
Chapter 9
Protocol Buffers

Chris Currier

Abstract Protocol Buffers (Protobufs) are discussed in this chapter, from creating
one to analyzing the data. This particular serialization format, originally developed
by Google, is used in various apps. We discuss creating a protocol buffer and adding
data through Python step by step. This provides a better understanding of how and
why protocol buffers are formed and used. We also clarify how to recognize and
decode them during a forensic examination.

9.1 Introduction

I remember being on the edge of my seat as Johan Persson, a developer at MSAB,
first introduced me to Protocol Buffers. Why? Protobufs, as they are commonly
referred to, contain data that we as examiners may find helpful in an investigation. I
had no idea how to find them and view the payload they carried. However, that was
to change quickly.

9.1.1 What is a Protocol Buffer?

A Protocol Buffer provides a format for taking compiled data (many different lan-
guages/platforms supported) and serializing it by turning it into bytes represented in
decimal values. This makes the data smaller and faster to send over the wire. We call
this serialization in computer science.

A protocol buffer is a data format structured in a very efficient binary format. The
structure is defined in a .proto file, which is in a readable text format. The concept
is similar to XML, where the schema description can be done inline or in a separate

Chris Currier
MSAB, Hornsbruksgatan 28 SE-117 34 Stockholm Sweden e-mail: chris.currier@msab.com

223© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_9

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

mailto:chris.currier@msab.com
https://doi.org/10.1007/978-3-030-98467-0_9
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_9&domain=pdf

224 Chris Currier

file. The .proto file is then used to generate code for reading from and writing data
to the protocol buffer. Due to its nature, protocol buffer data is very suitable for
transmission over networks. When transmitted over networks, it is often compressed
with GZIP to minimize the size of the data. The protocol buffer concept was created
and is used extensively by Google. Other users of protocol buffers include Apple
and app developers.

So, where do we begin? Of course, the best place to learn about Google’s Protocol
Buffers is Google (see Fig. 9.1). Google defines how to structure and use Protocol
Buffers [24]. The structured or rigid format used by Protocol Buffers is often referred
to as a schema.

Fig. 9.1: Google’s Protocol Buffers

Google itself says about its format in the developer documentation that it is a platform-
independent, language-independent and easily extensible serialization format. Of
course, other formats allow serialization of data too. Java-Serial is an example of
this. Unlike this, Protobuf is a language-independent transmission format. Also,
XML would be an option. However, Protobuf is smaller and faster than most of
the other formats [24]. A significant advantage of Protobuf is that we only need to
define the structure for the data to be transferred once and can then exchange it over
a wide variety of data channels. The programming language is secondary since we
are language-neutral. The data stream itself (network or file) is also irrelevant. The
definition of the protobuf message always remains the same [24].

9 Protocol Buffers 225

9.1.2 Why are Protocol Buffers Used?

Now think of a network with data being transmitted through it. How do we get data
through the network faster? The smaller the data, the faster it will be. We also do not
need it to be human-readable during transmission. This is where Protocol Buffers
shine with faster transmission. Figures 9.2 and 9.3 demonstrate the time and size of
Protbufs, based on tests performed to consider encoding and decoding benchmarks
and common browsers [58, 43].

JSON JSON Stream Protobuf

0

1,000

2,000

3,000

527 463
197

2,183
2,500

461

ns
/o

ps

Encoding Decoding

Fig. 9.2: Encoding and Decoding Performance of Protobufs [58]

0 200 400

Safari

Firefox

Chrome

399

400

396

386

380

388

Time (ms)

0 50 100

111

111

111

101

101

103

Size (KB)

JSON Protobuf

Fig. 9.3: Compression Environment of Protobufs and JSON [43]

The authors of a benchmark study in [43] conclude that ProtoBuf performs signifi-
cantly better than JSON. The messages are significantly smaller and are transmitted

226 Chris Currier

much faster at the same time. However, there is always someone faster, and that
brings us to the term FlatBuffers:

“Protocol Buffers is indeed relatively similar to FlatBuffers, with the primary differ-
ence being that FlatBuffers does not need a parsing/ unpacking step to a secondary
representation before you can access data, often coupled with per-object memory
allocation. The code is an order of magnitude bigger, too. Protocol Buffers has
neither optional text import/export nor schema language features.” [15]

As you can see, it is not just about speed but also the size of the data. The protocol
buffer is not only the code but also the key. The data sent is binary and can be
converted and looked at. Different languages (code) may be supported and used to
enter and view this data.

9.2 Using Protocol Buffers

This section will clarify how ProtoBuf works and what data is needed. For this,
the first step is to generate a description of the message types used and the access
service:

Messages

To create a ProtoBuf message, we must first create an appropriate template. This
template is usually saved in a file with the extension .proto. The file is set up and
used alongside another programming language such as Python. The data (or user
data) can be added using the same scheme (Field assignments: Type, Name, Tag)
and then sent internally or externally over the wire. Google set up Protocol Buffers
for their internal communication. Data is transmitted as binary. For this reason, we
can encounter it in almost every Google app.

Services

Protocol Buffers are not just about messages but also services. For this reason, we
need a service description. It describes the interface of the methods offered via the
service. If we want to create an RPC service using a proto buffer, then the service
must be given a name under which it can later be called once. In this case, the
developer documentation recommends formulating both the service name and the
access methods in CamelCase (with an initial capital). Here we have a brief example
of defining a chat service that provides precisely one access method:

s e r v i c e C h a t S e r v i c e {
rpc Ge tCha t s (Cha tReques t) r e t u r n s (CharResponse) ;

}

9 Protocol Buffers 227

One such service is Google’s gRPC. These RPC (Remote Procedure Calls) methods
accept a request "message" and return a response "message". Protobuf is often used
with HTTP and RPCs for local and remote client-server communication. Protobuf is
used for the description of the required interfaces and message types. The protocol
composition is also summarized under the name gRPC [30]. In this case, the call to
the remote method - encapsulated by a service - is provided platform-independently
via a service description. The steps for generating a protobuf message and sub-
sequent transmission are briefly summarised again in Fig. 9.4. The message data
(message refers to type or object and not to chat or text) is then transmitted over the
wire (internal or external). The supported platforms can all have code generated to
deserialize the data and make sense of it, regardless of what coding platform created
the data.

Protocol
Buffer

CREATED

Protocol
Buffer

COMPILER
ProtoC

Multiple
Supported
Platforms
Can be

Compiled

Language
Code

Template
CREATED

Message
DATA INPUT
Using Preferred

Language & Template

Data SERIALIZED
Sent as Binary Bytes

10101010

Message
DESERIALIZED
Delivered/Read

Preferred Language

Fig. 9.4: How Protobufs Work

Looking at the data, we may not make sense of it without having the original code to
know what the data represents. Unfortunately, we will not find the schema to help us
make sense of the fields. So, let us look at the code to start with. That will give us a
better understanding of what we see during the examination. Therefore, we will first
discuss the design and implementation of a proto buffer using two small examples
before turning to the forensic analysis of these special artefacts.

The Proto File

We start by creating a .proto file. We like to think of this file as the key or legend
to the data we will see on a mobile device. Unfortunately, we will not find this key

228 Chris Currier

or legend on the device itself as examiners. The .proto file is not included with
the binary, with a few exceptions. As we will see, this often leaves some room for
interpretation when we deserialize a Protocol Buffer manually. We will walk you
through an example of the process. This example (see Fig. 9.5) will be for an Address
Book, so we will name it formobileAB.proto. The file can be created with any editor.

Fig. 9.5: FORMOBILE Protobuf Example

Define the Syntax

Google made Protocol Buffers public in 2008. In 2016 Google published Protocol
Buffers 3. Since there is a different version, we have to identify which version of
Protocol Buffers will be used. So, the first line of code needs to state this. Version 3
is used in these examples, as shown below.

syntax = "proto3";

Message Type

Now the message needs to be defined or named. This "message" is a code term
that refers to the data and is not confused with terms chat or SMS text messages.
The name should reflect the type of message based on content. The term address
book should define our Protocol Buffer just fine. When using two words they use
CamelCase and form one word i.e. addressBook or AddressBook, as shown below.

syntax = "proto3";

message AddressBook {

}

Fields

To create the first property, we need to know the type of data [int32], followed by
property name [thread] and then identify it as the sequential property [1]. Fields

9 Protocol Buffers 229

identify these data characteristics through Field Type, Field Name, and a Field Tag
(or also called a Field Number). This is where we define the class characteristics
that will be used. We consider what information would we want to know about, for
example, a:

• Person
• Contact
• Web Broswer Search
• Location and a Chat

•! Attention

Remember, the idea behind Protocol Buffers is to take code from another language
and package it into a smaller container. This starts defining the data by naming it and
then following with fields.

The actual data such as: John Smith 40 1.85 90.71 Brown Blue will not exist in this
proto file, but in another file. This should remind you of how meta data type looks
like in a chat message. Fig. 9.6 is an example found in an address book showing the
fields and associated data and profile picture.

Scalar Values

A message is normally composed of a number of different scalar values. Each value
is assigned to a particular type. Looking at an SQLite database table definition,
we will find terms such as Integer, Boolean, Float, and String. These define data
types. Protocol Buffers use these as well (see table 9.1). Since we usually want to
exchange messages between different applications, the data they contain must be
preserved. As we can see in the table below, Protocol Buffers are easily used with
other programming languages: C++, Java, Python, and Go. Accordingly, we can
easily map the data type of a programming language to a ProtoBuf type and vice
versa. For more information about types and unsigned bit integers please refer to
[26].

230 Chris Currier

Fig. 9.6: Address Book Profile Example

.proto Type Notes C++ Java Type Python Type Go Type

double double double float *float64
float float float float *float32
int32 Uses variable-length encoding.

Inefficient for encoding negative
numbers – if your field is likely to
have negative values, use sint32
instead.

int32 int int *int32

int64 Uses variable-length encoding.
Inefficient for encoding negative
numbers – if your field is likely to
have negative values, use sint64
instead.

int64 long int/long *int64

uint32 Uses variable-length encoding. uint32 int int/long *unint32
uint64 Uses variable-length encoding. uint64 long int/long *uint64
sint32 Uses variable-length encoding.

Signed int value. These more effi-
ciently encode negative numbers
than regular int32s.

int32 int int *int32

sint64 Uses variable-length encoding.
Signed int value. These more effi-
ciently encode negative numbers
than regular int64s.

int64 long int/long *int64

sfixed32 Always four bytes. int32 int int *int32
sfixed64 Always eight bytes. int64 long int/long *int64
bool bool boolean bool *bool
string A string must always contain

UTF-8 encoded or 7-bit ASCII
text.

string String unicode
(Py2) or str
(Py3)

*string

bytes May contain any arbitrary se-
quence of bytes.

string ByteString bytes []byte

Table 9.1: Mapping Table for possible Scalar Types (Detail) [26]

9 Protocol Buffers 231

•! Attention

In this chapter, we will discuss several examples of Proto Buffers: (1) an address
book, (2) a chat message, and (3) an Apple Maps example. You will find most of the
files mentioned here: www.github.com/Xamnr/ProtocolBuffers. If you like,
you can analyze the examples discussed here yourself. Just give it a try.

9.2.1 The Schema Defintion

The Protocol Buffer defines the Object (type of data and position). Not the actual
data or user data. The actual data will be coded in Python or another language format.
However, the type of data that will go into these fields needs to be defined. Protocol
Buffers use fields. There are three types of fields:

• Field Type
• Field Name
• Field Tag (or Number)

Field Type

The field type uses the scalar values to define the type of data like integer, string,
or bool. Thinking back to our Apple contact, shown below (Fig. 9.7), we have the
following fields and data to consider:

• Name or maybe Last Name and First Name
• Phone Number (Home, Work, Cell)
• Email (Home, Work)
• A Unique Identifier
• A Profile Picture

If not set, specified, or unknown, every field will have a default value. Protocol
Buffers do not recognize required fields. Instead, the runtime environment of the
programming language is responsible for that, i.e. Java, Python, Go. This means that
a field whose assignment corresponds to the default value is not serialized. It is just
left out. Since the field is missing in the data stream, the receiver side automatically
uses the default value in this case. This property, which may seem confusing at first
glance, ensures that no unnecessary values are transmitted. The serialized data on
the wire remains small.

http://www.github.com/Xamnr/ProtocolBuffers

232 Chris Currier

Fig. 9.7: Field Type and Scalar Values (example)

VALUE DEFAULT

Bool False
Number 0
String (UTF-8 or 7-bit ASCII) Empty String
Byte (or byte array) Empty Bytes (or empty byte array
Enum First Defined Value 0
Repeated Empty List

Table 9.2: Field Type Default Values

Field Names

The field name represents one particular element within the message, therefore
identifying the data for us. To identify a contact, we may use identifiers such as
last_name, first_name, phone_number_cell, email, unique_id, date_time_created,
profile_picture. When multiple words are used, each word is separated by an under-
score “_”. Again, we do not add the data such as Karl Agathon. This data will be
input elsewhere. Now that we have our field names, we need to identify the field type
values for each field. We will focus on using Python. See Table 9.3 below.
The field tag is the last element. It works as a place holder. Tags are simply a number
ranging from 1 to 536, 870, 911. However, there are some rules that come with these
tags:

• The number may only be used once so that it is unique (more on this later).

9 Protocol Buffers 233

VALUE DEFAULT

last_name String (UTF-8 or 7-bit ASCII)
first_name String (UTF-8 or 7-bit ASCII)
phone_number_cell Int (int32)
email String (UTF-8 or 7-bit ASCII)
unique_id Int (int32)
date_time_created float (could be a double in another language)
profile_picture Bytes

Table 9.3: Field Name Python Example

• Numbers 19000 through 19999 cannot be used. Reserved by Google.

There are also some strategies to speed up the data with these tags:

• Numbers 1 to 15 use only 1 byte, so these are used for fields used most often.
• Numbers 16 – 2047 use 2 bytes

Now we put this together in the code with the Field Type, Field Name, and Field Tag.

Fig. 9.8: Code Structure

A correct schema definition for our address book example could thus look like the
following:

message AddressBook {
string last_name = 1;
string first_name = 2;
int32 phone_number_cell = 3;
string email = 4;
int32 unique_id = 5;
float date_time_created = 6;
bytes profile_picture = 7;

As you can see above the address book has 7 assigned fields. Each field is defined by
a Type, Name, and unique Tag. Certain rules still apply to the message fields [27]:

• singular: Such fields have the cardinality 1. Thus, a message can only have none
or exactly one of this field values. This is the default rule.

234 Chris Currier

• repeated: Array or list of values. It can be repeated any number of times - even
zero times.

Since the keyword singular is the default case, it can be omitted when defining a
field. Once we have chosen the field tag number, that number is unique and cannot
be reused. However, we could change the .proto file by commenting out a field. Field
names or field tags can also be reserved for future use. Using a reserved field may
cause compiler issues if the data type is not identified correctly.

For example, to define the field other phone numbers as a list, we can use the
following assignment:

repeated string other_phone_numbers = 8;

Enums

An Enumeration (Enum) is used when the values for a field are known or fixed. An
Enum must start with tag 0 (default value). An example could be a status: Unknown
Status (default), Read, Unread, Sent. The Enum values are all capitalized (upper
case). See the example below. Here we added the employee’s employment status.
The default value is the first one tagged with zero:

1 syntax = "proto3";
2

3 /* This is Protocol Buffers
4 * for FORMOBILE */
5

6 message AddressBook {
7 string last_name = 1;
8 string first_name = 2;
9 int32 phone_number_cell = 3;

10 string email = 4;
11 int32 unique_id = 5;
12 float date_time_created = 6;
13 bytes profile_picture = 7;
14 // profile or avatar (jpg) file
15

16 repeated string other_phone_numbers = 8;
17

18 //Employee Status as an Enum
19 enum EmployeeStatus{
20 UNKNOWN_EMPLOYEE_STATUS = 0;
21 CURRENT = 1;
22 RETIRED = 2;
23 RESIGNED = 3;
24 APPLICANT = 4;
25 FIRED = 5;
26 }
27

9 Protocol Buffers 235

28 /* This is an example of an ENUM notice
29 *it is ALL CAPS and the default starts with zero */
30 EmployeeStatus employee_status = 9;
31 }

Nesting

Messages can be added inline into another message. Nesting allows us to have
message(s) types within a message type. This functionality is well known in pro-
gramming languages and is called aggregation. That means some other message type
is part of a second message type.

•! Attention

Here a message refers to code and not a chat message.

In the example shown below, the address entry has been added to include street, city,
zip code, and country. Notice the indentation. In this example, the original message
refers to the AddressBook, and the nested message refers to the message Address
that starts on line30. The enum used tag 9 and the nested message is now assigned
tag 10. This is now defined as AddressBook.Address.

1 syntax = "proto3";
2

3 import "myproject/timestamp.proto";
4

5 message AddressBook {
6 string last_name = 1;
7 string first_name = 2;
8 int32 phone_number_cell = 3;
9 string email = 4;

10 int32 unique_id = 5;
11

12 //....
13

14 //Nesting allows us to define a message within a
15 //message (notice the indentation)
16 message Address{
17 string street_number = 1;
18 string street = 2;
19 string city = 3;
20 string zip_code = 4;
21 strong country = 5;
22 }
23 Address employee_address = 10;
24 }

236 Chris Currier

Importing & Packages

Importing allows us to use other .proto file(s) or package(s) with the code you need
from a different proto file. Below is a timestamp.proto file that has the set up for
an epoch time stamp, which will be shown on the following pages.
When importing, we use import followed by the full path where the file is located
ending with a semicolon, as seen below. Code can be compiled and put into a package.
Protocol Buffers are no different, which is helpful for other coding languages. This
also helps to avoid naming conflicts. A package can be created and then imported
into a protocol buffer. Following is the timestamp.proto file. The package name
is google.protobuf.timestamp and save the file to the same directory as the
formobileAB.proto file.

syntax = "proto3";

package google.protobuf.timestamp;

option csharp_namespace = "Google.Protobuf.WellKnownTypes";
option cc_enable_arenas = true;
option go_package = "github.com/golang/protobuf/ptypes/timestamp";
option java_package = "com.google.protobuf";
option java_outer_classname = "TimestamProto";
option java_multiple_files = true;
option obj_class_prefix = "GPB";

message Timestamp {
// Represents seconds of UTC time since Unix epoch
// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
// 9999-12-31T23:59:59Z inclusive.
int64 seconds = 1;
// Non-negative fractions of a second at nanosecond resolution.
// Negativebsecond values with fractions must still have
// non-negative nanos values that count forward in time.
//Must be from 0 to 999,999,999 inclusive.
int32 nanos = 2;

}

To include the message definition of a Timestamp to our address book, we have
to open formobileAB.proto file and add the imported proto file as well as the
package name. Now we have to change the ‘date_create’d field so that the timestamp
epoch time is recognized from the package:

1 syntax = "proto3";
2

3 /* This is Protocol Buffers
4 * for FORMOBILE */
5 import "google/protobuf/timestamp.proto";
6

9 Protocol Buffers 237

7 package google.protobuf.timestamp;
8

9 message AddressBook {
10 string last_name = 1;
11 string first_name = 2;
12 int32 phone_number_cell = 3;
13 string email = 4;
14 int32 unique_id = 5;
15 google.protobuf.timestamp.Timestamp date_created = 6;
16 bytes profile_picture = 7;
17 // profile or avatar (jpg) file

Now we have some idea of how a protocol buffer .proto file is created. The .proto
file itself does not contain user data but just the schema. We will find such schema
definitions in our analysis. However, they may appear like the timestamp.proto
file shown in Fig. 9.9. Our analysis tool or a hex viewer may not be the best way to
view this file. Here, an ordinary text editor is certainly the better choice.

Fig. 9.9: timestamp.proto demonstrated in a Hex Viewer

The above information covers some of the code options for creating the .proto
file. More information can be found at [27]. We will now look at the .proto file
from a forensic analysis perspective. But first, we have to transfer our newly created
message type into a concrete programming language.

238 Chris Currier

9.2.2 Compiling Your Protocol Buffer

Once the custom data structures are defined as desired in the .proto file, generate
the classes needed to read and write the protobuf messages. For this purpose, apply
the protocol buffers compiler (protoc) to the configuration file. The protoc.exe is
what we will be using to look at the data that we find. So first, let us see how it is used
to serialize or encode the data from a protocol buffer file. The link to obtain ProtoC
is www.github.com/protocolbuffers/protobuf/releases. ProtoC will gen-
erate code from the Proto File to the supported language. A template for coders to
follow and use the defined terms.

First, we have to specify the directory to search for imports. It may be specified
multiple times; directories will be searched in order. If not given, the current working
directory is used. If not found in any of these directories, the --descriptor_set_in
descriptors will be checked for required proto file. Next, we have to define the output
language:

--cpp_out=OUT_DIR Generate C++ header and source.
--csharp_out=OUT_DIR Generate C# source file.
--java_out=OUT_DIR Generate Java source file.
--js_out=OUT_DIR Generate JavaScript source.
--objc_out=OUT_DIR Generate Objective-C source.
--php_out=OUT_DIR Generate PHP source file.
--python_out=OUT_DIR Generate Python source file.
--ruby_out=OUT_DIR Generate Ruby source file.

In this case, we will be using Python --python_out=OUT_DIR. Other languages
like GO are supported and can be found referenced online. Now to take the formo-
bileAB.proto file and compile the code for Python (or another language). We will
place the ProtoC executable here and create a python folder.

Fig. 9.10: Python Folder Example

Then open up a command prompt in this location and follow steps 1, 2, 3 or 1, 2, 4.
1 Determine the directory name that your proto files are in.
2 Add Output language (Java, Python...).
3 Add Absolute path of your proto file with extension.
4 or all proto files in that location folder.
‘

http://www.github.com/protocolbuffers/protobuf/releases

9 Protocol Buffers 239

Fig. 9.11: File Path Example

Analysing the Python Protobuf-Code

In our example, we have chosen Python as the target language. We will briefly discuss
the file formobileAB_pb2.proto created in the process below. In the first section,
we see imports from google.protobuf. One of the imports mentions reflection.
This can be observed throughout the following Python example. This means the
coder will have to identify the objects in their code. Descriptors are shown as well.
A serialized_pb binary buffer could be found.

-*- coding: utf-8 -*-
Generated by the protocol buffer compiler. DO NOT EDIT!
source: formobileAB.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
@@protoc_insertion_point(imports)

_sym_db = _symbol_database.Default()

DESCRIPTOR = _descriptor.FileDescriptor(
name='formobileAB.proto',
package='', syntax='proto3',
serialized_options=None,
create_key=_descriptor._internal_create_key ,
serialized_pb=b'\n\x11\x66ormobileAB.proto\"\xf7\x03\n\x0b\x41
\x64\x64AressBook\x12\x11\n
\tlast_name\x18\x01 \x01(\t\x12\x12\n\n
first_name\x18\x02(\t\x12\x19\n
\x11phone_number_cell\x18\x03 \x01(\x05\x12\r\n
\x05\x65mail\x18\x04 \x01(\t\x12\x11\n
\tunique_id\x18\x05 \x01(\x05\x12\x14\n
\x0c\x64\x61te_created\x18\x06 \x01(\x02\x12\x17\n
\x0fprofile_picture\x18\x07 \x01(\x0c\x12\x1b\n
\x13other_phone_numbers\x18\x08 \x03(\t\x12\x34\n
\x0f\x65mployee_status\x18\t
\x01(\x0e\x32\x1b.AddressBook.EmployeeStatus\x12.\n
\x10\x65mployee_address\x18\n
\x01(\x0b\x32\x14.AddressBook.Address\x1a\x61\n
\x07\x41\x64\x64ress\x12\x15\n
\rstreet_number\x18\x01 \x01(\t\x12\x0e\n
\x06street\x18\x02 \x01(\t\x12\x0c\n
\x04\x63ity\x18\x03 \x01(\t\x12\x10\n

240 Chris Currier

\x08zip_code\x18\x04 \x01(\t\x12\x0f\n
\x07\x63ountry\x18\x05 \x01(\t\"o\n
\x0e\x45mployeeStatus\x12\x1b\n
\x17UNKNOWN_EMPLOYEE_STATUS\x10\x00\x12\x0b\n
\x07\x43URRENT\x10\x01\x12\x0b\n\x07RETIRED\x10\x02\x12\x0c\n
\x08RESIGNED\x10\x03\x12\r\n\tAPPLICANT\x10\x04\x12\t\n
\x05\x46IRED\x10\x05\x62\x06proto3'

)

Scrolling down the page we find the AddressBookmessage descriptors. You should
be able to see the Field Names and the Field Tags.

full_name='AddressBook.Address',
filename=None,
file=DESCRIPTOR ,
containing_type=None,
create_key=_descriptor._internal_create_key ,
fields=[
_descriptor.FieldDescriptor(
name='street_number ',
full_name='AddressBook.Address.street_number ',
index=0, number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=b"".decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=
None,file=DESCRIPTOR ,c
reate_key=_descriptor._internal_create_key),

_descriptor.FieldDescriptor(
←↪

name='street', full_name='AddressBook.Address.street', index=1,
number=2, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=b"".decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=
None,
←↪

file=DESCRIPTOR , create_key=_descriptor._internal_create_key),

A 2nd Example - The FormobileChat message

Having created the first example so easily, let us follow it up with a second example
right away. This time it will be about defining a chat message with data fields and then
generating a corresponding protobuf message. A second example was generated. The
formobilechat.proto file has been created. After reading through this material
you should have a good idea of what you are looking at. There is a message named
FormobileChat. Followed by Field Types, Names, and Tags. There are also twoenums

9 Protocol Buffers 241

used for message direction and status. Does this data remind you of something? Chat
message data, maybe?

syntax = "proto3";
// Formobile Protocol Buffers
message FormobileChat {

int32 chat_thread_id = 1;
string chat_contact = 2;
string chat_text = 3;
bytes chat_attachment = 4;
float chat_latitude = 5;
float chat_longitude = 6;
int64 chat_timestamp = 7;

enum Chat_Direction {
UNKNOWN_DIRECTION = 0;
OUTGOING = 1;
INCOMING =2;

}
Chat_Direction chat_direction = 8;
enum Chat_Status {

UNKNOWN_STATUS = 0;
UNREAD = 1;
READ = 2;

}
Chat_Status chat_status = 9;

As with our address book example, next, we need to have the schema file compiled
using the compiler protoc. The result, in our case, is again a Python source file. We
could use ProtoC �proto_path and �python_out commands to generate the code
for Python.

242 Chris Currier

•! Attention

Note there are two dashes “– ” before both proto and python.

$> p r o t o c −−p r o t o _ p a t h = . −−py thon_ou t = . . / f o r m o b i l e c h a t . p r o t o

ProtoC took theprotofile, output it to Python to create theformobilechat_pb2.py
file. This file has almost 200 lines of code from a proto file with less than 30 lines
of code.

Formobilechat_pb2.py

Even though it says pb2, this was made from a proto3 file. Notice the size compared
to the .proto file itself.

-*- coding: utf-8 -*-
Generated by the protocol buffer compiler. DO NOT EDIT!
source: formobileAB.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
@@protoc_insertion_point(imports)

_sym_db = _symbol_database.Default()

DESCRIPTOR = _descriptor.FileDescriptor(
name='formobileAB.proto',
package='', syntax='proto3',
serialized_options=None,
create_key=_descriptor._internal_create_key ,
serialized_pb=b'\n\x11\x66ormobileAB.proto\"\xf7\x03\n\x0b\x41
\x64\x64AressBook\x12\x11\n
\tlast_name\x18\x01 \x01(\t\x12\x12\n\n
first_name\x18\x02(\t\x12\x19\n
\x11phone_number_cell\x18\x03 \x01(\x05\x12\r\n
\x05\x65mail\x18\x04 \x01(\t\x12\x11\n

9.2.3 Creation of a Protobufs with Python

Now it is time to generate our first chat message using the Python files generated
in the previous step. Therefore, a python script must be created, so this one will be
named formobilechat.py.

9 Protocol Buffers 243

First, the formobilechat_pb2 has to be imported into the script and followed by
any other imports or packages. Without the import, we would not be able to access
the message types predefined. A variable is created, identifying the Fieldnames and
entering data for those fields. Since Reflection is used, the developer must identify
the fields used in the Protocol Buffer. In programming, reflection means that a
programme knows its structure (introspection) and can modify it.

Program Code <formobilechat.py>

impo r t f o r m o b i l e c h a t _ p b 2 as f o r m o b i l e c h a t _ p b 2

Formob i l eCha t = f o r m o b i l e c h a t _ p b 2 . Fo rmob i l eCha t ()

Fo rmob i l eCha t . c h a t _ t h r e a d _ i d = 1
Formob i l eCha t . c h a t _ c o n t a c t _ i d = " Kar l Agathon "
Formob i l eCha t . c h a t _ t e x t = " P a t r i c k s o r r y you cou ld no t make i t

t o n i g h t t o g e t your c u t o f t h e cash . We w i l l use you f o r t h e
nex t bank . Got some th ing f o r you "

Formob i l eCha t . c h a t _ a t t a c h m e n t = b y t e s ([0 xFF , 0XD8, 0XFF , 0x00 ,
0x10 , 0x4A , 0x46 , 0x49 , 0x46 , 0x00 , 0x01 , 0x01 , 0x01 , 0xFF ,
0xD9])

Fo rmob i l eCha t . c h a t _ l a t i t u d e = 5 .50559
Formob i l eCha t . c h a t _ l o n g t i t u d e = −0.08956
Formob i l eCha t . c h a t _ t ime s t amp = 1616182435
Formob i l eCha t . c h a t _ d i r e c t i o n = 1
Formob i l eCha t . c h a t _ s t a t u s = 2

In our example, a chat message is generated with a Contact named Karl Agathon. In
addition to the actual message text, a JPEG was also added as an attachment. The
message is supplemented with position information (latitude and longitude) and a
timestamp. Now that the sample message is complete, we can create a real ProtoBuf
message from it in the next step.

Writing the Object to a Binary File

The message is now serialized using Protobuf and saved to a binary file. For this
we create a new file named FormobileChat.bin. Then we write the content of the
messages created with Python before into the file.

Program Code

wi th open (" Fo rmob i l eCha t . b i n " , "wb") a s f :
b y t e s A s S t r i n g = Formob i l eCha t . S e r i a l i z e T o S t r i n g ()
f . w r i t e (b y t e s A s S t r i n g)

244 Chris Currier

The output file is then located in the same directory as the Python script used to
create the binary.

Remember Size = Speed

Notice the size comparisons below. The first image shows the Python Script
formobilechat.py and the FormobileChat.bin. This contains the complete
chat_attachment jpg picture binary data.

Fig. 9.12: FormobileChat.bin in File Explorer

Notice the size comparison of the original proto file, the compiled pb2.py file,
and the binary file. Note the FormobileChat.bin (has the full jpg picture
chat_attachment binary data). The FormobileChatsmall.bin has a portion
of the chat_attachment binary data as seen on the previous page.

Fig. 9.13: FormobileChat.bin in File Explorer

The Raw Binary Data

Opening the file in Hex-Editor does not really do this file justice. Well we can see
the chat text and the file signature of a JPG, but that is it. So how do we handle this
protocol buffer data?

9 Protocol Buffers 245

Fig. 9.14: FormobileChat.bin Hex

9.2.4 Reversing Proto Buffer Messages

In our example, we are in possession of the original .proto file as well as the generated
binary. In practice, unfortunately, it is often the case that we do not have a schema
file. But even without a interface description there is a way out.

The protoc compiler is not just for compiling data from a protocol buffer. But
it can also be used in other ways. The protoc tool is very useful for showing the
contents of protocol buffer data.

There is data here for us to find. We just need to know how to view it. That is
where the protoc �decode_raw command comes in. We use the command line to
decode the raw binary data from the FormobileChatsmall.bin. The command to
use is protoc --decode_raw < (File and Path). Our attempt to restore the
data using the "decode raw" option was apparently only partially successful (see Fig.
9.15).

246 Chris Currier

Fig. 9.15: Decoded Protocol Buffer

Fortunately, there is a solution for this as well. Thus, there are a variety of pro-
grams that provide a mostly accurate interpretation of the numerical values. The
program protobuf-inspector1 is one of those tools. It helps to reverse Protocol
Buffers with unknown definition, i.e., missing .proto files. The command to use
is main.py < (File and Path)

Fig. 9.16: Close up of Protobuf-Inspector decode results

With both decodes, we see the data entered, and some of it is easily understood, and
other parts are not. Take note above that the protobuf inspector does change
the octal values to hexadecimal and also translated the Longitude and Latitude in
the correct Decimal 5.50559 and −0.0895600. We can compare the encoded binary
message with the original Python Script results (see Fig. 9.17).

1 www.github.com/mildsunrise/protobuf-inspector

http://www.github.com/mildsunrise/protobuf-inspector

9 Protocol Buffers 247

Fig. 9.17: The Original Entered Formobilechat Data (Python)

Data Conversion

While we may not know what the 1 and 2 flags mean, we can certainly look for data
that we can do something about to start with. Location data in the case of 5.50559 and
−0.08956 is shown in decimal, which is one way forensic tools represent it. However,
what do we do when we are seeing something (maybe from a map application) that
could be longitude and latitude and is in Hexadecimal: 0x40𝑏02𝑑𝑐𝑏 0x𝑏𝑑𝑏76𝑏3𝑐 If
the Hex value starts with 8, 9, A, B, C, D, E, or F then it is a negative number. There
are a few ways to do this, but the best we have been taught is HxD and a Python
Script. We will show you how to use HxD’s Data Inspector later in the chapter.

The Python Script requires 8 bytes, as seen below and do not name the script
struct (as that is reserved). Also, be aware that you may input the data in the wrong
spots mixing up the latitude and longitude. Test this with known data first to make
sure it works in your part of the world.

Program Code

c o n v e r t La t Long from hex t o dec ima l
impo r t s t r u c t

l a t = s t r u c t . unpack (’>d ’ , b ’ \ x40 \ x45 \ xF5 \ xE5 \ xF6 \ x6D \ x59 \ x0F ’) [0]
long = s t r u c t . unpack (’>d ’ , b ’ \ xc0 \ x51 \ xFA \ xA3 \ xB1 \ xD3 \ x4B \ x67 ’) [0]

p r i n t (" L a t i t u d e : " , (l a t) , " and t h e Long i t ude : " , (l ong))

Timestamp

In the above example, we see something that may be an epoch timestamp 1616182435.
Unix time is based on the date 1970-01-01 00:00:00 (UTC), and Apple timestamps

248 Chris Currier

(MAC Absolute time) use 2001-01-01 00:00:00 (UTC) as a start. Timestamps nor-
mally use seconds but may also use milliseconds, microseconds, nanoseconds etc.

The above example starts with 1 then it is probably a Unix time (when it comes
to Android and Apple Devices). Apple Timestamps will most likely start with 3, 4,
5, or 6. We find epoch converter works well as an online converter or Tempus.pyw
for an offline converter available at http://github.com/eichbaumj/Python.

Linux CF or Mac Absolute Apple HFS+

www.epochconverter.com www.epochconverter.com/coredata www.epochconverter.com/mac

Table 9.4: Epoch Timestamp Look Up Websites

Fig. 9.18: Epoch Timestamp Look Up

Pictures or other files represented by octal data

The easiest way is to look at the data in a Hex Viewer such as HxD or your forensic tool
and copy out the file. In this case, the attachment is a JPG. The file signature for a JPG
file is Hex FFD8FF, and the end of the file may have Hex FFD9. You can see the start
of the file below. Highlight and copy the data and save it as a .jpg type file. Example
files can be found here: https://github.com/Xamnr/ProtocolBuffers.

9.3 Practical Analysis of different Proto Buffers

Analyzing digital evidence when looking thoroughly at an application can be difficult
enough. Within a normal investigation of a mobile phone, the investigator already
has to evaluate many different file formats. Typical file formats, which are also found
in this book, are Apple Property Lists (Plists), XML, SQLite databases. Of course,
you can do keyword searches for .proto files, but as you saw earlier, that is probably

https://github.com/Xamnr/ProtocolBuffers
http://www.epochconverter.com/mac
http://www.epochconverter.com/coredata
http://www.epochconverter.com
http://github.com/eichbaumj/Python

9 Protocol Buffers 249

Fig. 9.19: ChatData - HexView, including file header of JPEG picture

not going to help you. To make even worser, proto buffers are often nested within
other file formats rather than in their own files.

One of the issues is that these files already contain various types of data, such
as Binary Large Object encoded Base 64. So, we need to be familiar with another
XML or PList file within a BLOB, XML, Plist and/or Protocol Buffer Data within
a BLOB. BLOBs are often also stored in a database table. In each case, we have to
determine what content we are dealing with. Unfortunately, Protobuf does not have
a real MagicNumber. We can only make a guess. Even more, Protocol Buffers can
also be stored as GZip archive files. This adds another level of difficulty in finding
these Protocol Buffers.

9.3.1 Mobile Device Artifact Examples

Some popular apps that use protocol buffers include Apple Maps, Google Maps,
Badoo, Gmail, Google Allo, TamTam, Tango, WeChat, Wickr, Wire and many more.
The Apple iCloud Backup system makes extensive use of protocol buffers. When
dealing with application data, you are probably familiar with SQLite Databases,
XML, and Apple Property List Files (.plist). You may not be aware that these files
can contain data encoded Base64, such as a Binary Large Object (BLOB).

Example - Waze Navigation App

As a first example, we will use a typical app that uses Proto Buffers internally. Waze
is a navigational guidance application for getting directions and showing the fastest

250 Chris Currier

available routes. Shown on the following page is the application folder for Waze.
Selected is a file named cache_data, shown below.

Fig. 9.20: cached_data

Let us now take a closer look at the cache file. We use the forensic tool’s hex viewer
to see what type of data the file contains, shown on the right. Well this is nice, we
can see some data immediately (see Fig.9.21). With a simple string search we can
already extract a number of artefacts. A couple things you should know about the
data (see Table 9.5).

Username: Millenium Falcon
Phone Number: +15166618197
Home Location: 375 Main Street, New London, NH 03257

Table 9.5: Some extracted data

In fact, this example is a protocol buffer. We save the file out as a binary file adding the
.bin file extension. Now to examine the file with both protoc and protobuf inspector.
In Fig. 9.22 Waze’s cached_data decoded with ProtoC. Scrolling down through the
results, we come across the address and again some other data that we may or may
not determine. You may not figure out what the other data items are. Again, we do
not have the original code or legend. We can certainly see if data is a timestamp or
location.

Below in Fig.9.23 we take the same file into Protobuf Inspector. As we can
see, some characters on the screenshots are from escape sequences to make sure that
some chars (characters) are in bold, etc. This is an easy example, in my opinion, of a
protocol buffer. Using Protoc, Protobuf Inspector, or other Protocol Buffer decoding
tools can help break down and show the information. In this case, the data could

9 Protocol Buffers 251

Fig. 9.21: cached_data

be seen for the most part with the hex viewer. Other instances will contain Base64
Encoded data.

BASE64 Encoding

Some of you may remember reading about BASE64 and its use with Email Attach-
ments. This encoding scheme is to take this raw data like a picture and make sure
that none of the data will cause an issue. Looking at an ASCII chart, you will notice
the first 33 decimal places (0-32) are reserved for functions like BackSpace, Space,
and Carriage Return.

•! Attention

Please remember that Apple Property Lists, XML Files, and Databases can contain
pictures or web links to pictures, and of course, Protocol Buffers. Next, we will
analyze some examples of Protocol Buffers found in each.

When we send raw data, we do not want these functions to be performed. So Base64
Encoding removes these from the equation. Binary Large Objects (like a picture
or even an embedded XML or Plist file) are encoded with Base64. So, what are
Protocol Buffers managing? Raw data. When it comes to plists, they are usually in
binary form, only rarely in text format. A forensic tool like MSAB’s XAMN will
show such content in a readable (XML-like) format, making binary data appear as
base64. The website used in the below example to convert the raw data to Base64:
www.motobit.com/util/base64-decoder-encoder.asp.

http://www.motobit.com/util/base64-decoder-encoder.asp

252 Chris Currier

Fig. 9.22: cached_data

Fig. 9.23: cached_data in Protobuf Inspector

Example: Apple Web Cache file

In Fig.9.24 you can see a Apple Web Cache file. The filename is 12.xml. The BLOB
is highlighted. But what is it about in this case? Is it a protocol buffer or something
else?

9 Protocol Buffers 253

Fig. 9.24: 12.xml File Highlighting Encoded Data

We get the answer when we convert the raw data - probably BASE64 encoded - back
into a normal UTF-8 string. The result is shown in Fig. 9.25. The BASE64 converted
data, and we will notice that this is an XML file within an XML File. What can we
learn from this? It does not always have to be a protobuf.

Fig. 9.25: 12.xml File Base 64 Converted Data

Identifying Base64 Encoded Data

You know that Binary Large Objects (BLOBS) are usually, if not always, encoded
with BASE64. Sometimes you do not know. As seen below, we look for the tell-tale
equals sign “=” or two equal’s signs “==” at the end of the data.

254 Chris Currier

•! Attention

Note the BASE64 encoded data does not always end with an equals sign.

CBYQACDA0QIoADAAYAKBfbWIbIcCwsJBKK5NOicKJQiL84igk82e1/
kBEhIJKzQQy2axRUARwjl2dDMFUsAYrk2QAwFA47ejkYoowAwB0gwk
OEVGRkMyRTAtQkQ1Qy00MTIGLTICQkMtMjRDRERBMzZBNDQw@WAA@=

This content data is then highlighted and copied. We saved it and decoded it us-
ing a base 64 decoder. In this case, we used James Eichbaum’s Base64 Decoder
(http://github.com/eichbaumj/Python). We then save the data as a .bin file and re-
view it in the HxD Hex Editor (see Fig. 9.26). Protocol Buffer data does not have
a file signature per se. If you recall, there are different Scalar values int32, int64,
string, bytes, etc. Well these all have associated wire types. We have to look for
hex values like 08, 09, 0A. In a protobuf, those values all correspond to key = 1 with
different wire types:

Fig. 9.26: Base64 Decode: GeoHistory Contents

08 varint (A variable length integer)
09 64 bit
0A length delimited

Table 9.6: Typical protobuf start values

http://github.com/eichbaumj/Python

9 Protocol Buffers 255

A value like 08 is not a header byte. It is just a common value protobufs start with. If
interpreted as key and type it translates to key = 1, type = varint. Another common
byte at the beginning of protobufs is 0x0A which translates to key = 1, type = length
delimited (i.e. nested message, string, byte array). Remember: We can only make an
educated guess about the binary content since protobufs directly start with the serial
data stream.

•> Important

A file header for a GZIP File is Hex 1F8BC8 the file will then have to be saved and
unzipped.

As we know now, a protocol buffer message is a series of key-value pairs. Therefore,
the serialised message consists of a series of key-value pairs that are stored one after
the other in the data stream. When a message is encoded, they are concatenated into
a byte stream. The binary version of a protobuf message uses the field’s number as
the key. A concrete name and declared type for each field can only be determined
on the decoding end by referencing the message type’s definition (i.e. the .proto
file). When the message is being decoded, the parser needs to skip fields that it does
not recognise. This way, new fields can be added to a message without breaking old
programs that do not know about them. To this end, the "key" for each pair in a
wire-format message is two values – the field number from your .proto file, plus a
wire type that provides just enough information to find the length of the following
value. Mostly, this key is referred to as a tag [23].Fig. 9.7 demonstrates the wire
types available.

Type Meaning Usage

0 Varint int32, int64, uint32, uint64, sint32, sint64, bool, enum
1 64-bit fixed64, sfixed64, double
2 Length-delimited string, bytes, embedded messages, packed repeated fields
3 Start group groups (deprecated)
4 End group groups (deprecated)
5 32-bit fixed32, sfixed32, float

Table 9.7: Available Wire Types

Just recall the formobilechat message from the earlier section. The protobuf binary
(small one in this case) is shown in Fig. 9.27. The figure demonstrates the raw data;
notice that it starts with 0x08.
The problem is we can figure out where it starts with these Hex values, possibly, but
where does it end? Is it the end of the file, or only for a few bytes? Or is it 188 bytes
like the aforementioned example. That is when the developers reply, “Welcome to
our world.”

256 Chris Currier

Fig. 9.27: Notice The Variable Integer 0x08 at the start

9.3.2 Yet another example: Apply Property List (PLIST) Files

Let’s take a look at another example from our sample data. Fig. 9.28 shows data copied
from the GeoHistory.mapsdata.plist. The value stored under the key "content"
looks suspiciously like a BASE64 encoded value. And indeed, the data which appears
to be BASE64 was copied and pasted into www.motobit.com decoder. The result
was then copied and saved into notepad as GeoHistory_contents3.bin and opened
into HxD.
Using the file GeoHistory_contents3.bin start with 08, but which one or ones?
The file starts with 08. A search for Hex 08 results in 206 hits. See Fig. 9.29.
We manually look at each hit and the ASCII area for human-readable data that makes
sense, which will not always be the case. In this first example, we take the results of
the last hit, which starts at decimal offset 8579. Please copy the entire length to the
end of the file and paste it into a new HxD file that we save and name with the offset
(see Fig. 9.30).

Then the rest is decoding the data with Protoc and/or other tools. Moreover, try
to figure out what we are looking at. Since the data belongs to a map application,
we want to see if the hex values below are latitude and longitude. Maybe one of the
other values is a date time stamp? See:

1: 0x4040cda6e5dc30e8
2: 0xc05c16c2f76aa800

Indeed, the values look like latitude and longitude in decimal. However, we do not
want to assume that. This takes time and effort if we have to go through each search.
Since the file started with hex 08, we can try protoc and our other tools against the
entire GeoHistory_contents3.bin file. Keep in mind: Without the corresponding
.proto file, we can only speculate about the meaning of the data.

http://www.motobit.com

9 Protocol Buffers 257

Fig. 9.28: GeoHistory.mapsdata.plist

9.3.3 Suggested Examination Process of a File

The idea is you create the process that works best for you. This may be completely
working within your mobile forensic tool. The alternative is that you export out the
file(s) of interest and review the data.

1. If unknown file type, then place the file into a Hex Viewer/Editor
2. Identify the File Signature (Research it if unknown to include possible file

extensions). The data itself may be human readable as well.
3. Make sure the file has the right file extension
4. Open the file to view it natively i.e. as a database, xml, or plist file.
5. Look for Binary Large Objects (BLOB) or other raw data. Copy this raw data.
6. Decode this raw data with a Base64 Decoder and save. Devise a system to name

the file and add a .bin file extension on it as a place holder.
7. Open this .bin file in a Hex Viewer/Editor
8. Identify the File Signature (as it could be an XML or Apple Property List file).
9. If this is an XML or PList File go back to Step 5. If not close the file and move

on.

258 Chris Currier

Fig. 9.29: Finding Protocol Buffer Data

Fig. 9.30: The extracted Protocol Buffer from offset 8579

Fig. 9.31: Notice the Hex (0x) Values

10. Place the file in a folder with ProtoC executable.
11. Open a command prompt from this location
12. Type: protoc --decode_raw < Filename.bin

Click enter.

9 Protocol Buffers 259

Fig. 9.32: Protobuf-Inspector converted Hex values. Lat and Long?

If you placed the file in the same directory as the protoc then to find the file
automatically, without typing, after you type the “<” character click the space
bar once and then hit tab to cycle through all of the files in the folder. Once you
find the right file click enter.

13. See if you have Protocol Buffer data. If it Failed to parse the input, then that is
not a protobuf (or you may need to review sections of the file for data).

14. To save the data. Highlight it and Left Click.
15. Paste into text editor.This allows you to use keywords as well.

•! Attention

Now, remember the tools may obtain this data for you. However, it is nice to know
where the data came from. Examining an unsupported application may have you
uncovering protocol buffers for data as well.

9.3.4 Tools

We need to consider some of the tools in your toolbox for examining these artefacts.
Some of these capabilities may be included with your mobile device forensic tools,
such as MSAB’s XRY and XAMN. If so, then these non-forensic tools will help
validate your work. Most are free or have a freeware version. Some of these may cost
money, so look for Freeware versions:

• Hex Viewer/Editor: HxD
• Sqlite database viewer: SQLite Expert
• XML file viewer: Notepad++
• PList file viewer: PList Editor for Windows

http://www.icopybot.com/plist-editor.htm
http://notepad-plus-plus.org/downloads/
http://www.sqliteexpert.com
http://mh-nexus.de/en/hxd/

260 Chris Currier

• Base64 Decoder: Motobit and James Eichbaum’s Base64 Decoder.pyw
• Epoch Timestamp Converter: Epoch Converter Website and James Eichbaum’s

Tempus.pyw
• File Signature Analysis: Gary Kessler Website
• Windows Calculator in Programmer Mode
• Visual Studio
• Protocol Buffer Compiler: Proto C (protoc.exe) and Protobuf inspector

9.4 Conclusion

We have seen why Protocol Buffers are helpful. They take data make it small, and
provide faster transmission speed. Coders themselves may not want to welcome
the structure. As forensic examiners, we learned that understanding this structured
serializing data is essential. Applications use Protocol Buffers to store data in Apple
Property Lists (Plists), Binary Large Objects, and XML Files. We may find user data,
time stamps, location data, and more. So, these applications alone show that protocol
buffers are used and the importance of understanding them and how to analyze them.

The most important takeaway that we can provide is that now you will hopefully
identify what you are looking at. Have a greater appreciation of Protocol Buffers
how to make sense of this data and explain it if necessary. We learned what to look
for, and now you do also.

Acknowledgements My thanks to my fellow MSAB colleagues Johan Persson, Sebastian Zankl,
Oscar Choi, and Global Training Manager James Eichbaum for their time, contributions to this
chapter and the forensic community.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://github.com/mildsunrise/protobuf-inspector
http://code.visualstudio.com
http://www.garykessler.net/library/file_sigs.html
http://github.com/eichbaumj/Python
http://github.com/eichbaumj/Python
http://www.epochconverter.com
http://github.com/eichbaumj/Python
http://www.motobit.com/util/base64-decoder-encoder.asp
http://creativecommons.org/licenses/by/4.0/

	Chapter 9 Protocol Buffers
	9.1 Introduction
	9.1.1 What is a Protocol Buffer?
	9.1.2 Why are Protocol Buffers Used?

	9.2 Using Protocol Buffers
	Messages
	Services
	The Proto File
	Define the Syntax
	Message Type
	Fields
	Scalar Values
	9.2.1 The Schema Defintion
	Field Type
	Field Names
	Enums
	Nesting
	Importing & Packages

	9.2.2 Compiling Your Protocol Buffer
	Analysing the Python Protobuf-Code
	A 2nd Example The FormobileChat message
	Formobilechat_pb2.py

	9.2.3 Creation of a Protobufs with Python
	Writing the Object to a Binary File
	Remember Size = Speed
	The Raw Binary Data

	9.2.4 Reversing Proto Buffer Messages
	Data Conversion
	Timestamp
	Pictures or other files represented by octal data

	9.3 Practical Analysis of different Proto Buffers
	9.3.1 Mobile Device Artifact Examples
	Example Waze Navigation App
	BASE64 Encoding
	Example: Apple Web Cache file
	Identifying Base64 Encoded Data

	9.3.2 Yet another example: Apply Property List (PLIST) Files
	9.3.3 Suggested Examination Process of a File
	9.3.4 Tools

	9.4 Conclusion

