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Abstract. Process mining techniques use event data to describe busi-
ness processes, where the provided insights are used for predicting pro-
cesses’ future states (Predictive Process Monitoring). Remaining Time
Prediction of process instances is an important task in the field of Pre-
dictive Process Monitoring (PPM). Existing approaches have two key
limitations in developing Remaining Time Prediction Models (RTM): (1)
The features used for predictions lack process context, and the created
models are black-boxes. (2) The process instances are considered to be
in isolation, despite the fact that process states, e.g., the number of run-
ning instances, influence the remaining time of a single process instance.
Recent approaches improve the quality of RTMs by utilizing process con-
text related to batching-at-end inter-case dynamics in the process, e.g.,
using the time to batching as a feature. We propose an approach that
decreases the previous approaches’ reliance on user knowledge for discov-
ering fine-grained process behavior. Furthermore, we enrich our RTMs
with the extracted features for multiple performance patterns (caused
by inter-case dynamics), which increases the interpretability of models.
We assess our proposed remaining time prediction method using two
real-world event logs. Incorporating the created inter-case features into
RTMs results in more accurate and interpretable predictions.

Keywords: process mining · predictive process monitoring ·
remaining time prediction · inter-case dynamics behavior

1 Introduction

Remaining time prediction approaches learn from historical process executions
and build prediction models for running process instances, i.e., cases, based on
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Fig. 1. Our proposed framework for inter-case-aware RTMs. Patterns are discovered
after detecting uncertain segments, i.e., segments causing high prediction errors due to
inter-case dynamics. RTMs are trained using the extracted features from the patterns
within uncertain segments.

the extracted features from the event data. Many approaches have been suggested
to solve the remaining time prediction problem [17]. However, most proposed
approaches have considerably high prediction errors. Based on [17], the best per-
forming model using an LSTM neural network [10] showed a prediction error of
178.4 days on average for the Road Traffic Management (RF) event log [9]. These
approaches also only consider control-flow-related aspects of processes and indi-
vidual case properties, i.e., intra-case properties, while making predictions [12]. A
process also has other dimensions associatedwith it [13]. For instance, specific rules
determining scheduling and assignment of limited resources, queuing mechanism,
and decision logic in the process create inter-case dependencies within the perfor-
mance of process instances. Moreover, most of the effort put into this research area
has focused on applying new predictive modeling techniques, which create black-
box prediction models. Considering inter-case along with intra-case process fea-
tures in RTMs increases the explainability, interpretability, and accuracy of the
prediction [8]. Therefore, we aim to improve the quality of RTMs and introduce
more interpretability in the predictions. The accuracy of a RTM which is unaware
of inter-case behavior is substantially impacted if cases in a process segment, i.e.,
a pair of related activities, are processed in a batch, First-In-First-Out (FIFO), or
other patterns. The prediction accuracy decreases as a case passes through such
segments indicating that RTM is uncertain about the underlying process behavior
in such segments. We call these process segments uncertain segments. Therefore,
recognizing all uncertain segments and translating their various inter-case patterns
of process execution into features for training RTMs increases prediction quality.

In this paper, we present a three-step approach for developing inter-case
dynamics aware RTMs: (1) Identifying process segments that cause high predic-
tion errors due to inter-case dynamics, i.e., uncertain segments. (2) Discovering
insights about the underlying patterns, e.g., batching, that leads to inter-case
dependencies within the detected segments. (3) Transforming derived insights
into features and incorporating them in RTMs to improve the quality of predic-
tions. For instance, the waiting time for the batching in a segment is transformed
into a feature and introduced into the RTM. We evaluate the prediction errors of
RTMs without incorporating inter-case dependencies, such as batching behavior
in a process segment, as shown in Fig. 1, and identify uncertain segments that
involve inter-case dynamics. We continue by extracting the features associated
with the observed patterns in the uncertain segments.
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We introduce preliminaries and the related work in Sect. 2. In Sect. 3, we
present our main approach. We evaluate the approach in Sect. 4 using real event
logs, and Sect. 5 concludes this work.

2 Preliminaries and Related Work

In this section, we introduce the necessary concepts and related work required
to understand the approach presented in this paper.

2.1 Related Work

RTM approaches can be classified into three broad categories [17]. Process aware
approaches make predictions using explicit process model representations such as
transition system [1]. Process agnostic approaches typically use machine learning
(ML) methods [14] to make predictions. Recent process agnostic approaches pre-
dominantly make use of sophisticated neura!l network architectures like LSTM
[16] and explainable AI methods [5] to develop RTMs. Hybrid approaches like [11]
combine capabilities of both categories by exploiting transition systems that are
annotated using a machine learning algorithm. However, most approaches across
all three categories only consider the intra-case perspective for predictions.

RTM approaches based on queuing models [15] and supervised learning [14]
utilized the inter-case dimension in predictions. They create features on the basis
of queuing theory like case priority and open cases of similar type. However,
these approaches assume FIFO queuing behavior throughout the entire process.
Two recent PPM approaches [3,8] use performance spectra [2] to learn inter-case
dynamics present in the process without any prior assumption. Denisov et al.
[3] presented a novel approach to predict the aggregated performance of non-
isolated cases that utilize performance-related features. Klijn et al. [8] presented
a novel RTM approach that is aware of batching-at-end dynamics. In this paper,
we extend the process agnostic RTM approach presented in [8] by considering
inter-case dynamics caused by non-batching, batching-at-start patterns too. We
use and improve the fine-grained error analysis technique proposed in [8] to
identify inter-case dynamics by limiting manual intervention.

2.2 RTM Background

RTM approaches predict the remaining time to completion of an ongoing process
instance, i.e., case, based on process execution data of completed cases. Process
execution of a completed case is recorded as a non-empty sequence of events
(e), i.e., σ = 〈e1, .., en〉 or trace. An event log L is a set of completed traces. Let
A, T , E be the universe of activities (event classifiers), timestamps and events.
Each event e∈ E consists of mandatory and additional attributes. Let AN be the
set of attribute names. For an∈AN , we define #an(e) as the value of attribute
an for event e. An event e has mandatory attributes timestamp #t(e)∈T at
which e occurs and activity #act(e)∈A that occurs during e.
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We first need to understand the general steps to develop a RTM described
in [17]. In the offline or training phase, the first step is to prepare the input
data, i.e., event log. Since a RTM makes prediction for incomplete traces, it
trains on prefixes extracted from traces in L. A prefix is extracted by tak-
ing the first k∈N events from a completed trace (σ = 〈e1, .., en〉) using function
hdk(σ)= 〈e1, .., ek〉, k ≤ n. The resulting prefixes are collectively known as a pre-
fix log L∗ of L. Therefore, data preparation includes cleaning the data, creating
a prefix log and feature engineering. Features like weekday or sojourn time are
extracted from event data and categorical features are encoded.

A RTM can be instantiated based on three main parameters, methods for
grouping similar prefixes into buckets, prefix encoding methods, and used predic-
tion techniques. For instance, RTM = (p, a, x) represents that the model’s prefix
bucketing method is based on similar prefix lengths (p), the encoding method
is aggregating data of all prefix events (a), and ML algorithm is XGBoost (x).
After training, the models are tuned using techniques like hyperparameter opti-
mization. Finally, the optimal model’s prediction accuracy is evaluated using
aggregated metrics, e.g., Mean Absolute Error (MAE).

2.3 Performance Spectrum with Error Progression

To identify process segments subject to high prediction errors due to inter-
case dynamics, Klijn et al. [8] introduced a visual analysis technique, Per-
formance Spectrum with Error Progression (PSwEP). It uses the performance
spectrum (PS) [2], which maps the performance of each case passing through
a segment over time. A process segment (a, b)∈A × A can be defined as any
two successive steps in the process, e.g., a step from activity a to activity b.
For traces of form 〈..., ei, ei+1, ...〉, where #act(ei)= a,#t(ei)= ta,#act(ei+1)= b,
and #t(ei+1)= tb, we observe an occurrence of a segment (a, b) from time ta to
tb. Each occurrence of segment (a, b) representing a case is plotted in a PS as
a line from (ta, a) to (tb, b). In PSwEP, segment occurrences within a PS are
classified based on the error progression of the case while passing through the
segment. Let P be the set of predictions made on test data using RTM . Each
prediction prk∈P corresponds to a prediction made for prefix hdk(σ)= 〈e1, .., ek〉
at point of prediction #act(ek)= ak and tprk = #t(ek), i.e., the time moment of
prediction.

Fig. 2. PswEP for (Add Penalty (AP), Send
for Credit Collection (SC)) in RF: error
decrease (red), error increase (blue).(Color
figure online)

yprk and yprk denote the actual
and predicted outcomes of prk. To
measure the error progression of seg-
ment occurrence (ak, ak+1) linked
to σ, the prediction errors at ak

and ak+1 are compared. The dif-
ference in relative absolute errors
DRAE(raek, raek+1) = raek −
raek+1 with raek=|yprk − yprk |/yprk
is measured. If the prediction error
decreases for a segment occurrence, i.e., DRAE > 0 this plotted line is colored
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red in the PSwEP. If the prediction error increases, i.e., DRAE < 0 the line is
colored blue. Figure 2 shows PSwEP of segment (Apply Penalty (AP), Send for
Credit Collection (SC)) in the RF event log.

3 Approach

In this section, we will discuss the main approach proposed to develop an inter-
case-dynamics-aware RTM. In Sect. 3.1, we discuss the proposed techniques to
automatically identify uncertain segments. In Sect. 3.2, we discuss the process of
identifying and deriving insights about inter-case dynamics. Finally, in Sect. 3.3,
we propose ways to create inter-case features by utilizing derived insights.

3.1 Detecting Uncertain Segments

Measuring Uncertainty of a Process Segment. To identify uncertain seg-
ments, we need to measure the uncertainty of each process segment. To do so,
we first measure the DRAE (Sect. 2.3) of individual segment occurrences linked
to predictions made using RTM on test data. Table 1 shows an example of how
individual predictions are aligned with segment occurrences and the error pro-
gression of each occurrence is classified. A decrease in error, i.e., DRAE > 0
for a case passing through segment (a, b) implies that after the occurrence of
activity b the remaining time prediction improves. This decrease could indicate
some uncertainty between activity a and b, which gets resolved after activity
b completes. An increase in error implies that after the occurrence of activity
b, the prediction model becomes more unsure about how the partial trace will
proceed. If prediction error remains the same, i.e., DRAE = 0, there is no clear
indication of uncertainty within the process segment. We can either ignore such
rare cases or include them as error decrease, where we consider the latter.

Based on above insights, we use three aggregated metrics to quantify uncer-
tainty of segments. For each segment (S) linked to P, we measure (1) observa-
tions or total occurrences linked to S in P, (2) decrease cases or total occurrences
linked to S with DRAE ≥ 0, and (3) increase cases or total occurrences linked
to S with DRAE < 0. Table 2 is the result of applying the above aggregations
to occurrences of segments found in Table 1.

Table 1. Error progression for the occurrence
of segments linked to predictions.

Case ID Prefix tprk yprk yprk
rae Segment DRAE Error

Progression

c1 〈a〉 1 6 10 0.667

c1 〈a, b〉 2 5 2 0.600 (a, b) 0.007 decrease

c1 〈a, b, c〉 4 3 2 0.333 (b, c) 0.267 decrease

c1 〈a, b, c, d〉 4 3 2 0.333 (c, d) 0 same

c1 〈a, b, c, d, e〉 7 0 0 ∞ (d, e) −∞ increase

c2 〈a〉 3 11 14 0.272

c2 〈a, b〉 5 9 14 0.555 (a, b) −0.283 increase

c2 〈a, b, c〉 14 2 3 0.500 (b, c) 0.055 decrease

Table 2. Measuring uncertainty
of each segment by aggregating its
occurrences to calculate observa-
tions, decrease cases, and increase
cases.

Segment Observations Decrease

Cases

Increase

Cases

(a, b) 2 1 1

(b, c) 2 2 0

(c, d) 1 1 0

(d, e) 1 0 1
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Selecting the Most Uncertain Segments. We define a mapping function
uS : N × R −→ [0, 1] to select a subset of process segments for which inter-case
features could be created (Eq. 1). The inputs are the number of observations
(o) and the ratio r = d/max(1, i) of decrease cases (d) to increase cases (i)
for segment S (as shown in Table 2). Output 1 indicates the segment is highly
uncertain. Note that ideal candidates for uncertain segments are those where
decrease cases are almost the same or more than increase cases, i.e., their ratio
should be greater than some threshold tr. The threshold for the number of
observations (tobs) indicates the occurrences of the segments. These thresholds
can be set for each process individually.

uS(o, r) =

{
1 if o ≥ tobs and round(r) ≥ tr

0 otherwise
(1)

Let SG be the set of all segments in a process and SGstart be the set of
starting segments. Therefore, we apply uS to S∈SG \ SGstart based on some tr
and tobs and select set of segments U for which uS(o, r)= 1. Removing starting
activities in traces is due to the fact that the RTM has too little information,
and the prediction error is likely to decrease when the second activity occurs.
We use the RF event log [9] as the running example. First, predictions are
made on the last 20% (temporally split) of the event log using a RTM, here
RTM = (p, a, x). Then, these predictions are used to measure the uncertainty
of each process segment and uS is applied to all non-starting segments. We set
tr = 1 and tobs > μ, e.g., tobs = 2 ∗ std where μ, std are the mean and standard
deviation of segment occurrences. The selected uncertain segments are (Send
Fine (SF), Insert Fine Notification (IF)), (Insert Fine Notification (IF), Add
Penalty (AP)) and (Add Penalty (AP), Send for Credit Collection (SC)). The
details of selecting the most uncertain segments presented here1.

3.2 Identifying Inter-case Dynamics in Uncertain Segments

In order to diagnose causes for uncertainty within segments, first, we visualize
the performance of cases within the process segment using PSwEP (Sect. 2.3).
After that, the observed patterns in the performance spectrum are compared
to a taxonomy [2] to identify underlying process behavior that causes inter-case
patterns within the process segment. We explain the process of deriving insights
for the uncertain segments identified in the running example.

In the shown PSwEP of (SF, IF ) in Fig. 3 (left), two patterns, batching-
at-start and non-batching FIFO behavior are identified. These are elementary
patterns related to the order of case arrival. We notice uncertainty (as shown
by the red lines) for non-batched cases. Therefore, RTM is currently not aware
that non-batched cases are processed much faster than batch ones. Batched
cases within the segment (Fig. 3) are also classified using red. The uncertainty
concerning these cases is caused by the prediction model’s lack of awareness

1 https://www.pads.rwth-aachen.de/go/id/qcekn/lidx/1.

https://www.pads.rwth-aachen.de/go/id/qcekn/lidx/1
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about batching-at-start dynamics. The order of lines in PSwEP of (AP, SC)
presented before in Fig. 2 clearly shows that the inter-case pattern is caused
by batching-at-end. The prediction model is currently unaware of this inter-case
dynamic within the process segment. In PSwEP of (IF, AP ) in Fig. 3 (right),
we observe a FIFO with a constant time pattern in the order of case arrival. The
performance of a case is strongly correlated to the previous case that passed
through the segment. We also know that there are two possible activities, Add
Penalty (AP) or Insert Date Appeal to Prefecture (ID), that can occur after
Insert Fine Notification (IF) and the time that cases wait within the segments is
significantly different. Therefore, incorrectly assuming the path of a case arrives
at IF impacts the remaining time prediction. We are able to predict the path
by observing the recent performance of cases in (IF, AP ) and (IF, ID) w.r.t.
inter-case dependencies. Lastly, across three segments, we observe changing the
density of lines indicating varying workloads.

Based on the above derived insights, we define the abbreviated inter-case
pattern(s) identified for segments (SF, IF ), (IF, AP ) and (AP, SC) as
R1 =non − batching, batch(s), R2 =non − batching and R3 = batch(e) respec-
tively.

Fig. 3. PSwEP for segments (Send Fine (SF), Insert Fine Notification (IF)) (left),
and (Insert Fine Notification (IF), Add Penalty (AP)) (right) in the RF event log.

Table 3. The created inter-case features for segment predictions (C = {CS , CS1 ,
CS2 , CS3}) and waiting time (w) within uncertain segments for the RF event log.

Case ID Activity Timestamp ... CS CS1 CS2 CS3 w y

N71924 SF 09-17 08:00 ... 1 1 0 0 1154258.7 39229200.0

S120874 AP 05-09 08:00 ... 1 0 1 0 2808000.3 28080000.0

S86803 SF 11-03 09:00 ... 1 1 0 0 1212661.0 36115200.0

S57422 SC 01-10 09:00 ... 0 0 0 0 0.0 0.0

S70222 CF 09-29 08:00 ... 0 0 0 0 0.0 40438800.0

3.3 Inter-case Feature Creation

As the running example shows, ignoring inter-case dynamics results in high pre-
diction errors for prefixes expected to pass through segment S∈U . Therefore,
we need to provide the RTM information about a prefix being subject to inter-
case pattern R detected in uncertain segment S prior to the occurrence of the
segment. We use these insights to develop inter-case features.
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Fig. 4. The overview of feature creation
process for RF event log with uncertain
segments S1, S2 and S3.

Consider the running example with
three uncertain segments S1, S2, and S3

with inter-case pattern(s) R1, R2 and
R3, respectively, we define the follow-
ing inter-case features: (1) CS∈{0, 1}, to
indicate if a prefix passes through an
uncertain segment S∈U , (2) CS1∈{0, 1},
to indicate that the prefix passes
through S1 with inter-case pattern(s)
R1, (3) CS2∈{0, 1}, to indicate that pre-
fix passes through S2 with inter-case
pattern(s) R2, (4) CS3∈{0, 1}, to indi-
cate that prefix passes through S3 with
inter-case pattern(s) R3, and (5) w, to indicate the waiting time of the prefix in
S∈U , as a result of inter-case pattern(s) R. As a result of the feature creation
step for the running example, Table 3 is generated showing inter-case features.
These features are used to train an inter-case-dynamics-aware RTM. Feature y
is the target feature, i.e., remaining time to completion.

Creating inter-case features for an ongoing case at run-time requires its own
prediction models. We need a model (NS) to predict inter-case features related to
segment prediction and waiting time prediction model (TMS,R) for each uncer-
tain segment S∈U with inter-case pattern(s) R. Figure 4 gives an overview of
the steps involved in creating the models (offline) and utilization of these models
to create inter-case features (at run-time). This process is the extended version
of the presented feature-creation in [8].

3.4 Predicting the Next Segment

Classifier NS should determine if a prefix passes through segment S∈U at the
point of prediction. To build NS, we build a classifier for the next activity
prediction using [18] and modify the outcome to predict the value of segment
prediction inter-case features. Let hdk(σ) be the input prefix with last activity
a for NS. If the next activity predicted is b, we say that the prefix passes
through segment (a, b) at the point of prediction. If (a, b)∈U , then CS = 1, else
we set it to 0. If CS = 1, we set the value of the boolean variable representing
the prefix passing through segment (a, b) as 1. Therefore, if predicted (a, b)= S1,
then CS1 = 1, CS2 = 0, and CS3 = 0. The collective set of predicted features using
NS is called C.
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3.5 Predicting Waiting Time

Fig. 5. Illustration of a single instance
for TMS,R to learn waiting time for
case c1 using performance-related features
extracted from Sh and relevant individual
properties of c1.

In this section, we present general
steps to create a waiting time pre-
diction model (TMS,R) that predicts
how long a case stays in a segment S
with inter-case patterns R. Consider a
case c1 arriving at segment S = (a, b)
at time ta (Fig. 5). Because of inter-
case dynamics, the waiting time w of
c1 will depend on the performance of
other cases in relevant segments in
some recent time interval, i.e., historic
spectrum (Sh) [3] and relevant indi-
vidual properties (intra-case features).
The intra-case feature of c1 and perfor-
mance seen within Sh can be encoded
as feature vector X1..Xn using insights gained about R within S. This allows
us to formulate the waiting time prediction problem as a supervised learning
problem: w = f(X1..Xn)+ε, where function f predicts w from X1..Xn. To learn
f , we create training samples using the sliding window method and apply a
ML method like LightGBM [6] that tries to minimize prediction error ε. Table 4
shows sample data used to train a TMS,R for (IF, AP).

Table 4. Sample data for training waiting time
prediction model (TMS,R) for uncertain seg-
ment (IF,AP ) with pattern R=non−batching.

starting ending pending wl w

cases cases cases

60 37 60 5183000.0 5184000.0

14 10 14 5184000.0 5184000.0

19 17 18 5187000.0 5187000.0

Waiting Time Prediction for
Non-batching Dynamics. In
Sect. 3.1, we learned that w of a
case in (IF,AP ) is influenced by
R = non − batching and varying
workload in segments (IF,AP )
and (IF,AD). To derive workload
related context, we define h in Sh

as the period between arrival of c1
and the last case before it and derive: (1) starting cases or the number of cases
that started (arrived at the segment) in period h, (2) ending cases or the number
of cases that completed (exited the segment) in period h and (3) pending cases
or the number of cases that have started within period h and will complete in
the future. Since, performance of a case in (IF,AP ) strongly depends on the
previous case, we also extract last waiting time (wl), e.g., Table 4.

Waiting Time Prediction for Batching-at-Start Dynamics. w of a case
c1 arriving at (SF, IF) will depend on R = batch(s), non− batching and varying
workload within the segment. Therefore, Sh contains only segment (SF, IF). To
learn performance related to R =non − batching and the workload, we include
features presented in Sect. 3.5. To include features related to R = batch(s), we
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extract features related to the previous batch [7] with batching moment BMl:
(1) least (wmin) and longest waiting time (wmax) in previous batch, (2) previous
batch size and batch size percentile, (3) mean and standard deviation of IBCT
or inter batch case completion time, which is the time difference between the
completion times of two successive cases in the batch and (4) batch type, which
distinguishes batches with less than 2 observations that behave like simultaneous
batches, and (5) CIA or case inter-arrival time which the time between arrival
of c1 and the case before it. We also include relevant intra-case features resource,
expense, points and weekday, month, hour of previous batch. Duration or the
waiting time of the case in the previous segment is also included to distinguish
batched and non-batched cases. However, learning case-specific w is difficult
because batching-at-start cases proceed randomly, i.e., not in the order they
arrived at the batch. To avoid learning this random behavior, we propose building
a TMS,R that predicts the average of expected waiting times for all cases that
arrive along with c1. Hence, the training data will be prepared by extracting the
above-mentioned features and then aggregating (calculating mean) feature values
for instances that correspond to cases arriving simultaneously in the segment.

Waiting Time Prediction for Batching-at-End Dynamics. (AP,SC) con-
tains inter-case dynamics caused by R = batch(e) and varying workload. To con-
sider the varying workload across the segment, we include the features presented
in Sect. 3.5. To learn batching related performance, we extract features wmin,
wmax and CIA described in previous section. Additionally, we include: (1) tlb: or
the time elapsed since the occurrence of the last batch, (2): the mean and stan-
dard deviation of IBIA (inter-case arrival rate) which is the difference between
the arrival times of two successive cases in the batch. We also include intra-case
features month and weekday.

4 Evaluation

4.1 Experimental Setup

We evaluate the proposed approach on two real-life event logs: the RF event log
[9] and BPIC’20 event log [4]. We implemented inter-case feature creation and
PSwEP in Python, which is publicly available2. To train and test RTMs, we use
the benchmark implementation for RTM approaches3 [17]. First, we make predic-
tions with RTM = (p, a, x) for both event logs to identify uncertain segments and
their patterns. The uncertain segments identified from RF event log are (SF, IF),
(IF, AP) and (AP, SC) with inter-case pattern(s) R1 =non−batching, batch(s),
R2 = non−batching and R3 = batch(e), respectively. The two identified uncertain
segments from BPIC’20 event log are (Declaration Final Approved by Admin-
istration (DF), Request Payment (RP)) and (Request Payment (RP), Payment

2 https://github.com/karshreya98/Inter case aware RTM.
3 https://github.com/verenich/time-prediction-benchmark.

https://github.com/karshreya98/Inter_case_aware_RTM
https://github.com/verenich/time-prediction-benchmark
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Table 5. Weighted average MAE (in days) of different RTM models with different
bucketing, encoding and ML methods, e.g., (p, a, x), while using no inter-case features
I(∅) and with the created inter-case features using segment predictions I(C, w).

(p, a, x) (p, l, x) (c, a, x) (c, l, x) (p, l, r) (c, a, r) (c, l, r) (s, l, x)

RF I(∅) 212.60 209.69 210.32 208.59 221.39 221.05 221.53 203.29

I(C, w) 187.65 179.78 201.17 179.34 191.06 205.87 190.63 179.78

BPIC’20 I(∅) 3.68 3.66 3.87 3.62 3.85 3.90 3.72 3.66

I(C, w) 3.58 3.57 3.81 3.53 3.69 3.70 3.65 3.48

Handled (PH)). The inter-case pattern(s) identified for segments (DF, RP) and
(RP, PH) are R1 = non−batching, batch(s), and R2 = batch(e) respectively. To
create inter-case features, we implement NS using [18] and follow steps described
in Sect. 3.5 to create TMS,R models using LightGBM [6]. Predictions are made
with different bucketing prefixes, encoding prefix events, and ML methods. We
consider prefix bucketing methods to be grouping by prefix lengths (p), using a
clustering algorithm (c) or grouping all prefixes in a single bucket (s). Common
prefix encoding methods include data of only last prefix event (l) or aggregating
data of all prefix events (a), and apply ML models, XGBoost (x) or random forest
(r) to the input encoded feature vectors. The following input configurations are
used: (1) I(∅): event log with no inter-case features, (2) I(C, w): event log with
inter-case features created using actual segment prediction C, and (3) I(C, w):
event log with inter-case features created using segment prediction made using
NS. We use 80% and 20% (by temporally splitting) of the event logs for training
and testing the RTMs. To measure overall prediction accuracy, we measure the
weighted average MAE [17] of all predictions P made on test data.

4.2 Results

Table 6. MAE (in days) for different configurations
(I) with the similar lengths bucketing (p), aggregat-
ing events data for encoding prefix events (a), and
XGBoost (x) as the ML method, RTM = (p, a, x).
Pk is the set of all predictions for prefixes of length k.

RF I(∅) I(C, w) I(C, w) BPIC’20 I(∅) I(C, w) I(C, w)

Pk =2 176.37 107.85 106.74 Pk =3 4.03 3.84 4.06
Pk =3 227.38 189.22 200.02 Pk =4 2.64 2.22 2.23
Pk =4 202.92 123.19 171.11 Pk =5 1.07 0.98 0.97

Table 5 shows that using
inter-case features leads to
an increase in performance
for all 8 combinations of
bucketing prefixes, encoding
prefix events, and ML meth-
ods in RTMs against base-
line I(∅). For the RF event
log, we see that prediction
error decreases by a maxi-
mum of 14.26% and a minimum of 4.27% for methods (p, l, x) and (c, a, x),
respectively, with I(C, w). For the BPIC’20 event log, we observe a maximum
decrease of 5.12% and a minimum decrease of 1.55% in weighted average MAE
for methods (c, a, r) and (c, a, x), respectively. Since BPIC’20 is a smaller event
log with fewer cases subject to the identified inter-case patterns, the overall
reduction in prediction error is smaller. The most accurate predictions for the
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RF event log obtained using I(C, w) with (c, l, x), has a MAE 0.6 days less than
the benchmark result [17]. However, our approach’s privilege is that these pre-
dictions can be interpreted more easily because of the inter-case features.

Fig. 6. Comparing prediction results for
RF

Fig. 7. Comparing prediction results for
BPIC’20

In our approach, inter-case fea-
tures are primarily included for pre-
fixes passing through uncertain seg-
ments which occur at some step k
of the process. Therefore, we look at
MAE of predictions made for all pre-
fixes of relevant length k, i.e., Pk ⊆ P.
Segments (SF, IF ), (IF, AP ) and
(AP, SC) of the RF event log occur
predominantly at step k = 2, k = 3
and k = 4 of the process respectively.
Segments (DF, RP ) and (RP, PH)
of the BPIC’20 log occur predomi-
nantly at steps k = 3 and k =
4, 5 respectively. Table 6 shows us
the results for predictions made using
RTM = (p, a, x). For the RF event
log, the prediction error decreases by
39%, 12% and 15% for P2, P3 and P4,
respectively using I(C, w) over baseline. For BPIC’20, error decreases up to 15%
and 9% for P4 and P5, respectively, when using I(C, w). However, the MAE of P3

is slightly higher for configuration I(C, w) compared to I(∅) . This is because of
incorrect segment predictions for (DF, RP) made by NS which is proven by the
results of I(C, w). Figures 6 and 7 compare the batching-at-end aware predictions
made using inter-case features created in our approach that uses LightGBM [6])
and previous approach [8] that uses exponential smoothing (ES). We measure
the increase/decrease in performance of P4 made using different combination
of RTMs over their respective baselines. We compare only predictions at k = 4
for both logs where uncertain segments with batching-at-end dynamics occur.
Figure 6 shows that, our approach performs better than previous approach in 5
of the 8 input configuration (I) for batched cases in RF event log. Figure 7 shows
that for the batched cases in BPIC’20 log, our method performs better for all
the configurations.

5 Conclusion

We presented an approach to systematically discover a subset of uncertain pro-
cess segments with inter-case dynamics that cause high prediction errors. Con-
trary to previous approaches, our designed function for detecting the subset
of uncertain segments, limited the manual intervention to the identification of
inter-case patterns within these segments. Using visual analysis, we identified and
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gained insights about inter-case pattern(s) within uncertain segments. In partic-
ular, we gained insights into non-batching (FIFO and unordered), batching-at-
start, and batching-at-end inter-case patterns. Subsequently, we included these
insights in remaining time predictions by transforming them into the inter-case
features. For instance, there is a maximum increase in overall prediction per-
formance by 14.2% for RF event-log. Since there is no standardized process to
create a ML model for inter-case feature creation, our proposed approach is also
sensitive to user interpretation. Yet, it provides more interpretability to RTMs.
Note that despite an overall decrease in prediction error, some prefixes were heav-
ily over-predicted or under-predicted. Therefore, the next step is to improve the
prediction models and leverage routing probability derived from stochastic pro-
cess models. It improves the inter-case feature creation for segment prediction.
Another possible path is to make RTM aware of non-case-related aspects, e.g.,
resources dependencies.
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