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Abstract. Recent developments in causal machine learning open per-
spectives for new approaches that support decision-making in healthcare
processes using causal models. In particular, Heterogeneous Treatment
Effect (HTE) inference enables the estimation of causal treatment effects
for individual cases, offering great potential in a process mining context.
At the same time, HTE literature typically focuses on clinical outcome
measures, disregarding process efficiency. This paper shows the potential
of jointly considering the clinical and operational effects of treatments
in the context of healthcare processes. Moreover, we present a simple
pipeline that makes existing HTE machine learning techniques directly
applicable to event logs. Besides these conceptual contributions, a proof-
of-concept application starting from the publicly available sepsis event
log is outlined, forming the basis for a critical reflection regarding HTE
estimation in a process mining context.

Keywords: Heterogeneous Treatment Effect · Process Mining ·
Machine Learning · Event Log

1 Introduction

Process mining techniques aim to extract valuable insights from process execu-
tion data captured in an event log [1]. As it starts from data entries representing
real-life behaviour, instead of the assumed or ideal behaviour [1], process mining
offers evidence-based insights in processes [20]. Within the healthcare domain,
process mining techniques have been used for various use cases, such as auto-
matically discovering the order of activities, assessing whether clinical guidelines
have been followed, or identifying bottlenecks in a healthcare process [24].

While process mining in healthcare often focuses on conveying process
insights to practitioners based on historical data, there is increasing awareness
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Fig. 1. The top graph y-axis depicts the positive clinical treatment effect. The bottom
graph y-axis depicts the negative operational treatment effect (i.e., the operational
cost). Along the shared x-axis, a case feature value is varied. Green areas below the
treatment effect curve represent the clinical gain for a given policy. Red areas represent
the operational cost. Filled areas represent the policy if we only take the clinical treat-
ment effect into account. Dashed areas represent the policy when case-level process
efficiency effects are also taken into account. Both clinical and operational effects can
be estimated from event logs. In this example, taking individual operational efficiency
effects into account more than doubles the total clinical effect. (Color figure online)

of the need for a complementary set of proactive techniques that can instigate
actions in active processes [20]. This awareness, combined with recent develop-
ments in causal machine learning, opens perspectives for new approaches that
support decision-making in healthcare processes using causal models.

Causal approaches in healthcare processes are confronted with three chal-
lenges. First, the effect of the same process intervention (e.g., the execution
of a particular activity) can vary widely across patients. Nonetheless, current
intervention guidelines are often developed at the population level and, hence,
tuned to the average case. However, the goal in healthcare process management
is evolving towards determining the optimal intervention for any case. Secondly,
when causal models consider treatment effects at the patient level, there is a
predominant focus on clinical outcome measures, with no regard for process effi-
ciency. In practice, clinical and operational measures are not independent from
each other. For instance, while a process intervention may be desirable from
a clinical perspective (e.g., reduced likelihood for a particular adverse event),
it might have negative implications from an operational point of view (e.g.,
in terms of ICU length-of-stay). Moreover, increased operational efficiency can
also lead to improved clinical outcomes, as more patients receive treatment.
Finally, causal models require assumptions to be made based on a priori domain
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knowledge [22]. In other words, for models to have a causal interpretation, causal
theory needs to be taken into account, preferably before data gathering.

Against the background of these three challenges, this paper explores the
potential of Heterogeneous Treatment Effect (HTE) inference within the con-
text of healthcare processes. Recent advances in causal machine learning enable
the estimation of the causal treatment effect at the level of an individual using
observational data. Consequently, event logs qualify as input for Heterogeneous
Treatment Effect (HTE) modelling. In process mining, a treatment can represent
any intervention within a healthcare process such as admitting a drug, executing
selected activities in a specific order, or letting a particular resource perform an
activity. Typical clinical outcomes include general life expectancy measures (e.g.,
expected days of survival [4]), and disease-specific parameters (e.g., tumor size
[6]). Besides being suitable for HTE modelling, event logs also include important
clues regarding the operational efficiency of a healthcare process (e.g., the length
of stay or the resource involvement). This paper introduces a joint perspective
on clinical and operational efficiency. The importance of adopting this joint per-
spective is illustrated conceptually in Fig. 1. The estimated operational and
clinical treatment effects support crucial decisions within resource-constrained
healthcare processes. This way, using HTE estimation provides detailed insights
into the potential trade-offs between objectives are provided at the case level.
A proof-of-concept application is presented using the publicly available sepsis
event log [18].

The remainder of this paper is structured as follows. Section 2 introduces
HTE inference and discusses the related work. Section 3 presents how HTE
inference can be used in healthcare processes. In Sect. 4 a proof-of-concept is
presented within the context of the sepsis event log. The paper ends with a
discussion in Sect. 5 and a conclusion in Sect. 6.

2 Background

2.1 Heterogeneous Treatment Effects

The goal of HTE estimation is the estimation of the causal effect of a treatment
W ∈ {0, 1} on an outcome Y ∈ R for an individual i characterised by features
X ∈ X ⊂ R

n, where X denotes the n-dimensional universe of features. We adopt
the standard causal effect formulation in line with the standard Rubin/Neyman
Potential Outcomes Framework [25]. In the binary setting, there are two poten-
tial outcomes (POs), Y0 and Y1, that signify the outcomes when W = 0 and
W = 1, respectively. The HTE can then be specified as:

τ(x) := E[Y1 | x] − E[Y0 | x] = E[Y1 − Y0 | x]. (1)

From hereon, we will refer to τ(x) as the HTE.
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Methods for HTE Estimation with Observational Data. From a machine
learning point of view, two central elements distinguish HTE estimation (some-
times referred to as CATE/ITE) from a standard supervised learning problem.
First, the HTE is unobservable for any individual, also referred to as the fun-
damental problem of causal inference [12]. For instance, when we execute an
extra activity (treatment) in the process for an individual, we only observe the
throughput time (outcome) with the extra step. For an individual, when W = 1
we observe Y1, when W = 0 we observe Y0, never both. Effectively, HTE models
estimate something that cannot be observed directly. To still estimate τ(x), the
dominant estimation strategy involves joint modelling of both POs in a multi-
task neural network with one output per potential outcome. An estimate of the
HTE is then constructed as the difference between PO estimates [26].

Second, standard supervised learning methods cannot handle treatment
assignment policies that are not uniformly random, i.e., datasets with assign-
ment bias. Assignment bias thus arises in an observational dataset when the
propensity to receive treatment depends on the characteristics of individuals. In
reality, this is almost always the case. For example, people with a more advanced
stage of cancer will have a higher propensity to receive more radical treatment
options. As such, treatment assignment bias induces the treated and untreated
distributions to differ. In machine learning literature, this is called covariate shift
[27]. Most algorithms for HTE estimation from observational data include some
component to counteract such covariate shift. Examples of such components
include inverse propensity weighting, propensity score matching [16], PPM [26].

Assumptions for HTE Estimation with Observational Data. Even
though machine learning methods have been designed to tackle both aforemen-
tioned challenges, not all requirements can be validated or learned directly from
the data. To guarantee that the treatment effect can be identified in the Rubin-
Neyman PO framework, the following standard assumptions are made:

Assumption 1 (Stable Unit Treatment Value (SUTVA)). First, there
cannot be spillover effects between the potential outcomes of individuals in differ-
ent treatment groups. Second, each unit is assumed to be presented with identical
versions of each treatment. Third, we observe through the factual outcome Y the
potential outcome associated with the assigned treatment.

For example, Frank’s hospital stay length (outcome) should not depend on
whether Sarah received antibiotics (treatment), and the antibiotics both would
receive are the same. When Frank is assigned treatment (W = 1), we observe
potential outcome Y1. This assumption is usually validated based on expert
knowledge.

Assumption 2 (Overlap). For all individuals x ∈ R
n, and all treatments W ∈

{0, 1}, the following holds: 0 < p(W |x) < 1.

Overlap implies that for the whole feature support region every instance has a
non-zero probability of receiving treatment. Intuitively, if there are no examples
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of both potential outcomes for some regions of x, we cannot reliably estimate
the causal effect for those x.

Assumption 3 (No hidden confounders). This assumption implies that all
variables that impact both treatment assignment and outcome are observed. As
such, (Y0, Y1) ⊥⊥ W |x.

For example, to assess the effect of regular walking on mortality, a straightfor-
ward confounder is health status [11]: individuals with poor health walk less –
effect on treatment assignment – and have higher chances of dying – effect on
the outcome. Not including health status would lead a model to overestimate the
causal effect of walking on health. Hence, in this context, it is crucial to collect
health status data to avoid confounding bias.

Assumptions 2 and 3 together constitute strong ignorability given a set of
covariates. When both SUTVA and strong ignorability hold, estimation of causal
effects based on the factual outcomes in observational data is possible [25].
The assumptions regarding hidden confounders and SUTVA are fundamentally
untestable based on observational data alone [14]. As such, expert knowledge
plays a crucial role in HTE inference. The no hidden confounders assumption is
the most difficult to satisfy. But as the dimensionality of X increases, the larger
the probability that hidden confounders are observed. Consequently, a practical
heuristic would be to gather as many features as possible in future event logs.
This guideline facilitates causal learning, but stands in contrast with current pro-
cess mining practices of narrow data gathering, often limited to which activities
have been executed for a patient and when they were executed.

2.2 Related Work

HTE Estimation in Healthcare. Causal effect estimation allows us to address
questions such as ‘how effective is a given treatment in curing this person?’ and
‘which treatment is more effective for this specific individual?’. Such questions
are of critical importance in clinical decision-making. Moreover, recent availabil-
ity of electronic healthcare records (EHR) and methodological advances have
spurred increased interest in HTE inference as a clinical tool [3,4,6,22].

Previous work for healthcare solely considers purely clinical outcomes of
actions. However, it has been shown in a business context that taking into
account costs greatly improves total profit [5,32]. Similarly, it makes sense to
account for overarching operational objectives. While the average treatment
effect has been studied for multiple clinical outcomes (e.g., [17]), no existing
work to our knowledge combines both operational and clinical effects of the
same treatment.

Causality in Process Mining. Within the process mining field, there has been
growing interest in the identification of causal patterns from an event log. This
interest is exemplified by approaches developed to conduct root-cause analysis
[10,28,31], even though they focus on finding characteristics that are correlated
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Fig. 2. Basic process flow for using causal models starting from event logs. An HTE
input table can be constructed from an event log, allowing the application of standard
causal machine learning methods. Domain knowledge plays a vital role in the deter-
mination of data collection, the intervention point, the validation of the assumptions,
and final policy guidance.

with certain phenomena, without assessing whether the observed correlations
are causal in nature. In contrast, Hompes et al. [13] and Narenda et al. [21]
identify causal relationships at the process level starting from an event log using
the Granger causality test and structural causal models, respectively.

Limited research has considered causal effects at a case level in the process
mining field. Qafari and van der Aalst [23] use counterfactual reasoning to detect
statements indicating why an undesirable outcome has happened for a particular
case. Bozorgi et al. [7] also focus on the case level by proposing a technique
that provides case level recommendations of treatments. The technique generates
candidate treatments using action rule mining, after which an uplift tree and
associated rules are generated for each candidate treatment. They apply their
approach within the context of a loan application context [7].

Our work extends existing work on causality in process mining in general
and HTE inference in particular, by jointly considering clinical treatment effects
and operational treatment effects at the case level. Moreover, we formalise a
simple pipeline that makes existing HTE machine learning techniques directly
applicable to event logs.

3 Heterogeneous Treatment Effect Inference
in Healthcare Processes

Definition 1 (Event, Trace and Event Log). Let A represent the universe
of attributes. An event e ∈ A � X is an assignment of values to attributes. Let
E = A � X represent the universe of events. A trace t ∈ E∗ is a sequence of
events referring to the same case c. Let T = E∗ represent the universe of traces.
An event log L collects the traces of a set of cases, i.e., L ⊂ T .

Definition 2 (HTE input table). Given an event log L, X represents the uni-
verse of features which can be calculated over L. Let f ∈ L → X be a feature func-
tion assigning values x calculated over L. Then, the HTE input table I consists
of a set of entries γ, one entry ∀c ∈ L. Each entry γ = (X1,X2 . . . , Xn,W, Y ),
where X1, . . . , Xn ∈ X , W ∈ {0, 1} represents whether the treatment has been
assigned, and Y represents the value of the outcome measure.
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Under Assumptions 1 to 3, the HTE is identifiable and can be estimated
using causal machine learning algorithms based on the HTE input table. Then,
using Definitions 1 and 2, we can featurise the event log such that it translates
to a standard set-up that facilitates use of all state-of-the-art machine learning
algorithms for HTE estimation. A visual depiction of this pipeline can be found
in Fig. 2.

4 Proof-of-Concept: Sepsis Event Log

4.1 Case Description

Healthcare process management benefits from a joint perspective on operational
and clinical objectives of interventions. In many real-world healthcare processes,
there is an apparent conflict between operational and clinical objectives. For
instance, from a purely clinical point of view, extended hospital stay and exten-
sive treatment with close supervision of clinicians is often optimal. From an oper-
ational perspective, typical process efficiency measures (e.g., throughput time)
are improved with shorter treatment and earlier discharge. In reality, all health-
care processes are resource-constrained to some extent. Even when not explicitly
considered, choices are made on the efficiency – effectiveness plane. HTE mod-
elling allows mapping of the effects on both dimensions at the individual level,
improving decision-making.

We empirically illustrate the potential of HTE inference in healthcare pro-
cesses based on event logs, using the publicly available sepsis event log [18]. This
event log contains events related to the trajectory of 1050 patients admitted to
the emergency department (ED) of a Dutch hospital with sepsis symptoms [19].
The activities included in the event log relate, amongst others, to the moment
when registration and triage took place, when laboratory results were recorded
in the system, when antibiotics or liquid were administered and when the patient
was discharged from the ED. Moreover, several parameters recorded in the triage
document are available as event attributes. Finally, the observation that swift
treatment with antibiotics is always advised according to the clinical guideline,
but not applied in almost half the cases, illustrates the relevance of operational
efficiency limits in treatment assignment [19].

4.2 Data Setup

Due to the fundamental problem of causal inference, the ground truth HTE is
unobservable, and only one of the potential outcomes – i.e., the factual outcome
– is ever observed. Consequently, we cannot directly assess HTE generalization
performance based on factual data alone (e.g., using MSE, MAE). Furthermore,
the factual outcome distribution reflects biased treatment selection. Hence, a
biased model will perform better than a model that successfully corrects against
assignment bias.
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Table 1. Evaluation axes of Heterogeneous Treatment Effect models.

Model Capacity Counterfactual Estimation

Data Original Semi-synthetic

Metric type Standard (e.g., MSE) Specialised (e.g., PEHE)

These observations are reflected in the standard quantitative evaluation
strategies for HTE estimators (Table 1). These strategies separately assess (i) the
functional capacity to model the underlying response functions, i.e., whether the
model can overfit the factual data, and (ii) its counterfactual estimation capabil-
ities, i.e., whether the model correctly handles assignment bias to yield unbiased
estimates of the potential outcomes. While (i) can be evaluated on the factual
data, (ii) by definition requires a (semi-)synthetic setup. In such a setup the orig-
inal features and treatment assignment are retained, but the potential outcomes
are simulated [2,4,8,14,26,29]. This way, the original assignment bias and fea-
ture structure in the dataset stay intact, while allowing quantitative evaluation
of the HTE model with the Precision in Estimation of Heterogeneous Effects
(PEHE) measure.

PEHE =
1
N

N∑

i=1

(HTEi − ˆHTEi)2 (2)

In line with Alaa and van der Schaar [2], the data generating model for
the clinical potential outcomes is specified by: fc0(x) = ε+exp

((
x + 1

2

)
Ω

)
, and

fc1(x) = ε+Ωx−ω, for no treatment and treatment, respectively. The regression
coefficients are comprised by Ω, and sampled uniformly from [0, 0.1, 0.2, 0.3,
0.4]. ε ∼ N (0, 1) adds i.i.d. sampled zero-centered additive Gaussian Noise to the
potential outcomes. Finally, ω is selected such that the average treatment effect
of the simulated clinical outcome matches the original sepsis event log data.

Next, we use the same functional form for the data generating model for the
potential outcomes of the operational model, fo0 and fo1 . We sample regression
coefficients comprised by Ω from [0, −0.1, 0.2, −0.3, 0.4]. Furthermore, ω is
selected such that the operational cost of treating is always positive. After all,
doing nothing should be cheapest. The synthetic operational efficiency effect has
a mean of 0.69, a standard deviation of 0.17, and ranges from 0.22–1.28. Note
that the original feature structure and treatment assignment bias from the sepsis
log are once more retained.

4.3 Model Setup

We use cfrnet [26], a popular neural network-based HTE estimator that uses an
integral probability metric in its loss function to explicitly balance the covari-
ate distribution of the treated and untreated group within a learned shared
representation. After deletion of observations with missing values, 642 patient
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observations are retained. We hold out 100 observations for validation, 200 for
testing, and use the rest for training. Cfrnet is run twice, once for the clini-
cal outcome, and once for the operational outcome, yielding estimates of ˆHTEC

and ˆHTEO, respectively. We use the same hyperparameters as reported in Shalit
et al. [26].

We validated that cfrnet performs well for both model capacity and coun-
terfactual estimation by assessing validation set MSE and PEHE on the factual
and synthetic data, respectively. Note that outside of proof-of-concept demon-
strations, one should rigorously select an appropriate functional class among
multiple benchmarks to avoid model misspecification [30].

As a benchmark treatment assignment policy, we rank all individuals by
their clinical effect ˆHTEC . This is the standard assignment policy in HTE lit-
erature. Specific to our setting is that we introduce an operational cost that, if
exceeded, prohibits further treatment of individuals. Our synthetic setup reflects
that treating each individual has a unique cost that depends on its features x.
For the second policy, reflecting the joint clinical-operational perspective, we
take into account the impact on the operational budget and treat based on the
estimated clinical effect per unit of operational effect, or ˆHTEC/ ˆHTEO.

4.4 Results

On the test set, taking into account the joint perspective, we treat 170% more
patients and achieve a total clinical effect increase of 57.83%, compared to the
clinical-only baseline, using the same operational resources. The results highlight
the synergy between the process and clinical views. Even with maximisation
of clinical effect in mind, it is thus helpful to adopt a joint perspective. Post-
deployment, a model can be further evaluated by assessing whether following
the model’s recommendations has improved patient outcomes.

5 Discussion

The interplay between causal learning and process mining is a promising frontier
for the management of healthcare processes. However, to empirically validate this
promise, awareness of the practical requirements of HTE inference is required.
Based on the conducted analyses, we enumerate three main lessons. Moreover,
we reflect upon two broader perspectives on HTE inference for process mining.

Lesson 1: The HTE input table enables the use of state-of-the-art
causal machine learning algorithms. The transformation of an event log
to the HTE input table, the standard HTE modelling setup, can be performed
with minimal overhead. Hence, state-of-the-art machine learning methods are
available to the process mining community to develop causal models using event
logs. We believe this simple formalization significantly lowers the threshold for
coalescence between the HTE inference and process mining communities.
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Lesson 2: To take more effective actions in healthcare, effects on
both clinical and operational outcomes need to be modeled. Currently,
many process mining works do not give explicit consideration to clinical pro-
cess outcomes, while the machine learning for healthcare community does not
model operational outcomes. In healthcare, the impact of an action on process
efficiency is often not uniformly distributed across every case or intervention. We
have intuitively illustrated how total clinical gain can be achieved when jointly
modelling the clinical and operational effect of actions. However, to apply this in
a real-life setting, we need the right combination of data and domain knowledge.

Lesson 3: A paradigm-shift for event log building is needed to fully
capitalise on causal learning. To facilitate causal process interventions based
on HTE inference, more a priori planning is required than is the current prac-
tice in the process mining field. First, the causal assumptions (Sect. 2.1) need
to be validated together with domain experts. Second, these assumptions also
translate to explicit data requirements. Currently, event logs mainly highlight
when particular activities were executed on a patient. However, for HTE infer-
ence, confounders also need to be included, which will often require broader
data extraction when building an event log. Finally, to enable jointly modelling
operational and clinical outcomes, representative outcome measures need to be
defined for the application at hand.

Perspective 1: Methodological extensions towards methods that
can learn directly from event logs and capitalise on time dependencies
are on the horizon. While the definition of the HTE input table offers a simple
solution to enable causal learning using event logs, featurising the event log comes
at the cost of losing information. For example, the time-series nature of the data
is often lost when translating to a tabular data structure. Hence, methods that
can learn from the original event logs offer opportunities to learn from richer
data and the time dependencies in the log. Possible solutions could originate
from time-series compatible models, such as RNN, LSTM or Transformer-based
architectures.

Perspective 2: More discussion is needed to establish a consen-
sus on policy standards and ethics. While opportunities arise due to novel
technologies based on observational data, the adoption of decision support sys-
tems in healthcare needs to be soundly motivated. Adoption standards have not
yet been established for learning HTEs from observational data of healthcare
processes. Existing evaluation standards have mainly evolved from the machine
learning field and not from a consensus of requirements from governing bodies
(e.g., EMA, FDA) and healthcare organizations. Although stronger theoretical
underpinnings can increase trust in HTE model predictions, uncertainty esti-
mates offer an explicit measure of model confidence. Ultimately, the level of
uncertainty also influences healthcare process decision making [15]. Finally, we
refer to Eichler et al. [9] for a detailed discussion on the requirements of algo-
rithmic decision-support in healthcare based on observational data.
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6 Conclusion

In this paper, we introduce a joint approach to HTE inference, combining the
clinical and operational perspective of healthcare processes. Despite its potential,
careful consideration is required to incorporate HTE inference in the toolbox of
healthcare organisations. When the prevailing assumptions are not accounted for
when building the event logs, estimates of causal effects will not be identifiable
and, hence, biased. Most importantly, strong cooperation with domain experts is
needed to check for hidden confounders as violations of this assumption cannot
be deduced from the data itself. To the best of our knowledge, no publicly
available event logs have been collected with the HTE assumptions in mind,
which hampers the development and testability of causal learning for process
mining.
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