Moritz, E., Palmieri, D., Oliveto, R., Poshyvanyk, D., Lucia,
A.D.: When and how using structural information to improve ir-based traceability recovery.
In: 2013 17th European Conference on Software Maintenance and Reengineering. pp. 199–
208 (March 2013). https://doi.org/10.1109/CSMR.2013.29

75. Panis, M.C.: Successful deployment of requirements traceability in a commercial engi-
neering organization...really. In: 2010 18th IEEE International Requirements Engineering
Conference. pp. 303–307 (Sep 2010). https://doi.org/10.1109/RE.2010.43

76. Paz, A., El Boussaidi, G.: A requirements modelling language to facilitate avion-
ics software verification and certification. In: 2019 IEEE/ACM 6th International
Workshop on Requirements Engineering and Testing (RET). pp. 1–8 (May 2019).
https://doi.org/10.1109/RET.2019.00008

77. Pérez, F., Ziadi, T., Cetina, C.: Utilizing Automatic Query Reformulations as Ge-
netic Operations to Improve Feature Location in Software Models. IEEE Transactions
on Software Engineering (2020). https://doi.org/10.1109/TSE.2020.3000520, https://hal.
sorbonne-universite.fr/hal-02852488

78. Pfeiffer, R., Reimann, J., Wąsowski, A.: Language-independent traceability with lassig. In:
Modelling Foundations and Applications, pp. 148–163. Springer International Publishing
(2014), https://doi.org/10.1007%2F978-3-319-09195-2_10

79. Poshyvanyk, D., Gueheneuc, Y., Marcus, A., Antoniol, G., Rajlich, V.: Feature location us-
ing probabilistic ranking of methods based on execution scenarios and information retrieval.
IEEE Transactions on Software Engineering 33(6), 420–432 (2007)

80. Rahimi, M., Cleland-Huang, J.: Evolving software trace links between requirements and
source code. In: 2019 IEEE/ACM 10th International Symposium on Software and Systems
Traceability (SST). pp. 12–12 (May 2019). https://doi.org/10.1109/SST.2019.00012

81. Randel, B.: Towards a methodology of computing system design. NATO Software Engi-
neering Conference Brussels, Scientific Affairs Division, NATO (Published 1969), pp.
204–208 (1968)

82. Rath, M., Rendall, J., Guo, J.L.C., Cleland-Huang, J., Mäder, P.: Traceability in the wild:
Automatically augmenting incomplete trace links. In: Proceedings of the 40th International
Conference on Software Engineering. p. 834–845. ICSE ’18, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3180155.3180207, https:
//doi.org/10.1145/3180155.3180207

83. Saada, H., Huchard, M., Nebut, C., Sahraoui, H.: Recovering model transforma-
tion traces using multi-objective optimization. In: 2013 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE (nov 2013).
https://doi.org/10.1109/ase.2013.6693134, https://doi.org/10.1109%2Fase.2013.6693134

E. R. Batot et al.46

https://doi.org/10.1007/s10270-010-0158-8
https://doi.org/10.1007/s10270-010-0158-8
https://doi.org/10.1007/978-3-319-67425-4_7
https://doi.org/10.1109/ICSE.2013.6606598
https://doi.org/10.1109/CSMR.2013.29
https://doi.org/10.1109/RE.2010.43
https://doi.org/10.1109/RET.2019.00008
https://doi.org/10.1109/TSE.2020.3000520
https://hal.sorbonne-universite.fr/hal-02852488
https://hal.sorbonne-universite.fr/hal-02852488
https://doi.org/10.1007%2F978-3-319-09195-2_10
https://doi.org/10.1109/SST.2019.00012
https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1145/3180155.3180207
https://doi.org/10.1109/ase.2013.6693134
https://doi.org/10.1109%2Fase.2013.6693134

84. Santiago, I., Vara, J.M., de Castro, V., Marcos, E.: Measuring the effect of enabling traces
generation in ATL model transformations. In: Communications in Computer and Informa-
tion Science, pp. 229–240. Springer Berlin Heidelberg (2013), https://doi.org/10.1007%
2F978-3-642-54092-9_17

85. Santiago, I., Vara, J.M., de Castro, M.V., Marcos, E.: Towards the effective use of traceabil-
ity in model-driven engineering projects. In: Conceptual Modeling. pp. 429–437. Berlin,
Heidelberg (2013)

86. Santiago, I., Álvaro Jiménez, Vara, J.M., Castro, V.D., Bollati, V.A., Marcos, E.: Model-
driven engineering as a new landscape for traceability management: A systematic lit-
erature review. Information and Software Technology 54(12), 1340 – 1356 (2012).
https://doi.org/https://doi.org/10.1016/j.infsof.2012.07.008, http://www.sciencedirect.com/
science/article/pii/S0950584912001346, special Section on Software Reliability and Secu-
rity

87. Schwarz, H., Ebert, J., Winter, A.: Graph-based traceability: a comprehensive ap-
proach. Software & Systems Modeling 9(4), 473–492 (2010), https://doi.org/10.1007/
s10270-009-0141-4

88. Seibel, A., Neumann, S., Giese, H.: Dynamic hierarchical mega models: comprehensive
traceability and its efficient maintenance. Software & Systems Modeling 9(4), 493–528
(2010), https://doi.org/10.1007/s10270-009-0146-z

89. Seiler, M., Hübner, P., Paech, B.: Comparing traceability through information re-
trieval, commits, interaction logs, and tags. In: 2019 IEEE/ACM 10th International
Symposium on Software and Systems Traceability (SST). pp. 21–28 (May 2019).
https://doi.org/10.1109/SST.2019.00015

90. Shafiq, S., Mashkoor, A., Mayr-Dorn, C., Egyed, A.: A literature review of using machine
learning in software development life cycle stages. IEEE Access 9, 140896–140920 (2021)

91. Shin, Y., Hayes, J.H., Cleland-Huang, J.: Guidelines for benchmarking automated software
traceability techniques. In: 2015 IEEE/ACM 8th International Symposium on Software and
Systems Traceability. pp. 61–67 (May 2015). https://doi.org/10.1109/SST.2015.13

92. Slotosch, O., Abu-Alqumsan, M.: Modeling and safety-certification of model-based devel-
opment processes. In: Schaefer, I., Karagiannis, D., Vogelsang, A., Méndez, D., Seidl, C.
(eds.) Modellierung 2018. pp. 261–273. Gesellschaft für Informatik e.V., Bonn (2018)

93. Spanoudakis, G., Zisman, A., Pérez-Miñana, E., Krause, P.: Rule-based generation of re-
quirements traceability relations. Journal of Systems and Software 72(2), 105 – 127 (2004).
https://doi.org/https://doi.org/10.1016/S0164-1212(03)00242-5, http://www.sciencedirect.
com/science/article/pii/S0164121203002425

94. Szabo, C., Chen, Y.: A model-driven approach for ensuring change traceability and multi-
model consistency. In: 2013 22nd Australian Software Engineering Conference. IEEE (jun
2013). https://doi.org/10.1109/aswec.2013.24, https://doi.org/10.1109%2Faswec.2013.24

95. Tekinerdoğan, B., Hofmann, C., Akşit, M., Bakker, J.: Metamodel for tracing concerns
across the life cycle. In: Moreira, A., Grundy, J. (eds.) Early Aspects: Current Challenges
and Future Directions. pp. 175–194. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

96. Vale, T., de Almeida, E.S., Alves, V., Kulesza, U., Niu, N., de Lima, R.: Software prod-
uct lines traceability: A systematic mapping study. Information and Software Technol-
ogy 84, 1 – 18 (2017). https://doi.org/https://doi.org/10.1016/j.infsof.2016.12.004, http:
//www.sciencedirect.com/science/article/pii/S0950584916304463

97. Vara, J.M., Bollati, V.A., Jiménez, Á., Marcos, E.: Dealing with traceability in the
mddof model transformations. IEEE Trans. Software Eng. 40(6), 555–583 (2014).
https://doi.org/10.1109/TSE.2014.2316132, https://doi.org/10.1109/TSE.2014.2316132

98. von Knethen, A.: Change-oriented requirements traceability. support for evolution of em-
bedded systems. In: International Conference on Software Maintenance, 2002. Proceedings.
pp. 482–485 (Oct 2002). https://doi.org/10.1109/ICSM.2002.1167808

A Survey-driven Feature Model for Software Traceability Approaches 47

https://doi.org/10.1007%2F978-3-642-54092-9_17
https://doi.org/10.1007%2F978-3-642-54092-9_17
https://doi.org/https://doi.org/10.1016/j.infsof.2012.07.008
http://www.sciencedirect.com/science/article/pii/S0950584912001346
http://www.sciencedirect.com/science/article/pii/S0950584912001346
https://doi.org/10.1007/s10270-009-0141-4
https://doi.org/10.1007/s10270-009-0141-4
https://doi.org/10.1007/s10270-009-0146-z
https://doi.org/10.1109/SST.2019.00015
https://doi.org/10.1109/SST.2015.13
https://doi.org/https://doi.org/10.1016/S0164-1212(03)00242-5
http://www.sciencedirect.com/science/article/pii/S0164121203002425
http://www.sciencedirect.com/science/article/pii/S0164121203002425
https://doi.org/10.1109/aswec.2013.24
https://doi.org/10.1109%2Faswec.2013.24
https://doi.org/https://doi.org/10.1016/j.infsof.2016.12.004
http://www.sciencedirect.com/science/article/pii/S0950584916304463
http://www.sciencedirect.com/science/article/pii/S0950584916304463
https://doi.org/10.1109/TSE.2014.2316132
https://doi.org/10.1109/TSE.2014.2316132
https://doi.org/10.1109/ICSM.2002.1167808

99. Watson, C., Cooper, N., Palacio, D.N., Moran, K., Poshyvanyk, D.: A systematic litera-
ture review on the use of deep learning in software engineering research (2020), arXiv-
2009.06520

100. Watts, D.J.: Should social science be more solution-oriented? Nature Human Behaviour
1(1), 0015 (2017), https://doi.org/10.1038/s41562-016-0015

101. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and
model-driven development. Software and Systems Modeling 9(4), 529–565 (2010), https:
//doi.org/10.1007/s10270-009-0145-0

102. Wohlrab, R., Knauss, E., Steghöfer, J.P., Maro, S., Anjorin, A., Pelliccione, P.: Collaborative
traceability management: a multiple case study from the perspectives of organization, pro-
cess, and culture. Requirements Engineering 25(1), 21–45 (2020), https://doi.org/10.1007/
s00766-018-0306-1

103. Ziegenhagen, D., Speck, A., Pulvermueller, E.: Expanding tracing capabilities us-
ing dynamic tracing data. In: Communications in Computer and Information Sci-
ence, pp. 319–340. Springer International Publishing (2020), https://doi.org/10.1007/
978-3-030-40223-5_16

104. Ziegenhagen., D., Speck., A., Pulvermüller., E.: Using developer-tool-interactions to ex-
pand tracing capabilities. In: Proceedings of the 14th International Conference on Evalu-
ation of Novel Approaches to Software Engineering - Volume 1: ENASE,. pp. 518–525.
INSTICC, SciTePress (2019). https://doi.org/10.5220/0007762905180525

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

E. R. Batot et al.48

https://doi.org/10.1038/s41562-016-0015
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/s00766-018-0306-1
https://doi.org/10.1007/s00766-018-0306-1
https://doi.org/10.1007/978-3-030-40223-5_16
https://doi.org/10.1007/978-3-030-40223-5_16
https://doi.org/10.5220/0007762905180525
http://creativecommons.org/licenses/by/4.0/

	A Survey-driven Feature Model for Software Traceability Approaches
	1 Introduction
	2 State of the art of software traceability
	3 Towards a common traceablility terminology
	3.1 Traceability components
	3.2 Traceability glossary

	4 Traceability Survey method
	4.1 Data source and search strategy
	4.2 Pruning
	4.3 Snowballing
	4.4 Threats to validity in the selection process

	5 A feature model to characterize software traceability
	5.1 Introduction to feature modelling
	5.2 Trace definition and representation
	5.3 Trace identification
	5.4 Trace management

	6 Discussion
	7 Conclusion
	References

