
Advances in Automatic Software Testing:
Test-Comp 2022

Dirk Beyer B

LMU Munich, Munich, Germany

Abstract. Test-Comp 2022 is the 4th edition of the Competition on
Software Testing. Research competitions are a means to provide annual
comparative evaluations. Test-Comp focusses on fully automatic software
test generators for C programs. The results of the competition shall be
reproducible and provide an overview of the current state of the art in the
area of automatic test-generation. The competition was based on 4 236
test-generation tasks for C programs. Each test-generation task consisted
of a program and a test specification (error coverage, branch coverage).
Test-Comp 2022 had 12 participating test generators from 5 countries.

Keywords: Software Testing · Test-Case Generation · Competition ·
Program Analysis · Software Validation · Software Bugs · Test Validation
· Test-Comp · Benchmarking · Test Coverage · Bug Finding · Test-Suites
· SV-Benchmarks · BenchExec · TestCov · CoVeriTeam

1 Introduction

The Competition on Software Testing (Test-Comp, https://test-comp.sosy-lab.org,
[5, 6, 7, 9]) showcases the state of the art in the area of automatic software testing.
For the 4th time, the competition provides an overview of the results achieved
by implementations of the most recent ideas, concepts, and algorithms for fully
automatic test generation. This competition report describes the (updated) rules
and definitions, presents the competition results, and discusses some interesting
facts about the execution of the competition experiments. We use BenchExec [20]
to execute the benchmarks and the results are presented in tables and graphs
on the competition web site (https://test-comp.sosy-lab.org/2022/results) and are
available in the accompanying archives (see Table 3).

This report extends previous reports on Test-Comp [5, 6, 7, 9].
Reproduction packages are available on Zenodo (see Table 3).
B dirk.beyer@sosy-lab.org

c© The Author(s) 2022
E. B. Johnsen and M. Wimmer (Eds.): FASE 2022, LNCS 13241, pp. 321–335, 2022.
https://doi.org/10.1007/978-3-030-99429-7_18

https://orcid.org/0000-0003-4832-7662
https://orcid.org/0000-0003-4832-7662
https://www.sosy-lab.org/people/beyer/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/software/coveriteam
https://test-comp.sosy-lab.org
https://github.com/sosy-lab/benchexec
https://test-comp.sosy-lab.org/2022/results
https://www.sosy-lab.org/people/beyer/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99429-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-99429-7_18

Dirk Beyer

Competition Goals. In summary, the goals of Test-Comp are the following [6]:

• Establish standards for software test generation. This means, most promi-
nently, to develop a standard for marking input values in programs, define
an exchange format for test suites, agree on a specification language for
test-coverage criteria, and define how to validate the resulting test suites.

• Establish a set of benchmarks for software testing in the community. This
means to create and maintain a set of programs together with coverage
criteria, and to make those publicly available for researchers to be used in
performance comparisons when evaluating a new technique.

• Provide an overview of available tools for test-case generation and a snapshot
of the state-of-the-art in software testing to the community. This means to
compare, independently from particular paper projects and specific techniques,
different test generators in terms of effectiveness and performance.

• Increase the visibility and credits that tool developers receive. This means
to provide a forum for presentation of tools and discussion of the latest
technologies, and to give the participants the opportunity to publish about
the development work that they have done.

• Educate PhD students and other participants on how to set up performance
experiments, package tools in a way that supports reproduction, and how to
perform robust and accurate research experiments.

• Provide resources to development teams that do not have sufficient computing
resources and give them the opportunity to obtain results from experiments
on large benchmark sets.

Related Competitions. In the field of formal methods, competitions are
respected as an important evaluation method and there are many competitions [3].
We refer to the report from Test-Comp 2020 [6] for a more detailed discussion
and give here only the references to the most related competitions [3, 10, 41, 43].

2 Definitions, Formats, and Rules

Organizational aspects such as the classification (automatic, off-site, reproducible,
jury, training) and the competition schedule is given in the initial competi-
tion definition [5]. In the following, we repeat some important definitions that
are necessary to understand the results.

Test-Generation Task. A test-generation task is a pair of an input program (pro-
gram under test) and a test specification. A test-generation run is a non-interactive
execution of a test generator on a single test-generation task, in order to generate a
test suite according to the test specification. A test suite is a sequence of test cases,
given as a directory of files according to the format for exchangeable test-suites.1

Execution of a Test Generator. Figure 1 illustrates the process of executing
one test generator on the benchmark suite. One test run for a test generator gets
1 https://gitlab.com/sosy-lab/software/test-format

322

https://gitlab.com/sosy-lab/software/test-format

Advances in Automatic Software Testing: Test-Comp 2022 323

Test
Generator

Program
under Test

Test
Specification

Test Suite
(Test Cases)

Test
Validator

Bug
Report

Coverage
Statistics

Fig. 1: Flow of the Test-Comp execution for one test generator (taken from [6])

as input (i) a program from the benchmark suite and (ii) a test specification
(cover bug, or cover branches), and returns as output a test suite (i.e., a set of
test cases). The test generator is contributed by a competition participant as
a software archive in ZIP format. The test runs are executed centrally by the
competition organizer. The test-suite validator takes as input the test suite from
the test generator and validates it by executing the program on all test cases:
for bug finding it checks if the bug is exposed and for coverage it reports the
coverage. We use the tool TestCov [19] 2 as test-suite validator.

Test Specification. The specification for testing a program is given to the
test generator as input file (either properties/coverage-error-call.prp or
properties/coverage-branches.prp for Test-Comp 2022).

The definition init(main()) is used to define the initial states of the program
under test by a call of function main (with no parameters). The definition FQL(f)
specifies that coverage definition f should be achieved. The FQL (FShell query
language [30]) coverage definition COVER EDGES(@DECISIONEDGE) means that all
branches should be covered (typically used to obtain a standard test suite for qual-
ity assurance) and COVER EDGES(@CALL(foo)) means that a call (at least one) to
function foo should be covered (typically used for bug finding). A complete specifi-
cation looks like: COVER(init(main()), FQL(COVER EDGES(@DECISIONEDGE))).

Table 1 lists the two FQL formulas that are used in test specifications of
Test-Comp 2022; there was no change from 2020 (except that special function
__VERIFIER_error does not exist anymore).

Task-Definition Format 2.0. Test-Comp 2022 used again the task-definition for-
mat in version 2.0.

License and Qualification. The license of each participating test generator
must allow its free use for reproduction of the competition results. Details on
qualification criteria can be found in the competition report of Test-Comp 2019 [7].

2 https://gitlab.com/sosy-lab/software/test-suite-validator

https://gitlab.com/sosy-lab/software/test-suite-validator/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp22/c/properties/coverage-error-call.prp
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/testcomp22/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/benchmarking/task-definition-format/-/tree/2.0
https://gitlab.com/sosy-lab/software/test-suite-validator

Table 1: Coverage specifications used in Test-Comp 2022 (similar to 2019–2021)

Formula Interpretation

COVER EDGES(@CALL(reach_error)) The test suite contains at least one test
that executes function reach_error.

COVER EDGES(@DECISIONEDGE) The test suite contains tests such that
all branches of the program are executed.

3 Categories and Scoring Schema

Benchmark Programs. The input programs were taken from the largest and
most diverse open-source repository of software-verification and test-generation
tasks 3, which is also used by SV-COMP [8]. As in 2020 and 2021, we se-
lected all programs for which the following properties were satisfied (see is-
sue on GitHub 4 and report [7]):

1. compiles with gcc, if a harness for the special methods 5 is provided,
2. should contain at least one call to a nondeterministic function,
3. does not rely on nondeterministic pointers,
4. does not have expected result ‘false’ for property ‘termination’, and
5. has expected result ‘false’ for property ‘unreach-call’ (only for category Error

Coverage).

This selection yielded a total of 4 236 test-generation tasks, namely 776 tasks
for category Error Coverage and 3 460 tasks for category Code Coverage. The
test-generation tasks are partitioned into categories, which are listed in Ta-
bles 6 and 7 and described in detail on the competition web site.6 Figure 2
illustrates the category composition.

Category Error-Coverage. The first category is to show the abilities to discover
bugs. The benchmark set consists of programs that contain a bug. Every run
will be started by a batch script, which produces for every tool and every test-
generation task one of the following scores: 1 point, if the validator succeeds in
executing the program under test on a generated test case that explores the bug
(i.e., the specified function was called), and 0 points, otherwise.

Category Branch-Coverage. The second category is to cover as many branches
of the program as possible. The coverage criterion was chosen because many
test generators support this standard criterion by default. Other coverage cri-
teria can be reduced to branch coverage by transformation [29]. Every run
will be started by a batch script, which produces for every tool and every

3 https://github.com/sosy-lab/sv-benchmarks
4 https://github.com/sosy-lab/sv-benchmarks/pull/774
5 https://test-comp.sosy-lab.org/2022/rules.php
6 https://test-comp.sosy-lab.org/2022/benchmarks.php

Dirk Beyer324

https://github.com/sosy-lab/sv-benchmarks
https://github.com/sosy-lab/sv-benchmarks/pull/774
https://test-comp.sosy-lab.org/2022/rules.php
https://test-comp.sosy-lab.org/2022/benchmarks.php

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

BusyBox-MemSafety

DeviceDriversLinux64-ReachSafety

Cover-Error

Arrays

BitVectors

ControlFlow

ECA

Floats

Heap

Loops

ProductLines

Recursive

Sequentialized

XCSP

Combinations

BusyBox-MemSafety

DeviceDriversLinux64-ReachSafety

SQLite-MemSafety

MainHeap

Cover-Branches

C-Overall

Fig. 2: Category structure for Test-Comp 2022; compared to Test-Comp 2021,
sub-category ProductLines was added to both main categories Cover-Error and
Cover-Branches

test-generation task the coverage of branches of the program (as reported by
TestCov [19]; a value between 0 and 1) that are executed for the generated
test cases. The score is the returned coverage.

Ranking. The ranking was decided based on the sum of points (normalized for
meta categories). In case of a tie, the ranking was decided based on the run time,

Advances in Automatic Software Testing: Test-Comp 2022 325

https://gitlab.com/sosy-lab/software/test-suite-validator/

(a) Test-Generation Tasks

(e) Test-Generation Run

(b) Benchmark Definitions (c) Tool-Info Modules (d) Tester Archives

(f) Test Suite

Fig. 3: Benchmarking components of Test-Comp and competition’s execution flow
(same as for Test-Comp 2020)

Table 2: Publicly available components for reproducing Test-Comp 2022

Component Fig. 3 Repository Version

Test-Generation Tasks (a) gitlab.com/sosy-lab/benchmarking/sv-benchmarks testcomp22
Benchmark Definitions (b) gitlab.com/sosy-lab/test-comp/bench-defs testcomp22
Tool-Info Modules (c) github.com/sosy-lab/benchexec 3.10
Test-Generator Archives (d) gitlab.com/sosy-lab/test-comp/archives-2022 testcomp22
Benchmarking (e) github.com/sosy-lab/benchexec 3.10
Test-Suite Format (f) gitlab.com/sosy-lab/software/test-format testcomp22

which is the total CPU time over all test-generation tasks. Opt-out from categories
was possible and scores for categories were normalized based on the number of
tasks per category (see competition report of SV-COMP 2013 [4], page 597).

4 Reproducibility

We followed the same competition workflow that was described in detail in
the previous competition report (see Sect. 4, [9]). All major components that
were used for the competition were made available in public version-control
repositories. An overview of the components that contribute to the reproducible
setup of Test-Comp is provided in Fig. 3, and the details are given in Table 2.
We refer to the report of Test-Comp 2019 [7] for a thorough description of all
components of the Test-Comp organization and how we ensure that all parts
are publicly available for maximal reproducibility.

In order to guarantee long-term availability and immutability of the test-
generation tasks, the produced competition results, and the produced test suites,
we also packaged the material and published it at Zenodo (see Table 3).

The competition used CoVeriTeam [17] 7 again to provide participants
access to the actual competition machines. The competition report of SV-
COMP 2022 provides a description on reproducing individual results and on
trouble-shooting (see Sect. 3, [10]).

7 https://gitlab.com/sosy-lab/software/coveriteam

Dirk Beyer326

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/tree/testcomp22/c
https://gitlab.com/sosy-lab/test-comp/bench-defs/-/tree/testcomp22/benchmark-defs
https://github.com/sosy-lab/benchexec/tree/3.10/benchexec/tools
https://gitlab.com/sosy-lab/test-comp/archives-2022/tree/testcomp22/2022
https://github.com/sosy-lab/benchexec/tree/3.10
https://gitlab.com/sosy-lab/software/test-format/-/tree/testcomp22
https://gitlab.com/sosy-lab/software/coveriteam
https://gitlab.com/sosy-lab/software/coveriteam

Table 3: Artifacts published for Test-Comp 2022

Content DOI Reference

Test-Generation Tasks 10.5281/zenodo.5831003 [12]
Competition Results 10.5281/zenodo.5831012 [11]
Test-Suite Generators 10.5281/zenodo.5959598 [13]
Test Suites (Witnesses) 10.5281/zenodo.5831010 [14]
BenchExec 10.5281/zenodo.5720267 [47]

Table 4: Competition candidates with tool references and representing jury members;
new indicates first-time participants, ∅ indicates hors-concours participation

Tester Ref. Jury member Affiliation

CMA-ES Fuzz∅ [34] (hors concours) –
CoVeriTest [16, 33] Marie-Christine Jakobs TU Darmstadt, Germany
FuSeBMC [1, 2] Kaled Alshmrany U. of Manchester, UK
HybridTiger∅ [22, 42] (hors concours) –
Klee∅ [23, 24] (hors concours) –
Legion [38, 39] Gidon Ernst LMU Munich, Germany
Legion/SymCC new [39] Gidon Ernst LMU Munich, Germany
LibKluzzer [36] Hoang M. Le U. of Bremen, Germany
PRTest [18, 37] Thomas Lemberger LMU Munich, Germany
Symbiotic [25, 26] Marek Chalupa Masaryk U., Brno, Czechia
TracerX [31, 32] Joxan Jaffar National U., Singapore
VeriFuzz [40] Raveendra Kumar M. Tata Consultancy Services, India

5 Results and Discussion

This section represents the results of the competition experiments. The report
shall help to understanding the state of the art and the advances in fully au-
tomatic test generation for whole C programs, in terms of effectiveness (test
coverage, as accumulated in the score) and efficiency (resource consumption
in terms of CPU time). All results mentioned in this article were inspected
and approved by the participants.

Participating Test Generators. Table 4 provides an overview of the par-
ticipating test generators and references to publications, as well as the team
representatives of the jury of Test-Comp 2022. (The competition jury consists of
the chair and one member of each participating team.) An online table with infor-
mation about all participating systems is provided on the competition web site.8
Table 5 lists the features and technologies that are used in the test generators.

There are test generators that did not actively participate (e.g., tester archives
taken from last year) and that are not included in rankings. Those are called
hors-concours participations and the tool names are labeled with a symbol (∅).

8 https://test-comp.sosy-lab.org/2022/systems.php

Advances in Automatic Software Testing: Test-Comp 2022 327

https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831012
https://doi.org/10.5281/zenodo.5959598
https://doi.org/10.5281/zenodo.5831010
https://doi.org/10.5281/zenodo.5720267
https://github.com/lazygrey/fuzzing_with_cmaes
https://cpachecker.sosy-lab.org/
https://github.com/kaled-alshmrany/FuSeBMC
https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp20
https://klee.github.io
https://github.com/Alan32Liu/Legion/tree/TestComp2020-ASE2020v3
https://github.com/gernst/legion-symcc
https://unihb.eu/kluzzer
https://gitlab.com/sosy-lab/software/prtest
https://github.com/staticafi/symbiotic
https://tracer-x.github.io/
https://test-comp.sosy-lab.org/2022/systems.php

Table 5: Technologies and features that the test generators used

Participant B
ou

n
d
ed

M
od

el
C
h
ec
ki
n
g

C
E
G
A
R

E
vo

lu
ti
on

ar
y
A
lg
or
it
h
m
s

E
xp

li
ci
t-
V
al
u
e
A
n
al
ys
is

F
lo
at
in
g-
P
oi
nt

A
ri
th
m
et
ic
s

G
u
id
an

ce
by

C
ov
er
ag
e
M
ea
su
re
s

P
re
d
ic
at
e
A
b
st
ra
ct
io
n

R
an

d
om

E
xe
cu

ti
on

S
ym

b
ol
ic

E
xe
cu

ti
on

T
ar
ge
te
d
In
p
u
t
G
en

er
at
io
n

A
lg
or
it
h
m

S
el
ec
ti
on

P
or
tf
ol
io

CMA-ES Fuzz∅ 3 3 3 3 3

CoVeriTest 3 3 3 3 3

FuSeBMC 3 3 3 3 3

HybridTiger∅ 3 3 3 3

Klee∅ 3 3 3

Legion 3 3 3 3 3 3

Legion/SymCC new 3 3 3 3 3 3

LibKluzzer 3 3 3 3

PRTest 3 3

Symbiotic 3 3 3 3 3

TracerX 3 3 3 3

VeriFuzz 3 3 3 3 3 3

Computing Resources. The computing environment and the resource lim-
its were the same as for Test-Comp 2020 [6]: Each test run was limited to
8 processing units (cores), 15GB of memory, and 15min of CPU time. The
test-suite validation was limited to 2 processing units, 7GB of memory, and
5min of CPU time. The machines for running the experiments are part of a
compute cluster that consists of 167 machines; each test-generation run was
executed on an otherwise completely unloaded, dedicated machine, in order to
achieve precise measurements. Each machine had one Intel Xeon E3-1230 v5
CPU, with 8 processing units each, a frequency of 3.4GHz, 33GB of RAM,
and a GNU/Linux operating system (x86_64-linux, Ubuntu 20.04 with Linux
kernel 5.4). We used BenchExec [20] to measure and control computing resources
(CPU time, memory, CPU energy) and VerifierCloud9 to distribute, install,

9 https://vcloud.sosy-lab.org

Dirk Beyer328

https://github.com/lazygrey/fuzzing_with_cmaes
https://cpachecker.sosy-lab.org/
https://github.com/kaled-alshmrany/FuSeBMC
https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp20
https://klee.github.io
https://github.com/Alan32Liu/Legion/tree/TestComp2020-ASE2020v3
https://github.com/gernst/legion-symcc
https://unihb.eu/kluzzer
https://gitlab.com/sosy-lab/software/prtest
https://github.com/staticafi/symbiotic
https://tracer-x.github.io/
https://github.com/sosy-lab/benchexec
https://vcloud.sosy-lab.org
https://vcloud.sosy-lab.org

Table 6: Quantitative overview over all results; empty cells mark opt-outs; new indicates
first-time participants, ∅ indicates hors-concours participation

Tester

C
ov
er
-E
rr
or

77
6
ta
sk
s

C
ov
er
-B

ra
n
ch
es

34
60

ta
sk
s

O
ve
ra
ll

42
36

ta
sk
s

CMA-ES Fuzz∅ 0 624 382
CoVeriTest 423 1860 2293
FuSeBMC 628 2104 3003
HybridTiger∅ 355 1406 1830
Klee∅ 500 1242 2125
Legion 57 1033 787
Legion/SymCC new 1487
LibKluzzer 528 1990 2658
PRTest 145 896 945
Symbiotic 463 1802 2367
TracerX 0 1746 1069
VeriFuzz 623 2075 2971

run, and clean-up test-case generation runs, and to collect the results. The values
for time and energy are accumulated over all cores of the CPU. To measure the
CPU energy, we use CPU Energy Meter [21] (integrated in BenchExec [20]).
Further technical parameters of the competition machines are available in the
repository which also contains the benchmark definitions. 10

One complete test-generation execution of the competition consisted of
50 056 single test-generation runs. The total CPU time was 339 days and the
consumed energy 88 kWh for one complete competition run for test generation
(without validation). Test-suite validation consisted of 50 832 single test-suite
validation runs. The total consumed CPU time was 15 days. Each tool was
executed several times, in order to make sure no installation issues occur dur-
ing the execution. Including preruns, the infrastructure managed a total of
311 754 test-generation runs (consuming 4.9 years of CPU time). The CPU
energy was not measured during preruns.

Quantitative Results. The quantitative results are presented in the same
way as last year: Table 6 presents the quantitative overview of all tools and all
categories. The head row mentions the category and the number of test-generation

10 https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp22

Advances in Automatic Software Testing: Test-Comp 2022 329

https://github.com/lazygrey/fuzzing_with_cmaes
https://cpachecker.sosy-lab.org/
https://github.com/kaled-alshmrany/FuSeBMC
https://www.es.tu-darmstadt.de/es/team/sebastian-ruland/testcomp20
https://klee.github.io
https://github.com/Alan32Liu/Legion/tree/TestComp2020-ASE2020v3
https://github.com/gernst/legion-symcc
https://unihb.eu/kluzzer
https://gitlab.com/sosy-lab/software/prtest
https://github.com/staticafi/symbiotic
https://tracer-x.github.io/
https://github.com/sosy-lab/benchexec
https://gitlab.com/sosy-lab/test-comp/bench-defs/tree/testcomp22

Table 7: Overview of the top-three test generators for each category (measurement
values for CPU time and energy rounded to two significant digits)

Rank Tester Score CPU CPU
Time Energy
(in h) (in kWh)

Cover-Error
1 FuSeBMC 628 22 0.28
2 VeriFuzz 623 3.5 0.039
3 LibKluzzer 528 140 1.5

Cover-Branches
1 FuSeBMC 2104 850 11
2 VeriFuzz 2075 850 11
3 LibKluzzer 1990 760 8.3

Overall
1 FuSeBMC 3003 870 11
2 VeriFuzz 2971 860 11
3 LibKluzzer 2658 900 9.8

tasks in that category. The tools are listed in alphabetical order; every table
row lists the scores of one test generator. We indicate the top three candidates
by formatting their scores in bold face and in larger font size. An empty table
cell means that the test generator opted-out from the respective main category
(perhaps participating in subcategories only, restricting the evaluation to a specific
topic). More information (including interactive tables, quantile plots for every
category, and also the raw data in XML format) is available on the competition
web site 11 and in the results artifact (see Table 3). Table 7 reports the top three
test generators for each category. The consumed run time (column ‘CPU Time’)
is given in hours and the consumed energy (column ‘Energy’) is given in kWh.

Score-Based Quantile Functions for Quality Assessment. We use score-
based quantile functions [20] because these visualizations make it easier to
understand the results of the comparative evaluation. The web site 11 and the
results artifact (Table 3) include such a plot for each category; as example, we
show the plot for category Overall (all test-generation tasks) in Fig. 4. We had
11 test generators participating in category Overall, for which the quantile plot
shows the overall performance over all categories (scores for meta categories
are normalized [4]). A more detailed discussion of score-based quantile plots for
testing is provided in the Test-Comp 2019 competition report [7].

Alternative Rankings. Table 8 is similar to Table 7, but contains the al-
ternative ranking category Green Testing. Column ‘Quality’ gives the score in
score points (sp), column ‘CPU Time’ the CPU usage in hours (h), column

11 https://test-comp.sosy-lab.org/2022/results

Dirk Beyer330

https://github.com/kaled-alshmrany/FuSeBMC
https://unihb.eu/kluzzer
https://github.com/kaled-alshmrany/FuSeBMC
https://unihb.eu/kluzzer
https://github.com/kaled-alshmrany/FuSeBMC
https://unihb.eu/kluzzer
https://test-comp.sosy-lab.org/2022/results

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000

M
in

.
n
u
m

b
e
r

o
f

te
st

 t
a
sk

s

Cumulative score

CMA-ES-Fuzz
CoVeriTest
FuSeBMC

HybridTiger
KLEE

Legion
LibKluzzer

PRTest
Symbiotic

TracerX
VeriFuzz

Fig. 4: Quantile functions for category Overall. Each quantile function illustrates
the quantile (x-coordinate) of the scores obtained by test-generation runs below
a certain number of test-generation tasks (y-coordinate). More details were given
previously [7]. The graphs are decorated with symbols to make them better
distinguishable without color.

Table 8: Alternative rankings; quality is given in score points (sp), CPU time
in hours (h), energy in kilo-watt-hours (kWh), the first rank measure in kilo-
joule per score point (kJ/sp), and the second rank measure in score points (sp);
measurement values are rounded to 2 significant digits

Rank Test Generator Quality CPU CPU Rank
Time Energy Measure

(sp) (h) (kWh)

Green Testing (kJ/sp)
1 TracerX 1 069 120 1.4 4.8
2 Klee∅ 2 125 310 3.5 6.0
3 Symbiotic 2 367 540 5.9 9.0
worst 41

‘CPU Energy’ the CPU usage in kilo-watt-hours (kWh), and column ‘Rank
Measure’ reports the values for the rank measure.
Green Testing — Low Energy Consumption. Since a large part of the cost of
test generation is caused by the energy consumption, it might be important to
also consider the energy efficiency in rankings, as complement to the official
Test-Comp ranking. This alternative ranking category uses the energy consump-
tion per score point as rank measure: CPU Energy

Quality , with the unit kilo-joule per
score point (kJ/sp).The energy is measured using CPU Energy Meter [21],
which we use as part of BenchExec [20].

New Test Generators. To acknowledge the test generators that participated
for the first time in Test-Comp, we list the test generators that participated for
the first time. CMA-ES Fuzz∅ and FuSeBMC participated for the first time in

Advances in Automatic Software Testing: Test-Comp 2022 331

https://tracer-x.github.io/
https://klee.github.io
https://github.com/staticafi/symbiotic
https://github.com/sosy-lab/benchexec
https://github.com/lazygrey/fuzzing_with_cmaes
https://github.com/kaled-alshmrany/FuSeBMC

Table 9: New verifiers in Test-Comp 2021 and Test-Comp 2022; column ‘Sub-
categories’ gives the number of executed categories

Verifier Language First Year Sub-categories

Legion/SymCC new C 2022 16

CMA-ES Fuzz∅ C 2021 30
FuSeBMC C 2021 30

2019 2020 2021 2022
0

5

10

15

9

4

2
1

6
9

11

Year

E
va
lu
at
ed

te
st

ge
ne

ra
to
rs

Fig. 5: Number of evaluated test generators for each year (top: number of first-
time participants; bottom: previous year’s participants)

Test-Comp 2021, and Legion/SymCC new participated first in Test-Comp 2022.
Table 9 reports also the number of subcategories in which the tools participated.

6 Conclusion

For the 4th time, the Competition on Software Testing took place and provides
an overview of test-generation tools for C programs. The competition event
attracted 12 participating teams (see Fig. 5 for the participation numbers and
Table 4 for the details). The competition is an off-site competition, the execution
of the experiments is fully-automatatic and reproducible. To ensure transparency,
all components are made available in public repositories and a jury (consisting
of members from each team) oversees the process. The produced test suites are
validated by the test-suite validator TestCov. The results of the competition
are presented at the 25th International Conference on Fundamental Approaches
to Software Engineering at ETAPS 2022.

Data-Availability Statement. The test-generation tasks and results of the com-
petition are published at Zenodo, as described in Table 3. All components and data
that are necessary for reproducing the competition are available in public version
repositories, as specified in Table 2. For easy access, the results are presented also
online on the competition web site https://test-comp.sosy-lab.org/2022/results.

Funding Statement. This project was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG) — 418257054 (Coop).

Dirk Beyer332

https://github.com/gernst/legion-symcc
https://github.com/lazygrey/fuzzing_with_cmaes
https://github.com/kaled-alshmrany/FuSeBMC
https://github.com/gernst/legion-symcc
https://gitlab.com/sosy-lab/software/test-suite-validator/
https://test-comp.sosy-lab.org/2022/results
http://gepris.dfg.de/gepris/projekt/418257054

References

1. Alshmrany, K., Aldughaim, M., Cordeiro, L., Bhayat, A.: FuSeBMC v.4: Smart
seed generation for hybrid fuzzing (competition contribution). In: Proc. FASE.
LNCS 13241, Springer (2022)

2. Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: FuSeBMC:
An energy-efficient test generator for finding security vulnerabili-
ties in C programs. In: Proc. TAP. pp. 85–105. Springer (2021).
https://doi.org/10.1007/978-3-030-79379-1_6

3. Bartocci, E., Beyer, D., Black, P.E., Fedyukovich, G., Garavel, H., Hartmanns, A.,
Huisman, M., Kordon, F., Nagele, J., Sighireanu, M., Steffen, B., Suda, M., Sutcliffe,
G., Weber, T., Yamada, A.: TOOLympics 2019: An overview of competitions in
formal methods. In: Proc. TACAS (3). pp. 3–24. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_1

4. Beyer, D.: Second competition on software verification (Summary of SV-
COMP 2013). In: Proc. TACAS. pp. 594–609. LNCS 7795, Springer (2013).
https://doi.org/10.1007/978-3-642-36742-7_43

5. Beyer, D.: Competition on software testing (Test-Comp). In:
Proc. TACAS (3). pp. 167–175. LNCS 11429, Springer (2019).
https://doi.org/10.1007/978-3-030-17502-3_11

6. Beyer, D.: Second competition on software testing: Test-Comp
2020. In: Proc. FASE. pp. 505–519. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_25

7. Beyer, D.: First international competition on software testing (Test-Comp
2019). Int. J. Softw. Tools Technol. Transf. 23(6), 833–846 (December 2021).
https://doi.org/10.1007/s10009-021-00613-3

8. Beyer, D.: Software verification: 10th comparative evaluation (SV-COMP
2021). In: Proc. TACAS (2). pp. 401–422. LNCS 12652, Springer (2021).
https://doi.org/10.1007/978-3-030-72013-1_24

9. Beyer, D.: Status report on software testing: Test-Comp 2021.
In: Proc. FASE. pp. 341–357. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_17

10. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS.
LNCS 13244, Springer (2022)

11. Beyer, D.: Results of the 4th Intl. Competition on Software Testing (Test-Comp
2022). Zenodo (2022). https://doi.org/10.5281/zenodo.5831012

12. Beyer, D.: SV-Benchmarks: Benchmark set for softwware verification
and testing (SV-COMP 2022 and Test-Comp 2022). Zenodo (2022).
https://doi.org/10.5281/zenodo.5831003

13. Beyer, D.: Test-suite generators and validator of the 4th Intl. Com-
petition on Software Testing (Test-Comp 2022). Zenodo (2022).
https://doi.org/10.5281/zenodo.5959598

14. Beyer, D.: Test suites from test-generation tools (Test-Comp 2022). Zenodo (2022).
https://doi.org/10.5281/zenodo.5831010

15. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar, R.: Gener-
ating tests from counterexamples. In: Proc. ICSE. pp. 326–335. IEEE (2004).
https://doi.org/10.1109/ICSE.2004.1317455

16. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based
testing. In: Proc. FASE. pp. 389–408. LNCS 11424, Springer (2019).
https://doi.org/10.1007/978-3-030-16722-6_23

Advances in Automatic Software Testing: Test-Comp 2022 333

https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-17502-3_1
https://doi.org/10.1007/978-3-642-36742-7_43
https://doi.org/10.1007/978-3-030-17502-3_11
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/s10009-021-00613-3
https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-030-71500-7_17
https://doi.org/10.5281/zenodo.5831012
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5959598
https://doi.org/10.5281/zenodo.5831010
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1007/978-3-030-16722-6_23

17. Beyer, D., Kanav, S.: CoVeriTeam: On-demand composition of cooperative
verification systems. In: Proc. TACAS. Springer (2022)

18. Beyer, D., Lemberger, T.: Software verification: Testing vs. model
checking. In: Proc. HVC. pp. 99–114. LNCS 10629, Springer (2017).
https://doi.org/10.1007/978-3-319-70389-3_7

19. Beyer, D., Lemberger, T.: TestCov: Robust test-suite execution and
coverage measurement. In: Proc. ASE. pp. 1074–1077. IEEE (2019).
https://doi.org/10.1109/ASE.2019.00105

20. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements
and solutions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019).
https://doi.org/10.1007/s10009-017-0469-y

21. Beyer, D., Wendler, P.: CPU Energy Meter: A tool for energy-aware algorithms
engineering. In: Proc. TACAS (2). pp. 126–133. LNCS 12079, Springer (2020).
https://doi.org/10.1007/978-3-030-45237-7_8

22. Bürdek, J., Lochau, M., Bauregger, S., Holzer, A., von Rhein, A., Apel,
S., Beyer, D.: Facilitating reuse in multi-goal test-suite generation for soft-
ware product lines. In: Proc. FASE. pp. 84–99. LNCS 9033, Springer (2015).
https://doi.org/10.1007/978-3-662-46675-9_6

23. Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proc. OSDI. pp. 209–224.
USENIX Association (2008)

24. Cadar, C., Nowack, M.: Klee symbolic execution engine in 2019 (competition
contribution). Int. J. Softw. Tools Technol. Transf. 23(6), 867 – 870 (December
2021). https://doi.org/10.1007/s10009-020-00570-3

25. Chalupa, M., Novák, J., Strejček, J.: Symbiotic 8: Parallel and targeted test
generation (competition contribution). In: Proc. FASE. pp. 368–372. LNCS 12649,
Springer (2021). https://doi.org/10.1007/978-3-030-71500-7_20

26. Chalupa, M., Strejček, J., Vitovská, M.: Joint forces for mem-
ory safety checking. In: Proc. SPIN. pp. 115–132. Springer (2018).
https://doi.org/10.1007/978-3-319-94111-0_7

27. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. JSAT 9, 207–242
(2016)

28. Godefroid, P., Sen, K.: Combining model checking and testing.
In: Handbook of Model Checking, pp. 613–649. Springer (2018).
https://doi.org/10.1007/978-3-319-10575-8_19

29. Harman, M., Hu, L., Hierons, R.M., Wegener, J., Sthamer, H., Baresel, A., Roper,
M.: Testability transformation. IEEE Trans. Software Eng. 30(1), 3–16 (2004).
https://doi.org/10.1109/TSE.2004.1265732

30. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: How did you
specify your test suite. In: Proc. ASE. pp. 407–416. ACM (2010).
https://doi.org/10.1145/1858996.1859084

31. Jaffar, J., Maghareh, R., Godboley, S., Ha, X.L.: TracerX: Dynamic symbolic
execution with interpolation (competition contribution). In: Proc. FASE. pp. 530–
534. LNCS 12076, Springer (2020). https://doi.org/10.1007/978-3-030-45234-6_28

32. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: Tracer: A symbolic execution
tool for verification. In: Proc. CAV. pp. 758–766. LNCS 7358, Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7_61

33. Jakobs, M.C., Richter, C.: CoVeriTest with adaptive time scheduling (compe-
tition contribution). In: Proc. FASE. pp. 358–362. LNCS 12649, Springer (2021).
https://doi.org/10.1007/978-3-030-71500-7_18

Dirk Beyer334

https://doi.org/10.1007/978-3-319-70389-3_7
https://doi.org/10.1109/ASE.2019.00105
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-45237-7_8
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/s10009-020-00570-3
https://doi.org/10.1007/978-3-030-71500-7_20
https://doi.org/10.1007/978-3-319-94111-0_7
https://doi.org/10.1007/978-3-319-10575-8_19
https://doi.org/10.1109/TSE.2004.1265732
https://doi.org/10.1145/1858996.1859084
https://doi.org/10.1007/978-3-030-45234-6_28
https://doi.org/10.1007/978-3-642-31424-7_61
https://doi.org/10.1007/978-3-030-71500-7_18

34. Kim, H.: Fuzzing with stochastic optimization (2020), Bachelor’s Thesis, LMU
Munich

35. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976). https://doi.org/10.1145/360248.360252

36. Le, H.M.: Llvm-based hybrid fuzzing with LibKluzzer (competition con-
tribution). In: Proc. FASE. pp. 535–539. LNCS 12076, Springer (2020).
https://doi.org/10.1007/978-3-030-45234-6_29

37. Lemberger, T.: Plain random test generation with PRTest (competition contri-
bution). Int. J. Softw. Tools Technol. Transf. 23(6), 871–873 (December 2021).
https://doi.org/10.1007/s10009-020-00568-x

38. Liu, D., Ernst, G., Murray, T., Rubinstein, B.: Legion: Best-first concolic testing
(competition contribution). In: Proc. FASE. pp. 545–549. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_31

39. Liu, D., Ernst, G., Murray, T., Rubinstein, B.I.P.: Legion: Best-first concolic testing.
In: Proc. ASE. pp. 54–65. IEEE (2020). https://doi.org/10.1145/3324884.3416629

40. Metta, R., Kumar, M.R., Karmarkar, H.: VeriFuzz: Fuzz centric test generation
tool (competition contribution). In: Proc. FASE. LNCS 13241, Springer (2022)

41. Panichella, S., Gambi, A., Zampetti, F., Riccio, V.: SBST tool
competition 2021. In: Proc. SBST. pp. 20–27. IEEE (2021).
https://doi.org/10.1109/SBST52555.2021.00011

42. Ruland, S., Lochau, M., Jakobs, M.C.: HybridTiger: Hybrid model checking
and domination-based partitioning for efficient multi-goal test-suite generation
(competition contribution). In: Proc. FASE. pp. 520–524. LNCS 12076, Springer
(2020). https://doi.org/10.1007/978-3-030-45234-6_26

43. Song, J., Alves-Foss, J.: The DARPA cyber grand challenge: A competi-
tor’s perspective, part 2. IEEE Security and Privacy 14(1), 76–81 (2016).
https://doi.org/10.1109/MSP.2016.14

44. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure
for logic solving. In: Proc. IJCAR, pp. 367–373. LNCS 8562, Springer (2014).
https://doi.org/10.1007/978-3-319-08587-6_28

45. Sutcliffe, G.: The CADE ATP system competition: CASC. AI Magazine 37(2),
99–101 (2016)

46. Visser, W., Păsăreanu, C.S., Khurshid, S.: Test-input generation
with Java PathFinder. In: Proc. ISSTA. pp. 97–107. ACM (2004).
https://doi.org/10.1145/1007512.1007526

47. Wendler, P., Beyer, D.: sosy-lab/benchexec: Release 3.10. Zenodo (2022).
https://doi.org/10.5281/zenodo.5720267

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Advances in Automatic Software Testing: Test-Comp 2022 335

https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-030-45234-6_29
https://doi.org/10.1007/s10009-020-00568-x
https://doi.org/10.1007/978-3-030-45234-6_31
https://doi.org/10.1145/3324884.3416629
https://doi.org/10.1109/SBST52555.2021.00011
https://doi.org/10.1007/978-3-030-45234-6_26
https://doi.org/10.1109/MSP.2016.14
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1145/1007512.1007526
https://doi.org/10.5281/zenodo.5720267
http://creativecommons.org/licenses/by/4.0/

	Advances in Automatic Software Testing: Test-Comp 2022
	1 Introduction
	2 Definitions, Formats, and Rules
	3 Categories and Scoring Schema
	4 Reproducibility
	5 Results and Discussion
	6 Conclusion
	References

