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4.1 Introduction

The detrimental effects hydropower plants have on aquatic ecosystems and biodiversity
are manifold and comprehensively reviewed (e.g., Gasparatos et al. 2017, Hecht et al.
2019, Jungwirth et al. 2003. Lees et al. 2016, Reid et al. 2019, Schmutz and Sendzimir
2018, Stendera et al. 2012, Ziv et al. 2012). In the following section, however, we review,
categorize and outline hydropower-related impacts on freshwater fishes only. This is due
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to various reasons: For one, fishes are of great socio-economic interest. Their unques-
tionable cultural and societal value has caused managing efforts to support self-sustained,
exploitable fish stocks for several thousand years, and today they are a priority target for
many restoration and conservation programs. Furthermore, fish are most affected by the
operation of hydropower (Larinier 2001) and the high level of hydromorphological degra-
dation and resulting habitat loss associated with hydropower has been identified as one of
the bottlenecks in reaching the Water Framework Directive targets (Freyhof et al. 2019).

Therefore, this chapter draws a comprehensive conceptual model depicting what kinds
of impacts on fish potentially happen beginning from habitat loss/modification upstream
due to the impoundment, migration delays, indirect mortality due to increased predation,
the hydropower plant (HPP) itself, with potential spillway, bypass, trash racks and also
turbine effects (blade strike, shear forces, barotrauma) and down to tailwater effects, such
as increased predation, residual flows, habitat and flow modifications (Fig. 4.1).

The resilience of fish species and populations as well as species most at risks will be
addressed based on narratives derived as risk factors and the empirical evidence provided
by the literature review.

4.2 Barrier Effects

The central, most prominent element of every hydropower scheme is undoubtedly a dam
or a weir. Although these types of barriers are not exclusive to hydropower plants, they
always have the same principal effects on fishes. Because barriers become impassable
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Fig. 4.1 Conceptual sketch of elements of a hydropower scheme potentially impacting fish, like the
barrier itself, upstream and downstream migration routes, turbines, trash racks and fish protection
facilities
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obstacles for fishes once they exceed certain dimensions, they segregate resident popu-
lations into isolated upstream and downstream components. Barriers disrupt the original
river continuum (Allan and Castillo 2007; Mueller et al. 2011; Vannote et al. 1980) and
the natural migration corridors for fishes (Jonsson et al. 1999). Dams and weirs act as
migration barriers for migratory species that then face substantial migration delay (Buysse
et al. 2015; Ovidio et al. 2017; Stich et al. 2015, Winter et al. 2006), and they ren-
der critical habitats inaccessible to fishes (Larinier 2001; Pelicice et al. 2015). However,
unhindered upstream migration is particularly critical for diadromous migratory species
like salmonids, lampreys, some clupeids or sturgeons that only spawn in the upper regions
of rivers where hydraulic and geomorphic conditions support egg development and pro-
vide larval habitats (Katano et al. 2006; Lucas et al. 2009; Penczak et al. 1998). But also,
migrations of potamodromous species are impaired by barriers (Britton and Pegg 2011;
Lucas and Frear 1997). This can result in reduced natural recruitment (McCarthy et al.
2008), differences in population structure and species assemblages up- and downstream
of the dam (Franssen and Tobler 2013; Morita and Yamamoto 2002; Mueller et al. 2011)
and even result in the extinction of entire fish stocks (Larinier and Travade 1992), unless
habitat heterogeneity and availability in the system remains high enough to support the
native assemblage (Santos et al. 2006). Furthermore, because dams act as bi-directional
nutrient traps that can cause a reduction of far-downstream fish biomass (Jackson and
Marmulla 2001) and a lack of nutrients (i.e., due to a lower number of spawners remain-
ing in the headwaters of streams), which directly affects the dietary composition of a range
of different fish species (Piorkowski 1995). The mechanisms described in this paragraph
primarily impact population endpoints that ultimately, cause a decline in recruitment,
whereas individual mortality of affected fishes is only of secondary concern.

The negative ecological impacts of barriers can be partly mitigated by maintaining cer-
tain flow velocity through the impounded area that resembles the ecological functioning
of the former stream. These flow patterns are cues for up- and downstream migrating
species and ensure sediment transport and aeration.

4.3 Upstream Flow Alterations

Dams cause substantial alterations of the stream’s original discharge regime (Egré and
Milewski 2002; Schiemer et al. 2001). Reservoirs and impoundments considerably slow
down the stream’s flow velocity causing higher sedimentation rates of finer particles,
stratification, increased temperature, and potential oxygen depletion in the hypolimnion
due to an imbalance in aerobic production and consumption (Thornton et al. 1990). In
principle, impoundments transform lotic habitats into ones with more lentic character-
istics (Sá-Oliveira et al. 2015) that are unsuited for most riverine, lithophilic species
that require well aerated, fast flowing coarse gravel beds as spawning habitats (Wood
and Armitage 1997). These conditions result in habitat loss for a range of rheophilic
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species (Agostinho et al. 2002; Birnie-Gauvin et al. 2017; Larinier 2001; Tiffan et al.
2016), changes in water quality (Fantin-Cruz et al. 2016), shifts in biomass and ulti-
mately, changes of species abundance and diversity relative to non-impounded reaches
downstream (Sá-Oliveira et al. 2015). These conditions also affect species-specific length-
frequency distributions, species richness (Gehrke et al. 2002) and species composition
(Tundisi and Straškraba 1999). Manipulated abiotic conditions in impoundments were
further associated with temperature-related changes of growth patterns (i.e., younger age
of maturity and smaller individual sizes) (Reed et al. 1992). For example, another study by
Yang et al. (2020) showed reduced energy transfer efficiency in impoundments, suggesting
potential energetic bottlenecks of fish at higher trophic levels. In impoundments altered
hydromorphological conditions have caused increased predation, most likely because of
the novel environment, lack of navigation cues for diadromous species (Agostinho et al.
2002; Jepsen et al. 2000; Tiffan et al. 2016) and the resulting migration delay (Larinier
2001; Larinier and Travade 2002) and reinforce negative impacts of introduced predators
(Pelicice and Agostinho 2009). This can lead to local extinction of native and proliferation
of non-native species (Martinez et al. 1994).

4.4 Downstream Flow Alterations

Different types of HPP have to be distinguished. There are run-of-river HPP of both
instream or diversion-type schemes and storage HPP as well as pump-storage plants (Egré
and Milewski 2002; Matt et al. 2019). Particularly storage, but to some extent also run-of-
river hydropower plants dampen high natural discharge amplitudes by cutting flow peaks
and increasing very low discharges. As such, they completely alienate the natural dis-
charge regime of a stream, with flow fluctuations downstream being most problematic at
all plants that do not release approximately as much water through the dam (i.e., through
the turbines, spill gates or sluices) as would normally be discharged in the stream.

In diversion plants, the main purpose of the dam is to divert water away from the main
stream towards the (potentially very remote) powerhouse where the water is turbinated
and returned to the original river bed further downstream (Egré and Milewski 2002).
The residual old river bed usually suffers from water scarcity, and methodological frame-
works for defining sufficient environmental flow in the affected stretch are summarized
by the CIS Guidance 31 “Ecological Flows in the Implementation of the Water Frame-
work Directive” that can be consulted to mitigate the negative effects. At HPPs in which
only a fraction of the original discharge remains in the residual river stretch severe conse-
quences regarding water depths, flow velocities, and temperature extremes were observed.
These do not support some fish populations anymore, cause species shifts and population
declines (Anderson et al. 2006; Benejam et al. 2016; Habit et al. 2007) and sometimes
even render whole river stretches uninhabitable. At some HPPs with state-of-the-art envi-
ronmental flows of at least 10% mean annual stream flow (Huckstorf et al. 2008) these
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impacts are less pronounced. However, maintaining the comparably high environmental
flow usually comes at the expense of hydroelectricity generation and loss of revenues.

Hydropeaking plants typically store larger amounts of water and release it for electric-
ity generation in times of peak demand, mostly in the morning and evening (Moreira et al.
2019; Schmutz et al. 2015; Schmutz and Sendzimir 2018). Many species cannot cope with
manipulated flow alterations induced by turbine operation which can lead to reduced food
availability (De Jalon et al. 1994; Gandini et al. 2014; Young et al. 2011), erosion and
habitat loss due to periodical dewatering (Almodóvar and Nicola 1999; Boavida et al.
2015, 2013; Choi et al. 2017; Person 2013; Shen and Diplas 2010; Young et al. 2011)
and impaired egg development (Casas-Mulet et al. 2015a, b; Person 2013; Young et al.
2011), all of which commonly resulting either in reduced recruitment or increased direct
mortality e.g., by stranding (Hedger et al. 2018, Schmutz et al. 2015, Tuthan et al. 2012,
Young et al. 2011) in particular of smaller species or younger specimen with weaker
swimming performance (Hayes et al. 2019; Person 2013).

If water shortage or pulse flows are not evident, manipulated flows can still exert
major pressures on fishes e.g., because new habitat types immediately emerge beneath
the dam that support accumulation of fishes (Jackson 1985) that attract unnaturally high
abundances of predators able to deplete already impaired stocks (Larinier 2001; Stansell
et al. 2010). In addition, hydropeaking can lead to altered sediment dynamics in rivers
with severe consequences for lithophilic fish species (Casas-Mulet et al. 2015a, b).

4.5 Upstream Passage

Upstream migration needs of fishes have received much more attention relative to down-
stream migration needs, and respective efforts to increase passage rates date back longer,
too (Katopodis and Williams 2012). The decline of the highly valued anadromous
salmonids and the respective fisheries in response to damming became obvious very early
on and had resulted in first legal acts that obliged e.g., mill owners to care about fish
migration. In this context, attempts to facilitate upstream movement of fish that actively
search for passage corridors have been more successful compared to attempts to guide fish
following the main current in downstream direction (Geist 2021). Correspondingly, com-
prehensive guidelines exist to facilitate operational upstream migration facilities under
varying environmental, technical and biotic conditions e.g., the DWA guidance M 509
(DWA 2014). However, upstream migration facilities show highly varying passage rates
between 0 and 100% (Bunt et al. 2012; Gowans et al. 2003; Hershey 2021; Kemp et al.
2011), mostly due to the unique and highly complex interaction between the species’
internal state and motivation to migrate, their anatomy and swimming ability, ambient
hydraulic conditions and type and design of the passage facility (Banks 1969, Castro-
Santos et al., 2009, Crisp 2000, USFWS (U.S. Fish and Wildlife Service) 2019). In Europe
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the implementation of the WFD stipulated the re-establishment of the longitudinal con-
nectivity (Schletterer et al. 2016) and various technical as well as natural fishways were
developed or species-specifically improved (Clay 2017; Hershey 2021; Jungwirth et al.
1998; Katopodis 1992; Santos et al. 2014).

Factors determining passage success of an upstream fishpass include attraction effi-
ciency mediated by position of entrance and attraction flow and passability mediated by
slope, flow velocity in the migration corridor, height differences and physical dimen-
sions (Banks 1969; Bunt et al. 2012; DWA 2014; Hershey 2021, USFWS 2019). Failing
upstream passage success of fish result in excessive energy expenditure and migration
delays (Noonan et al. 2012; Silva et al. 2019; Thorstad et al. 2008) and thus, delayed
arrival at spawning events (Silva et al. 2019), and increased predation (Agostinho et al.
2012). When HPPs are aligned in cascades their cumulative barrier effects must be con-
sidered (Geist 2021) as it aggravates already significant delays, migration failures and
mortalities threatening the persistence of fish populations (Caudill et al. 2007; Gowans
et al. 2003; Muir et al. 2001; Roscoe et al. 2011; Williams et al. 2001).

4.6 Downstream Passage

Downstream passage attained attention only much more recently, but is of similar rele-
vance especially for iteroparous species spawning more than once in a lifetime. Beside
the target species (diadromous or potamodromous) and the biocoenotic region (upper vs.
lower course and associated species guilds) also HPP constellation (size, turbine type,
etc.) and operational mode need to be considered (Schmidt et al. 2018; Travade and Lar-
inier 2002). Particularly, juveniles of anadromous and adults of catadromous guilds but
also potamodromous species require unobstructed downstream migration corridors. There-
fore, HPPs must be equipped with fish guiding structures that facilitate downstream fish
migration. Generally, all routes downstream over barriers and through HPPs are inherently
dangerous for fishes and may result in migration delay or elevated mortality.

Spillways, mostly used to release excess water in times of higher discharge, can serve
as effective and comparably fish-friendly downstream paths through a hydropower plant
with bypass efficiencies of >90% (Muir et al. 2001). However, water released through
spillways, particularly from bigger heights, tends to supersaturate with nitrogen and oxy-
gen and, together with shear forces, pressure changes and blunt trauma or abrasions, can
cause substantial damages and high mortality rates: up to 2% at a height of <3 m, up to
40% at 10 m and up to 100% at 50 m (Algera et al. 2020; Heisey et al. 1996; Schilt 2007;
Wolter et al. 2020), with larger fish being significantly more susceptible to drop-induced
injuries than smaller ones (Ruggles and Murray 1983).

Sluice gates installed at hydropower plants are mostly opened to spill debris or dis-
charge excess inflow and may constitute temporarily available pathways for downstream
migrating fish, too. Because the hydraulic conditions around an open (esp. undershot)
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gate act as a strong cue for migrating species sluices have proven efficient in conveying
e.g., European eels downstream (Egg et al. 2017). However, undershot pathways may
expose passing fish to rapid pressure changes that by far exceed those at overshot routes
(Pflugrath et al. 2019), causing up to 95% mortality rates, especially for juveniles, small
species and those with pressure-sensitive swim bladders (Algera et al. 2020; Baumgartner
et al. 2006; Marttin and De Graaf 2002), while passage efficiency varies between <20%
(Kemp et al. 2011) and >90% (Gardner et al. 2016).

Bypasses are dedicated downstream migration routes for fishes and most often used in
combination with deflection screens or behavioural guidance facilities (Ebel et al. 2015).
Their set-up is usually relatively simple, comprising concrete or metal chutes, slides or
pipes that flush entering fishes downstream. Operational and efficient bypasses must be
easily accessible, sufficiently dimensioned and supplied with enough water (commonly
measured as a proportion of the turbine flow rate), and the entering water should have
a slightly higher flow velocity than the recommended approaching flow of deflection
screens (Ebel et al. 2015; Larinier and Travade 2002). Studies quantifying bypass mortal-
ities are comparably scarce (Algera et al. 2020), but documented bypass-related damages
and mortalities are mainly caused by sheer forces, rapid pressure changes, collisions,
disorientation and subsequent predation in the tailrace (Williams et al. 2001); however,
mortalities remained generally lower compared to other downstream routes (Algera et al.
2020). Bypass passage rates of fish showed significant variation between 0 and 95%
(Gosset et al. 2005; Nyqvist et al. 2018; Ovidio et al. 2017).

Trash racks are installed in front of turbine intakes to protect them from large debris like
wood. Normally, they feature vertical bars that—depending on design requirements—
may be slightly inclined. The bar spacing is usually very wide to minimize head loss
and constitute a substantial risk for larger fish that may get impinged and damaged when
the approaching flow velocity is too high, during trash cleaner operations or when debris
accumulates in the forebay (Weibel 1991). Studies investigating mortality rates of fishes
due to trash racks are methodologically very challenging and thus, scarce.

Deflection screens with much smaller bar spacing installed at HPP behind or instead of
trash racks are mechanical and behavioural barriers that prevent fishes from entering the
turbines. Fish deflection screens come in a wide variety of designs e.g., vertically inclined
with vertical bars and horizontally angled screens with horizontal bars that mostly deflect
fishes mechanically, or horizontally angled screens with vertical bars inducing an addi-
tional behavioural change that increases the deflection performance up to 95% (Albayrak
et al. 2020; Amaral 2003; Beck 2019; Calles et al. 2013; Ebel 2013a; Ebel et al. 2015;
Nyqvist et al. 2018). The purely mechanical deflection rate can be approximated using
empirical length-width-regressions by (Ebel 2013b): for example, 18 mm bar spacing
would deflect fusiform fish of approximately ≥16 cm and eel of approximately ≥55 cm
length; 15 mm bar spacing would lower these values to 13.6 and 48 cm. In contrast, a
common trash rack with 80–100 mm bar spacing is consequently passable for almost all
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native species. When the approaching flow exceeds the recommended value of approxi-
mately 0.5 m/s (Calles et al. 2013; DWA 2014; Ebel et al. 2015; Larinier and Travade
2002), fish may be impinged in the screen and get damaged (Calles et al. 2013; Larinier
2001). Typically, physical/behavioural deflection screens and downstream bypasses form
a functional unit (Ebel et al. 2015; Gosset et al. 2005; Larinier and Travade 2002; Nyqvist
et al. 2018; Økland et al. 2019) and are not considered operational in absence of each
other.

Turbinepassage is probably the best-studied, most dangerous downstream route for fishes
(Algera et al. 2020, Eicher et al. 1987). Depending on type and size of the turbine, fishes
can get damaged or killed usually by either one or a combination of i) abrupt pressure
changes (barotrauma), ii) turbulent flow, iii) shear forces, and iv) turbine blade strikes
(USFWS 2019). Generally, the consequences of direct and delayed mortality as well as
external (Mueller et al. 2017) and internal (Mueller et al. 2020a, b, c, d, e, f, g, h, i)
injuries following turbine passage must be distinguished. Reported mortalities were highly
variable across and within turbine types e.g., 1–7.7% in “Very Low Head” (VLH) turbines
(Hogan et al. 2014; Reuter and Kohout 2014), 2% in Alden turbines (Hogan et al., 2014),
2–2.4% for the “Minimum Gap Runner” (MGR) (Čada et al. 1997; Hogan et al. 2014),
0.1–2.5% in water wheels (Pulg and Schnell 2008; Quaranta and Wolter 2021; Reuter and
Kohout 2014), 0–32.7% in Archimedes screws (Buysse et al. 2015; Hogan et al. 2014;
Piper et al. 2018; Pulg and Schnell 2008; Reuter and Kohout 2014), 0.3–100% in Kaplan
turbines (Anon et al. 1987, Čada et al. 1997, 2006; Čada 2001; Cramer and Oligher 1964;
Reuter and Kohout 2014; Richmond et al. 2014), although the risk of lethal blade strike
in large Kaplan turbines can be substantially reduced compared to that of smaller ones
(Bell and Kynard 1985), 15 to >70% in Ossberger turbines (Gloss and Wahl 1983), 4–
100% in Francis turbines (Anon et al. 1987, Cramer and Oligher 1964; Pulg and Schnell
2008; Reuter and Kohout 2014) and 100% in Pelton wheels (Reuter and Kohout 2014).
Fish mortality increases with increasing rotational speed (Anon et al. 1987, Buysse et al.
2015; Cramer and Oligher 1964; Odeh 1999; Turnpenny et al. 2000) usually inversely
correlates with turbine size and positively correlates with fish size (Čada 1990; Colotelo
et al. 2012; Pracheil et al. 2016) and hydraulic head (Anon et al. 1987, Larinier 2001) i.e.,
with rapid decompression and lack of acclimation time (Brown et al. 2009, 2012; Colotelo
et al. 2012; Cramer and Oligher 1964; Odeh 1999; Pracheil et al. 2016; Richmond et al.
2014; Stephenson et al. 2010; Turnpenny et al. 2000). Further, mortality decreases with
increasing turbine load (Čada et al. 1997; Cramer and Oligher 1964) and depends on fish
behaviour and species (Amaral et al. 2015; Calles et al. 2010; Coutant and Whitney 2000;
Ebel 2013a; Havn et al. 2017). Even if direct mortality rates are not evident, fishes may die
from their injuries later (Ferguson et al. 2006; Mueller et al. 2020c, 2020f, 2020a, 2020e,
2020d, 2020b, 2020g; Muir et al. 2006; Taylor and Kynard 1985). This delayed mortality
can be substantial and not accounting for it might severely underestimate damage rates
during field studies and therefore, must be considered in the experimental design.
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Turbine entrainment can cause damages and mortalities, and thus, be a significant pop-
ulation impact factor not only for juveniles with weaker swimming abilities or migratory
species (i.e., salmonid smolts) (Mathur et al. 2000; Thorne and Johnson 1993) but also
for potamodromous (Harrison et al. 2019) and even resident adult fishes, mainly in fall
and winter (Martins et al. 2013). However, survival for smaller (i.e., juvenile) fishes at
turbine passage is often higher than for adults, and turbine entrainment may therefore
contribute to the persistence of downstream populations, albeit at the expense of popula-
tions upstream (Amaral et al. 2018; Harrison et al. 2019). Entrainment and mortality of
drifting fish larvae are severely understudied and have not been quantified so far.

4.7 Risk and Impact Assessment

Measuring, describing, and predicting the actual impact of a HPP or specific, hydropower-
related stressors on fish populations is challenging and almost impossible, regardless of
the knowledge about single, site- or constellation-specific factors. This is due to several
reasons.

First, the lack of information on the reference state, that is the undisturbed con-
dition of the system (Nijboer et al. 2004). The fundamental elements of many HPP
(i.e., dams or weirs) are fairly old, and (at least in Europe) new, and particularly small
hydropower plants are commonly built on top of existing infrastructure. This imposes
serious constraints on typical means of impact investigations like BA (before-after) or
BACI (before-after-control-impact) designs (Conner et al. 2015b; Eberhardt 1976; Green
1979; Smith 2014), unless the scientific objective is to assess the additional impact or
mortality factor of the hydropower plant compared to that of the already existing dam. If
construction work on the HPP or dam has not yet started studies applying BACI designs
could be used to investigate hydropower-related impacts before and after completion (e.g.,
Almodóvar and Nicola 1999), but if a particular stressor is already in place meaning-
ful conclusions about its impact are more difficult to obtain. Pressure-release studies, for
example in the context of dam removals or restoration (Catalano et al. 2007; Conner et al.
2015a), could identify improvements from the prevalent condition without knowledge
about the reference condition. However, such studies merely describe the “opportunistic”
response of the ecosystem and not its resilience i.e., its proximity to the pre-disturbance
state. Further, most river systems are facing multiple stressors (Mueller et al. 2020a, b, c,
d, e, f, g, h, i) and the single impacts of HPPs are hard to disentangle.

Second, investigations of impacts from hydropower on fish populations are biased
towards migratory (i.e., diadromous) species that express clearly distinguished, life
stage-critical habitat shifts (Geist 2021). Species with a pronounced migration tendency
like anadromous salmonids and lampreys will by default always attempt to pass the
hydropower plant if their spawning or rearing grounds are located upstream of the plant.
In contrast, it becomes much more difficult to detect impacts at the population level
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of resident, non-migratory or potamodromous species that do not express long-distance
migratory behaviour, migrate within the river system or even stay in the impoundment.

Furthermore, the complexity of different hydropower-related stressors, their interac-
tions, cumulative effects on river system scale (Geist 2021) and summed impact on
resident or migratory fishes raise difficulties in predicting their impact in isolation, espe-
cially in relation to varying susceptibility of fish assemblages across sites. Conclusions
drawn from observations at one site are not necessarily valid at another. While the con-
stellation of a few hydropower components (e.g., turbine type and hydraulic head or
turbine size, rotational speed and flow rate) will remain relatively constant across sites and
applications, others are much more subject to either the operator’s intentions (e.g., oper-
ation modes), geo- and hydro-morphologically imposed structural design decisions (e.g.,
plant type, stream and discharge, mode of operation), spatial limitations (e.g., upstream
migration facilities), composition and diversity of the ambient fish community, and fish
protection facilities installed (e.g., dimensions of fish deflection screens and design or
location of bypass systems). These elements can not only be combined in many differ-
ent ways, they also interact uniquely with fish species and their life stages. Last but not
least, site-specific environmental and conservation concerns do not only constrain the
implementation details of a HPP, they also frame the environmental impact assessment.
In conservation priority areas, even low impacts from hydropower might not be tolerable,
while in heavily modified rivers HPPs of moderate impact might be acceptable.
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