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Abstract. Nowadays, software development is accelerated through the
reuse of code snippets found online in question-answering platforms and
software repositories. In order to be efficient, this process requires form-
ing an appropriate query and identifying the most suitable code snippet,
which can sometimes be challenging and particularly time-consuming.
Over the last years, several code recommendation systems have been de-
veloped to offer a solution to this problem. Nevertheless, most of them
recommend API calls or sequences instead of reusable code snippets. Fur-
thermore, they do not employ architectures advanced enough to exploit
the semantics of natural language and code in order to form the optimal
query from the question posed. To overcome these issues, we propose
CodeTransformer, a code recommendation system that provides useful,
reusable code snippets extracted from open-source GitHub repositories.
By employing a neural network architecture that comprises advanced
attention mechanisms, our system effectively understands and models
natural language queries and code snippets in a joint vector space. Upon
evaluating CodeTransformer quantitatively against a similar system and
qualitatively using a dataset from Stack Overflow, we conclude that our
approach can recommend useful and reusable snippets to developers.

Keywords: code reuse · semantic analysis · neural transformers.

1 Introduction

The wide uptake of open-source software in the last few decades has accelerated
software development through code reuse. Nowadays, developers search online
for ways to solve issues that arise during the development process, such as writing
code for complex tasks, integrating APIs, or fixing bugs. The popularity of this
paradigm has been further boosted from the introduction of online repositories
(e.g. GitHub) and programming communities (e.g. Stack Overflow).

As code reuse has become a vital aspect of today’s software development,
the challenge of finding appropriate answers to programming-related questions
in the vastness of the Internet led to the development of code recommendation
systems. While the majority focus on providing API calls and sequences (e.g.
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DeepAPI [10]), a selected few have the advantage of recommending reusable code
snippets (e.g. DeepCS [9]). Such systems that employ whole snippet extraction
mechanisms are greatly valued, as they significantly reduce development time.

However, they are also prone to important limitations. Many accept queries
in specialized query languages instead of natural language. In addition, most
systems do not employ mechanisms advanced enough to extract the semantics
found both in the queries and the source code. And even though some systems
engage in semantic analysis (e.g. DeepCS [9], CodeSearchNet [12]), crucial in-
formation, such as the control flow of a code snippet, is discarded. Finally, the
aforementioned systems typically employ non-annotated datasets and, by exten-
sion, lack in terms of training and quantitative evaluation, as ground truth data
are essential for the training of a system and the assessment of its performance.

Acknowledging the need for advancing code reuse, GitHub initiated the Code-
SearchNet challenge [12], a public competition for code search, specifically aiming
to improve on four baseline models using an annotated dataset. These models
receive queries in natural language and employ different neural network architec-
tures to return high-quality code snippets. The CodeSearchNet challenge overall
provides an interesting testbed due to the variety of programming languages and
code snippets in the dataset and the evaluation tools offered.

Given influence by this challenge, in this paper we present CodeTransformer,
a system that receives natural language queries and provides reusable code snip-
pets. CodeTransformer uses state-of-the-art neural network and language un-
derstanding techniques, while it also employs a custom similarity metric and
a custom loss function. Our system does not require some specialized query
language; instead, it receives queries in natural language and employs neural
machine translation to offer reusable snippets in the form of methods. We train
our system on a state-of-the-practice annotated dataset and evaluate its effec-
tiveness against the baseline CodeSearchNet systems [12]. Finally, we assess its
applicability in a question-answering context using data from Stack Overflow.

2 Related Work

Code search systems can be distinguished into two categories, those producing
sequences of API calls and those producing reusable code. The first category in-
cludes systems such as SWIM [21] and T2API [19], which translate text queries
to API calls and then synthesize their usage code, i.e. code that uses the calls.
SWIM extracts API calls related to a query using Bing and forms their usage
code, including the control flow. A limitation is that it cannot handle the seman-
tics of queries (e.g. “convert int to string” and “convert string to int”). T2API
is trained on Stack Overflow posts and uses the GraLan language model [17] to
model dependencies between API calls and synthesize their usage code.

A different approach to API call recommendation is taken by MULAPI [24].
Apart from usage examples, MULAPI also analyzes the source code and API
libraries of a project to provide an implementation of the requested feature. The
system also maps the repository of the code to recommend files as locations for
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the provided API usage code. The architecture of MULAPI comprises a Stanford
Word Segmenter for text preprocessing and a Vector Space Model to assess the
similarity between texts. FOCUS [18] is a similar system that analyzes a project’s
repository and other open source repositories using Abstract Syntax Trees and
assesses their similarity using Context-Aware Correlation Filter. Next, it mines
API calls from the most similar repositories and presents them to the developers.

Other systems treat code recommendation as a machine translation problem.
One of them is DeepAPI [10], which utilizes a Neural Network architecture to
transform natural language queries to API sequences. It consists of a recurrent
neural network (RNN) encoder that processes natural language using attention
mechanisms and an RNN decoder using an Inverse Document Frequency (IDF)-
based weighting mechanism to output API sequences. BIKER [4] is a similar
system that receives natural language queries and assesses their similarity to
Stack Overflow question posts and API documentation. Post texts and code
snippets are handled as text and are used to train an embedding model that
takes into account IDF weights, and recommends relevant API calls.

Word2API [15] also bridges the semantic gap between natural language and
code to provide API recommendations. The system creates tuples of method de-
scriptions and API sequences that are used to train a word embedding model for
vector generation. A more advanced approach was implemented by DeepAPIRec
[6]. Its architecture consists of Tree-LSTMs, a long short-term memory (LSTM)
unit variant that organizes information in an inverse tree structure. DeepAPIRec
also utilizes a statistical parameter model of data dependency that allows rec-
ommending parameter values for the APIs suggested by the Tree-LSTM.

The second category of systems comprises the ones that recommend reusable
code snippets instead of API calls. One of them is Seahawk [20], an Eclipse plu-
gin that, given a query, returns a ranked list of relevant Stack Overflow posts.
The posts are retrieved using Apache Solr and ranked using tf-idf. The snippets
found in the posts can be integrated into the code of a project. Like Seahawk,
NLP2Code [5] is an Eclipse plugin that retrieves code snippets from Stack Over-
flow posts. NLP2Code processes natural language text and snippets using the
TaskNav algorithm and measures their grammatical correlation with the Stan-
ford CoreNLP Toolkit. The system receives natural language queries and employs
a customized version of Google Search Engine for search. StackSearch [8] also
extracts information from Stack Overlow posts and recommends code snippets
using a hybrid language model that combines Tf-Idf and fastText [3]. Its results
are also accompanied with labels extracted using named entity recognition.

An interesting alternative is DeepCS [9], which recommends reusable code
snippets given a natural language query. DeepCS employs two RNN encoders,
one that receives natural language descriptions of methods and one that receives
a fusion of method names, API sequences and code tokens. Then the system max
pools the embeddings generated by the two encoders and assesses their similar-
ity using cosine similarity. DeepCS can understand the semantics of natural
language and code to a specific extent, however it relies on the generated vectors
to rank its results without considering more code features such as context.
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In contrast to systems that utilize raw data dumps from Stack Overflow or
code repositories, CodeSearchNet [12] introduced a well curated dataset specif-
ically designed for semantic code search, as it consists of docstring and code
tokens which highlight their semantics while also facilitating the preprocessing.
Moreover, it introduced four different baselines, each using a different architec-
ture for its encoders (Neural Bag-of-Words, Bidirectional RNNs, 1D Convolu-
tional Neural Networks and Self-Attention). CodeSearchNet outperforms most
systems due to the quality of its dataset and its powerful neural architectures.
However, it ignores certain semantics, such as the control flow of the code, so it
favors keyword-based methods instead of those using semantic information.

Although the aforementioned systems are effective in certain scenarios, they
have important limitations. Most of them handle natural language input as key-
words, i.e. measuring token frequency instead of analyzing semantics and con-
text. Also, most systems output API calls or API usage code instead of reusable
snippets. Deep learning systems often do not employ custom similarity met-
rics and loss functions. CodeTransformer, is trained on high-quality annotated
data from the CodeSearchNet corpus. It analyzes the query and code semantics
using word embeddings, generated with state-of-the-art attention mechanisms.
We employ a hybrid similarity metric and build a custom loss function that are
suited to the challenge at hand. Thus, our system is able to comprehend relations
between similar queries (e.g. “how to write to command line” and “how to out-
put to terminal”) and distinguish queries with lexically minor, yet semantically
major differences (e.g. “convert int to string” and “convert string to int”).

3 Semantic Code Search using Machine Translation

The architecture of our system, shown in Figure 1, comprises four modules: the
Dataset Builder, the Neural Network, the Index Builder, and the Search Engine.
The Dataset Builder preprocesses the natural language and code data to produce
a clean dataset, including the vocabularies of the input and target languages.
The Neural Network module generates word embeddings and extracts the most
important features per language using attention mechanisms.

Dataset Builder

Neural Network

Index Builder

Computations
Graphical User
Interface (GUI)

Search EngineData

Results

QueriesVector Space

Fig. 1. The architecture of CodeTransformer
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Max pooling is used on the word embeddings to generate a single embedding
for each natural language and code sequence. The Index Builder builds a vector
space containing the sequence embeddings. Each code vector is assigned to an
index to allow nearest neighbor search when a natural language vector is received.
The Search Engine receives an input query in the GUI and forwards it to the
Computations submodule, where the Neural Network analyzes it and generates
a natural language sequence embedding. This vector representation of the query
is inserted in the vector space to search for its nearest code vectors. The results
are forwarded back to the GUI and presented to the user. These modules are
further analyzed in the following subsections.

3.1 Data Preprocessor

Dataset Overview The CodeSearchNet corpus comprises over 6.4 million code
snippets written in 6 languages, with over 2.3 million of them annotated using
docstrings [12]. The snippets were extracted from GitHub repositories, and fil-
tered to remove test functions/constructors, trim long docstrings, and apply
de-duplication [16,1]. CodeTransformer was implemented using the Java dataset
of the corpus that contains over 1.5 million snippets, of which over 0.54 million
come with docstrings. Although we use Java as a proof of concept, it is impor-
tant to note that our system is mostly language agnostic. Our methodology can
be applied to other languages, e.g. Python or JavaScript, with minimal changes.

For each snippet, the dataset contains fields about its origin (repo, path, url,
sha) and fields concerning its data (original/full string, method name, extracted
code and docstring). The code and the documentation of the snippet (docstring)
are also provided as tokens. Table 1 depicts a sample entry of the dataset.

Table 1. An example entry of the dataset

Features Data

func name JsonObjectDeserializer.getRequiredNode

docstring

/**
* Helper method to return a {@link JsonNode} from the tree.
* @param tree the source tree
* @param fieldName the field name to extract
* @return the {@link JsonNode}
*/

code

protected JsonNode getReqNode(JsonNode tree, String fieldName){
Assert.notNull(tree, ”Tree must not be null”);
JsonNode node = tree.get(fieldName);
Assert.state(node != null && !(node instanceof NullNode), () =>

”Missing JSON field ’” + fieldName + ”’”);
return node;

}
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After manual inspection, we concluded that the majority of the dataset en-
tries contain valid natural language docstrings, extracted from each function.
However, in certain entries the snippets are not properly annotated and in oth-
ers the automated natural language text extractor has failed to extract the doc-
string correctly. For instance, in the docstring of Table 1, the extracted docstring
tokens are [‘helper’, ‘method’, ‘to’, ‘return’, ‘a’, ‘{’]. To avoid having docstrings
that are incorrect or are not properly tokenized, we first preprocess the dataset.

Data Preprocessing We create two separate preprocessing pipelines to effec-
tively target the docstrings and the code data. The regular expressions of Table
2 enable modifications in the tokens of the dataset.

Table 2. Regular expressions for preprocessing

Regex Name Regular Expression

remove non ascii [^\x00-\x7f]

remove special [^A-Za-z0-9]+

seperate strings [A-Z][a-z][^A-Z]*

fill empty [A-Z][a-z][^A-Z]*|[A-Z]*(?![a-z])|[A-Z][a-z][^A-Z]*

remove unnecessary (\s)|(")|(^//)|(^/\*)|(^/\*\*)

replace symbols ^[()[\]{}<>+\-*/^%=&|!?@\.,:;]

For the removal of noisy natural language data, we designed a pipeline of
preprocessing steps, as described below:

1. We remove all the tokens of the docstring located after the first dot symbol
encounter, thus reducing their size to that of typical natural language queries.

2. The remove non ascii and remove special expressions are used to replace all
non-ASCII characters and all special characters, respectively, in the tokens
of the docstring list with empty characters.

3. The separate strings expression is used to separate all the camelCase tokens
of the docstring list and thus augment the data for the neural network.

4. We empty all docstring lists that contain less than 6 or more than 30 tokens1

as inefficient or lengthy, respectively. The lists are filled with the correspond-
ing camelCase function names and separated using the fill empty expression.

5. All uppercase characters in the docstring tokens are converted to the cor-
responding lowercase characters, to achieve structural uniformity between
tokens with the same meaning but different writing format.

As an example, the docstring of the snippet shown in Table 1 produces the
tokens [‘helper’, ‘method’, ‘to’, ‘return’, ‘json’, ’node’, ‘from’, ‘the’, ‘tree’].

1 The limits were defined after studying the data and concluding that most entries
with inefficient docstrings contained less than 6 docstring tokens, while also noting
that 30 tokens are adequate for a well-defined description of a function.
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Concerning noisy code data, we designed a preprocessing pipeline that slight-
ly differs from those of other systems. Most systems do not sufficiently exploit the
control flow information of a code snippet. Instead, they solely focus on function
and variable names, as well as control flow words, such as if, else, for, etc. To fully
exploit the programming symbols of snippets, we perform the following steps:

1. The remove non ascii and separate strings expressions are used to remove
all non-ASCII characters and split the text to tokens.

2. We remove all the tokens of the code list that contain space, double quotes,
or create a comment using the remove unnecessary expression.

3. We encode programming symbols to unique tokens, as shown in Table 3.

Table 3. The encoding of programming symbols to unique tokens

# Unique Token # Unique Token # Unique Token

( openingparen ∗ multiplyoperator < lessoperator
) closingparen / divideoperator >= greaterequaloperator
[ openingbracket ˆ poweroperator <= lessequaloperator
] closingbracket % modulooperator ++ incrementoperator
{ openingbrace = assignoperator −− decrementoperator
} closingbrace == equaloperator ! notoperator
+ addoperator ! = notequaloperator @ atsign
− subtractoperator > greateroperator ; semicolon

4. The remove special regular expression is used to remove all the non-alphanu-
meric characters in the tokens of the code list with empty characters. This
step removes symbols that were not replaced in the previous step.

5. We limit the length of the code lists to their first 100 tokens, trimming meth-
ods of great length and thus enhancing the uniformity of the dataset. Also, all
uppercase characters in the code tokens are converted to the corresponding
lowercase ones, as in the docstrings, to favor structural uniformity.

As an example, the code of the method snippet shown in Table 1 produces
the tokens shown in Figure 2.

’protected’, ’json’, ’node’, ’get’, ’required’, ’node’, ’openingparen’, ’json’, ’node’, ’tree’, ’string’,

’field’, ’name’, ’closingparen’, ’openingbrace’, ’assert’, ’not’, ’null’, ’openingparen’, ’tree’, ’tree’,

’must’, ’not’, ’be’, ’null’, ’closingparen’, ’semicolon’, ’json’, ’node’, ’node’, ’assignoperator’,

’tree’, ’get’, ’openingparen’, ’field’, ’name’, ’closingparen’, ’semicolon’, ’assert’, ’state’, ’open-

ingparen’, ’notequaloperator’, ’null’, ’notoperator’, ’openingparen’, ’node’, ’instanceof’, ’null’,

’node’, ’closingparen’, ’openingparen’, ’closingparen’, ’missing’, ’json’, ’field’, ’addoperator’,

’field’, ’name’, ’addoperator’, ’closingparen’, ’semicolon’, ’return’, ’node’, ’semicolon’, ’closingbrace’

Fig. 2. Example tokens extracted from the code of the method snippet of Table 1

Semantic Code Search in Software Repos using Neural Machine Translation 231



Our preprocessing pipeline minimizes the loss of information by performing
data augmentation on docstrings and code. In docstrings where the information
is insufficient, the pipeline replaces them with separated camelCase function
names (e.g. ‘camelCase’ becomes ‘camel case’) that are representative of the
code. The pipeline also encodes most code symbols to words instead of removing
them and, thus, reinforces code semantics such as control and data flow.

3.2 Neural Network

In this subsection we present the main module of our system, a neural network
that employs transformers to map natural language queries to source code.

Network Architecture The main architecture of CodeTransformer is based on
Matching Networks [23], a neural network architecture designed to solve One-
Shot Learning problems. Our system, however, follows a slightly different ap-
proach, as it uses an improved embedding similarity metric and does not require
an external memory to function. As we discuss in the following subsections, our
architecture utilizes self-attention encoders and a hybrid geometric similarity
metric. In contrast to the original approach, ours does not use a softmax func-
tion on its output, as the similarity metric we selected does not natively support
it. In Figure 3 we present the architecture of the Neural Network module.

Encoder: (BS, SL, D)
Max Pooling: (BS, D)

Comparison Matrix: (BS, BS)

1
TS–SS

Query

Code

BS: Batch Size
SL: Seq. Length
D: Dimensions

Diagonal: Positive Pairs
Off-diagonal: Negative Pairs

Fig. 3. The main architecture of the Neural Network module

Transformers To maximize the semantic abilities of our system, we employed
the state-of-the-art Transformers architecture on both of its encoders [22]. A
Transformer consists of two modules, an encoder and a decoder, with minimal
architectural differences. Considering the fact that a Matching Network performs
feature extraction and not direct translation of language data, our implementa-
tion solely requires encoders for its function. The architecture of the Transformer
encoder is presented in Figure 4.

The Transformer encoder comprises an embedding layer, a Positional Encod-
ing layer and encoder layers, i.e. consecutive blocks of Multi-Head Attention and
Feed-Forward Network layers. In our implementation, we opted for three stacked
encoder layers, as they provide sufficient depth for achieving high efficiency.
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Output

Positional
Encoding

Input
Embedding

Multi-Head
Attention

Inputs

3x

Add &
Norm

Feed
Forward

Add &
Norm

Fig. 4. The architecture of a Transformer encoder

Before inserting a token sequence to an encoder, we create a vocabulary
that includes the most frequently occurring words and then encode them to
integers. We build two vocabularies, each consisting of 10,000 unique words.
After encoding, we pad each entry with zeros to form tensors of equal dimensions.
To enhance the generalization capabilities of our system, we reshuffle the dataset
at the start of every training iteration and divide it in batches of 128.

When a token sequence is received as input, the encoder embeds the tokens
in a high-dimensional vector space. In other words, the encoder generates word
embeddings, i.e. vector representations aiming to extract token information. The
encoder generates word embeddings of 128 dimensions using an embedding layer.
The natural language encoder and the source code encoder have identical pa-
rameter values, but each encoder has its own distinct weights and vocabulary.
To generate sequence embeddings we use max pooling, as extracts the most
essential features of the embeddings outputted from the stacked encoder layers.

Similarity Metric The similarity between natural language and code sequence
embeddings is usually quantified using the Euclidean distance or the cosine sim-
ilarity. However, the computation of the Euclidean distance between two vectors
does not contain any information about the angle between the two vectors. On
the other hand, cosine similarity does not consider the magnitude of the vectors.

Our system utilizes a hybrid similarity metric, the Triangle’s Area Similarity
- Sector’s Area Similarity [11], also known as TS-SS, which improves upon the
aforementioned metrics by incorporating the Euclidean distance, the magnitude
difference and the angle between two vectors to compute their similarity. The
Triangle’s Area Similarity (TS) comprises the Euclidean distance, the magnitude
of each vector and the angle between them, while the Sector’s Area Similarity
(SS) provides the magnitude difference. The TS of two vectors A and B is:

TS (A,B) =
|A| · |B| · sin (θ′)

2
(1)

where, given θ is the angle between the two vectors, θ′ is defined as cos−1 (θ)+10◦.
We use θ′ instead of θ so that the computation is valid in the case of overlapping
vectors (when θ = 0). The SS of two vectors A and B is defined as:

SS (A,B) = π (ED (A,B) +MD (A,B))
2 ·

(
θ′

360

)
(2)

where θ′ is defined as above, while ED (A,B) and MD (A,B) correspond to
the Euclidean distance and the magnitude difference between the two vectors,
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respectively. Given the dimension of the vectors N , the magnitude difference is:

MD (A,B) =

∣∣∣∣∣∣
√√√√ N∑

n=1

A2
n −

√√√√ N∑
n=1

B2
n

∣∣∣∣∣∣ (3)

Merging TS and SS via addition is not possible, as they are in different scale.
According to Heidarian and Dinneen [11], their multiplication establishes a new
scale that sufficiently represents similarity. Consequently, TS-SS is computed as:

TS−SS (A,B) =
|A| · |B| · sin (θ′) · θ′ · π · (ED (A,B) +MD (A,B))

2

720
(4)

TS-SS values range from 0 to infinity, with 0 indicating that two vectors are
identical. Accordingly, the TS-SS value of two dissimilar vectors is larger than
zero, without any limitations. In our implementation, we decided to calculate the
reciprocal TS-SS in favor of the custom loss function we use during our network’s
training process. The final similarity of the two vectors is computed as:

Similarity (A,B) =
1

TS−SS (A,B)
(5)

Loss Function The neural network of CodeTransformer outputs a square sim-
ilarity matrix, where each row represents a natural language embedding and
each column represents a source code embedding. The diagonal matrix cells cor-
respond to the positive pairs of natural language and source code and their values
ought to be high. The rest of the matrix cells correspond to the negative pairs,
and their values ought to be low. At network initialization, all embeddings con-
tain random values and are scattered throughout the vector space. As a result,
in order to bring all similar embeddings closer during training, we need to utilize
a loss function that is based on the computations of the reciprocal TS-SS.

A loss function typically used by similar systems (such as CodeSearchNet
[12] and DeepCS [9]) is a variation of Hinge loss, computed as follows:

Loss = max (0, 1− positive+ negative) (6)

Upon testing this variation of Hinge loss, we observed that it did not result in
successful integration with the vanilla or reciprocal TS-SS. Even after modifying
the function’s margin to a value larger than 1, due to TS-SS infinite value range,
the result was always the same. The embeddings constantly collapsed to a specific
point, not allowing distinct sequence embeddings for each positive pair.

This led us to design a custom loss function, based on the squared variation
of Hinge loss. We name this loss function Squared Margin Loss and define it as:

Loss = (max (0,margin− positive))
2
+ negative2 (7)

Furthermore, the derivatives of our loss function are defined as follows:

∂

∂ (positive)
Loss =

{
2 · (margin− positive) , if positive < margin

0, otherwise
(8)
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∂

∂ (negative)
Loss = 2 · negative (9)

The Squared Margin Loss encourages the penalization of larger loss values more,
and the penalization of smaller loss values less. Thus, the function ensures the
convergence of the network at first epochs and its optimization at later epochs.

By further restricting the function with the function max, the positive pairs of
similarity value above the margin do not take part in the computation of the loss.
In this case, however, the similarity values of the corresponding negative pairs
continue to decrease. This allows the similarity values of the diagonal to increase
further than the margin. Without the use of the max function, the elements that
have crossed the margin would generate useless losses and positive gradients,
resulting in the fluctuation of their similarity values around the margin.

Optimizer We train our neural network using the Adaptive Moment Estima-
tion (Adam) optimizer [14], which computes adaptive learning rates for each
parameter. Adam stores the exponentially decaying average of past gradients
and the exponentially decaying average of past squared gradients. Using Adam
ensures that the network converges fast through momentum estimation. The
convergence also depends on the learning rate; a poor choice of its value can
slow down the training process, or even derail the network’s weights. To find the
ideal learning rate, we examined a range of values generated by the equation:

LearningRate = 1.1step/100 · 10−10 (10)

This function generates values starting from 10−10 up to a practically infinite
value. The learning rate is multiplied by 1.1 once every 100 training steps.

After plotting the accuracy and loss per training step, we noticed a point
with a steep increase in accuracy and a steep decrease in loss as well as a point
with a steep decrease in accuracy and a steep increase in loss. Next, we isolated
the values between these steps and tested those closer to the lower end, where
the increase in accuracy and decrease in loss occur. Through trial and error, we
selected a learning rate value of 3.2 · 10−4. We set the margin of our network to
5, the number of heads to 8, and the dff to 512, and trained the network for 40
epochs, as these have been shown to be enough for the efficiency of the results.

3.3 Index Builder

Due to the complexity of our neural network and the number of its parameters,
fast response times cannot be guaranteed. To significantly reduce the processing
time of our system, we employed Annoy [2], a tool using a Nearest Neighbor
Search algorithm. Using Annoy in the Index Builder module allows us to generate
a vector space that contains all the source code embedding vectors of the corpus.

Annoy assigns an index on all code embeddings and then assorts them based
on their values by building up a forest of trees. The vector dimension of the
vector space is set according to the dimension of the output embedding, which is
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128. We calculated the Euclidean distance between the vectors and built 10 trees.
Regarding the search process in the vector space, we select the first 100 nearest
vectors out of the 10.000 nearest forest nodes. Thus, instead of calculating the
similarity between a query and the whole corpus using the neural network, Annoy
compares the query vector with the nearest 10.000 code vectors. In addition,
Annoy’s search time does not seem to be hindered by the embedding dimension.

The search process of a query is executed in three stages. Firstly, the query of
the user is preprocessed, so that non-alphanumeric symbols are removed, camel-
Case tokens are separated and uppercase characters are lowercased. Secondly,
every query token is encoded as an integer to be passed as input to the neural
network. The neural network, in inference mode, generates the sequence embed-
ding of the query to be inserted to the vector space of the Index Builder. Finally,
Annoy extracts the indices of the 10 code vectors nearest to the query, and the
corresponding code snippets and GitHub URLs are presented to the user.

4 Evaluation

We evaluate our system using two different datasets, the Java corpus of Code-
SearchNet [12], and a set of popular Java questions from Stack Overflow2.

The performance of our system is assessed using the Precision at K (P@K),
the Mean Reciprocal Rank (MRR) [7] and the Normalized Discounted Cumula-
tive Gain (NDCG) [13]. P@K indicates how many out of the first K results are
relevant to the query. MRR further incorporates the order of the results, com-
puted as the mean of the reciprocal rank of each query (the reciprocal rank of
the i-th query is 1/ranki, where ranki is the rank position of the first relevant
document). The NDCG is the normalized DCG, computed for N results as:

DCG =

N∑
i=1

2reli − 1

log2 (i+ 1)
(11)

where reli is the graded relevance of the result at position i. Thus, NDCG is
computed dividing the result of equation (11) by the ideal DCG, i.e. the one
produced if all the results in the list were sorted in the correct order.

4.1 Evaluation using CodeSearchNet Queries

CodeTransformer employs the CodeSearchNet corpus [12] for training and infer-
ence, allowing its direct comparison with the implementations of CodeSearchNet.
CodeSearchNet comprises four different encoder architectures. One of them is the
Self-Attention (SelfAtt) architecture, which was examined in the previous sec-
tion. The Neural Bag of Words (NBoW) architecture measures word occurrence
within a document, therefore it performs well on keyword-based search opera-
tions. The 1D Convolutional Neural Network (1D-CNN) architecture learns to

2 The code and details used to reproduce our findings can be found at the repository:
https://github.com/AuthEceSoftEng/CodeTransformer
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recognize complex, non-linear patterns. In contrast to NBoW and 1D-CNN, the
Bidirectional RNN (biRNN) architecture further models the word order.

The four implementations are compared to CodeTransformer on the test set
of the CodeSearchNet corpus, which includes 15000 docstring and code snippet
pairs, for the computation of MRR. Additionally, the four implementations are
compared to CodeTransformer using 99 annotated queries provided by Code-
SearchNet for computing NDCG. The results are shown in Table 4. Note that,
although our system is not directly compared with DeepCS [9] as the systems use
different data, we compare it with the biRNN implementation of CodeSearchNet
that has a similar neural architecture with DeepCS.

Table 4. Evaluation results of CodeTransformer and CodeSearchNet

System MRR NDCG

CodeSearchNet-NBoW 0.5140 0.1207
CodeSearchNet-1D-CNN 0.5270 0.1282
CodeSearchNet-biRNN 0.2865 0.0623
CodeSearchNet-SelfAtt 0.5866 0.1003
CodeTransformer 0.6263 0.1028

Concerning MRR, our system outperforms CodeSearchNet measurements, in-
dicating that the different strategies followed for our data pipeline are effective.
Another factor that may contribute to this result is our preprocessing method-
ology, as it may be possible that the replacement of insufficient docstrings with
function names led to increased MRR values. As a side note, these results were
also clear during the validation phase of the algorithms (e.g. the MRR of Code-
Transformer for the validation set was the highest at 0.62604, while the second
highest was that of CodeSearchNet-SelfAtt at 0.5513).

Concerning NDCG, our system performs slightly better compared to the cor-
responding Self-Attention implementation of CodeSearchNet, while the NBoW
and 1D-CNN implementations perform better than CodeTransformer, possibly
because they use docstrings as natural language. However, we note that only a
small amount of data was annotated for the computation of NDCG (i.e. only
823 out of 1.5 million Java code snippets). In addition, as the authors of Code-
SearchNet note [12], the annotated data were selected using the top 10 results
per query, generated by an ensemble of the CodeSearchNet neural models and
ElasticSearch, therefore they are what these systems are more likely to produce.
Hence, it is possible that correct results are ignored for computing NDCG.

Figure 5 depicts the distribution and the individual MRR values for 99 queries
of the test set of CodeSearchNet [12]. As the annotations were not provided, we
annotated the first 10 results returned by our system to compute the MRR. The
majority of MRR values are equal to 1, indicating that our system returns a rel-
evant result in the first position for more than half of the queries. By examining
the results, we found that our system effectively models the semantic informa-
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tion of the text and the code snippets. Indicatively, for Q64, CodeTransformer
outputs a function that sorts an array using another array’s order, even though
almost none of the exact words of the query are present in the code (except
for the word “sort”). Semantically similar terms are also effectively interpreted.
E.g., for Q16 that requests exporting data to an excel file, our system returns an
exportXls method, thus modeling the semantic similarity between terms “excel”
and “xls”. Similarly, given Q91 that requests data extraction from a text file,
CodeTransformer returns a method using the term “read” instead of “extract”.
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Fig. 5. MRR values of CodeTransformer for the 99 queries of CodeSearchNet dataset
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Concerning queries for which our system did not perform as effectively, some
of them are relevant to other programming languages and/or are not included in
the corpus. Note that these 99 queries are drawn from 6 languages and thus not
all of them are relevant to Java. An example unanswered query is Q34, as read-
only arrays do not exist in Java and, therefore, a relevant code snippet is not
included in the corpus. After manually inspecting the corpus, we concluded that
Java code snippets for queries Q53, Q68, Q70, Q73, Q76 and Q97 are focused on
other languages. This is also the case for HTML parsing queries, such as queries
Q49, Q66, Q72, Q93 and Q98, for which we could find a few Java methods by
manual inspection, however they are mainly targeted at other languages. In any
case, considering the results of Table 4 and Figure 5, CodeTransformer seems to
provide a relevant answer in the first two positions more often than not.

Finally, as a proof of concept, Table 5 depicts the declarations of the methods
returned by our system for query Q91, which refers to “extracting data from a
text file”. It is clear that the methods respond effectively to the query.

Table 5. Declarations of the methods returned by CodeTransformer for query Q91
“extracting data from a text file”

# Method Declaration

1 public static String readTextFile(Context context, int resId)
2 public static String readTextFile(Context context, String asset)
3 public DataSource<String> readTextFile(String filePath)
4 public static String readTextFile(String fileName)
5 public static String readTextFile(File file)
6 public DataSource<String> readTextFile(String filePath, String charsetName)
7 public static String readTextFile(Context context, int resourceId)
8 public static String readTextFile(File file) throws IOException
9 private ProjectFile readTextFile(InputStream inputStream) throws MPXJException
10 public DataStreamSource<String> readTextFile(String filePath, String charsetName)

4.2 Evaluation using Stack Overflow Questions

To further evaluate CodeTransformer, we reviewed its performance on real user
queries. Although our model uses docstrings instead of real queries, we consider
this experiment adequate for assessing its effectiveness as a proof of concept.

We manually selected the first 40 highest-rated Stack Overflow posts at the
time of research, in which the posters search for Java code snippets. After query-
ing our system using their titles, we obtained 10 results for each query, sorted
by their similarity to the query. Next, we manually annotated the similarity of
each result to the query, making sure that the result is a valid answer. To avoid
any threats to validity, the annotations were performed without knowledge of
the order of the results. Table 6 depicts the questions as well as the rank of the
first relevant result and the precision at the first 10 results for each question.
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Table 6. Evaluation results of CodeTransformer on the set of the 40 most popular
Stack Overflow Java questions

# Questions Rank P@10

S01 How do I read / convert an InputStream into a String in Java? 1 1.0
S02 Create ArrayList from array 2 0.7
S03 How do I generate random integers within a specific range in Java? 2 0.7
S04 Iterate through a HashMap [duplicate] 2 0.2
S05 How do I efficiently iterate over each entry in a Java Map? 2 0.1
S06 How do I convert a String to an int in Java? 1 0.2
S07 Initialization of an ArrayList in one line − −
S08 How do I determine whether an array contains a value in Java? 3 0.3
S09 How do I call one constructor from another in Java? − −
S10 How do I declare and initialize an array in Java? − −
S11 How to get an enum value from a string value in Java? 1 1.0
S12 What’s the simplest way to print a Java array? 1 1.0
S13 How to generate a random alpha-numeric string? 1 0.8
S14 How to split a string in Java 1 1.0
S15 Sort a Map<Key. Value> by values 7 0.1
S16 How do I create a Java string from the contents of a file? 7 0.1
S17 How can I convert a stack trace to a string? 1 0.8
S18 Fastest way to determine if an integer’s square root is integer − −
S19 How do I create a file and write to it in Java? 3 0.3
S20 How can I concatenate two arrays in Java? 1 0.7
S21 How to round a number to n decimal places in Java 1 0.8
S22 Convert ArrayList<String> to String[] array 1 0.7
S23 Sort ArrayList of custom Objects by property 1 0.5
S24 How can I initialise a static Map? − −
S25 How to directly initialize a HashMap (in a literal way)? 1 0.9
S26 How to create a generic array in Java? 1 1.0
S27 How to parse JSON in Java 1 0.7
S28 Converting array to list in Java 1 0.4
S29 How to get the current working directory in Java? 1 0.9
S30 Converting ‘ArrayList<String>’ to ‘String[]’ in Java 9 0.1
S31 How can I pad an integer with zeros on the left? 1 0.4
S32 How can I get the current stack trace in Java? 1 1.0
S33 Java 8 List<V> into Map<K. V> − −
S34 Reading a plain text file in Java 1 1.0
S35 How to check if a String is numeric in Java 3 0.7
S36 Java string to date conversion 1 0.9
S37 A ‘for’ loop to iterate over an enum in Java − −
S38 How do I convert a String to an InputStream in Java? − −
S39 Convert InputStream to byte array in Java 2 0.7
S40 How can I read a large text file line by line using Java? 1 0.7

Precision at the first 10 results is relatively high for most queries. Moreover,
we may note that CodeTransformer effectively disambiguates among queries with
similar context. Consider, e.g., queries S17 and S32 that are both relevant to
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stack traces; although these queries are similar, the system was able to com-
prehend the semantics of each query and return several highly ranked relevant
results. Even for queries with low precision in their results, CodeTransformer
placed the first relevant result in the first or the second position. Thus, even
though for some queries there are not many relevant results, the users typi-
cally receive at least one correct answer. An example would be query S06, for
which the system returned only two relevant results, but one of them is ranked
in the first place. It is also notable, in the same query, that CodeTransformer
distinguishes among converting “string to integer” and “integer to string”.

The fact that 8 out of 40 questions were not answered at all occurs mostly
because a matching function does not exist in the corpus. For example, queries
S07, S09, S10, S24, and S37 do not require a whole method for their imple-
mentation and, thus, the corpus does not include relevant code snippets. Other
queries may be too complex, such as query S18, for which our system returns
some relevant code snippets, however these results do not meet the condition of
the fastest way to examine if an integer’s square root is an integer.

In Table 7 we provide three example Stack Overflow queries and the corre-
sponding relevant answers. For the first two queries, CodeTransformer has placed
the answers at the first position, while for the third query the answer was placed
at the second position. As shown by these examples, CodeTransformer indeed
retrieves and recommends useful snippets in a question-answering scenario.

5 Conclusion

Although there are several approaches for code snippet retrieval, most of them
do not consider semantics of natural language and code, ignoring essential in-
formation regarding the data. Furthermore, several of them recommend API
calls or sequences instead of reusable code snippets, requiring more effort from
the developer. Deep learning systems are usually more effective, however most
do not employ advanced neural transformer architectures and are limited by
the fact that they are not trained on annotated datasets. Our system, Code-
Transformer, overcomes these limitations by employing a state-of-the-art neural
network architecture. The advanced attention mechanisms of this architecture,
including specialized similarity metric and custom loss function, along with the
preprocessing pipeline specifically designed to augment natural language and
code semantics, allow the system to generate powerful data representations.

Upon evaluating CodeTransformer against the implementations of Code-
SearchNet, we found that our system is more effective, especially when the devel-
oper would prefer to receive the method most relevant to the query rather than
a list of related methods. We further assessed CodeTransformer on a dataset
of actual questions from Stack Overflow, with the results indicating that it is
capable of retrieving useful code, even for complex natural language queries.

For future work, we consider implementing our network using real-life natu-
ral language data, such as Stack Overflow questions, instead of code documenta-
tion. In addition, we could train our network using other (less curated) datasets
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Table 7. Example Stack Overflow queries and the answers of CodeTransformer

Features Data

Query S11 How to get an enum value from a string value in Java?

Result

public static T getEnumFromString(Class c, String string) {
if (c != null && string != null) {
return Enum.valueOf(c, string.trim().toUpperCase());

}
return null;

}

Query S20 How can I concatenate two arrays in Java?

Result

public static String[] concat(String[] array1, String[] array2) {
int length1 = array1.length;
int length2 = array2.length;
int length = length1 + length2;
String[] dest = new String[length];
System.arraycopy(array1, 0, dest, 0, length1);
System.arraycopy(array2, 0, dest, length1, length2);
return dest;

}

Query S36 Java string to date conversion

Result

public static Date serviceStringToDate(String s) {
if (s == null)
return null;

try {
return new SimpleDateFormat( serviceDateFormat).parse(s);

}
catch (Exception e) {
return null;

}
}

and explore different preprocessing techniques, incorporating the semantics of
programming symbols and the information provided by method names to the
natural language data. Finally, we could explore whether our system can gen-
erate docstrings by providing code snippets as input to the code encoder and
comparing their sequence embeddings to docstring sequence embeddings.
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J.: DéJàVu: A Map of Code Duplicates on GitHub. Proc. ACM Program. Lang.
1(OOPSLA) (2017)

17. Nguyen, A.T., Nguyen, T.N.: Graph-Based Statistical Language Model for Code.
In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1. p. 858–868. ICSE ’15, IEEE Press (2015)

18. Nguyen, P.T., Di Rocco, J., Di Ruscio, D., Ochoa, L., Degueule, T., Di Penta,
M.: FOCUS: A Recommender System for Mining API Function Calls and Usage
Patterns. In: Proceedings of the 41st International Conference on Software Engi-
neering. p. 1050–1060. ICSE ’19, IEEE Press (2019)

19. Nguyen, T., Rigby, P.C., Nguyen, A.T., Karanfil, M., Nguyen, T.N.: T2API: Syn-
thesizing API Code Usage Templates from English Texts with Statistical Transla-
tion. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. pp. 1013–1017. FSE 2016, ACM, New
York, NY, USA (2016)

20. Ponzanelli, L., Bacchelli, A., Lanza, M.: Seahawk: Stack Overflow in the IDE. In:
Proceedings of the 2013 International Conference on Software Engineering. pp.
1295–1298. ICSE ’13, IEEE Press, Piscataway, NJ, USA (2013)

21. Raghothaman, M., Wei, Y., Hamadi, Y.: SWIM: Synthesizing What I Mean: Code
Search and Idiomatic Snippet Synthesis. In: Proceedings of the 38th International
Conference on Software Engineering. pp. 357–367. ICSE ’16, ACM, New York, NY,
USA (2016)

22. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
u., Polosukhin, I.: Attention is All You Need. In: Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems. p. 6000–6010.
NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

23. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
Networks for One Shot Learning. In: Proceedings of the 30th International Confer-
ence on Neural Information Processing Systems. p. 3637–3645. NIPS’16, Curran
Associates Inc., Red Hook, NY, USA (2016)

24. Xu, C., Sun, X., Li, B., Lu, X., Guo, H.: MULAPI: Improving API method rec-
ommendation with API usage location. Journal of Systems and Software 142, 195
– 205 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

244 E. Papathomas et al.

http://creativecommons.org/licenses/by/4.0/

	Semantic Code Search in Software Repositories using Neural Machine Translation
	1 Introduction
	2 Related Work
	3 Semantic Code Search using Machine Translation
	3.1 Data Preprocessor
	3.2 Neural Network
	3.3 Index Builder

	4 Evaluation
	4.1 Evaluation using CodeSearchNet Queries
	4.2 Evaluation using Stack Overflow Questions

	5 Conclusion
	References




