
Chapter 5
SQLite

Dirk Pawlaszczyk

Abstract SQLite is, without doubt, the most widely used database system worldwide
at the moment. The single file database system is used, among other things, in
operating systems for cell phones, such as Android, iOS or Symbian OS. On a
typical smartphone, we usually find several hundred SQLite databases used by a
wide variety of apps. Due to its widespread use, the database format is of particular
importance in mobile forensics. It is not uncommon for the suspect to try to cover
his tracks by deleting database content. Recovering deleted records from a database
presents a special challenge. In this chapter, the on-disk database format of the SQLite
database system is highlighted. Therefore, we take a closer look at the database header
as well as record structure on a binary level. We first examine the structure of the
data. Recovery options for erased records are discussed as well. Special attention
is paid to the slack areas within the database: unallocated space, Freelist as well as
free blocks. In this context, we discuss basic techniques for carving and acquisition
of deleted data artefacts. Despite the main database format and recovery options,
temporary file types like write-ahead logs and rollback journals are analyzed as well.

5.1 Introduction

A large amount of data is being stored and processed in relational databases. The
most widely used database system in the world is undoubtedly SQLite since it is the
default solution for the Android and iOS operating systems. So it is not surprising,
that web browsers, messenger services and mobile applications employ the free
and serverless database solution as their storage format of choice [61],[60]. At the
moment, there are more than a trillion SQLite instances in active use [81]. In the
vast majority of criminal investigations involving information technology, one task
is to make information stored in such databases accessible. Evidence acquisition for

University of Applied Sciences (Hochschule Mittweida), Technikumplatz 17, 09648 Mittweida,
Germany, e-mail: pawlaszc@hs-mittweida.de

129© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_5

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

mailto:pawlaszc@hs-mittweida.de
https://doi.org/10.1007/978-3-030-98467-0_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_5&domain=pdf

130 Dirk Pawlaszczyk

databases is traditionally made with SQL, a powerful query language. Also, SQLite
supports most of the SQL language commands. In this way, the data can be accessed
with one of the freely available viewers. Unfortunately, this form of analysis usually
does not allow access to deleted records or temporary data content such as recently
added but not committed entries. This creates the need for alternative ways to analyze
such databases forensically.

5.2 The SQLite File Structure

SQLite is a single-file database engine, i.e., all tables are managed in only one file
on disk. There is no intermediary server process; an application has to communicate
with first, for storing data. It does not work this way. Instead, the database can
be integrated directly into an application. Therefore, it provides a library and an
easy to use programming interface. This fact has significantly contributed to the
current spread and popularity of the program. We will discuss the basic structure of
a database before turning to the details of carving for data records.

Fig. 5.1: Schematic structure of a SQLite database

Like most structured binary formats, the database file starts with a header part [80].
Its size is exactly 100 bytes. Beyond this, the database file is divided into pages of
equal size. The file size is thus always a multiple of the page size. A page number
uniquely identifies a single page, whereas the first page has the number one. The
default page size usually is 4096 bytes. However, it can be adjusted if necessary to a
minimum of 512 bytes and a maximum of 64KB [32]. Of course, the header is part
of the first page. In a relational database system, all data is stored in tables. This is
also the case with SQLite. In turn, a table is distributed over one or more pages of

5 SQLite 131

the database on the binary level (see Fig. 5.1). Each data page again contains one or
more records, for precisely one table. To access and acquire all records of a particular
table, we must first determine which pages of the database are associated with this
table. This information can again be taken from the first page of the database. Besides
the header string, this page contains one more piece of information - the database
schema. Necessary information such as the root page numbers, column names, and
column types of the tables are stored here, in a data structure called SQLite_Master
Table. We will discuss the details of this table in sect. 5.2.3. To represent a table
and its pages, SQLite uses a balanced tree data structure (B+tree) under the hood.
In a B+tree, the raw data elements are stored exclusively in the leaf nodes, while the
inner nodes contain only links. Since the maximum size of a page is limited from
above, we can gain more space for links or branches in the inner nodes by moving the
leaves’ data records. Moreover, this limits the height of the tree. Since data elements
are normally accessed via the tree’s root, a lower height reduces the number of nodes
to be traversed. Many relational database systems manage their records in this way.

Table 5.1: SQLite page types and byte flags

Page Type 1st Byte in Page

table b-tree interior page 0x05
table b-tree leaf page 0x0d
index b-tree interior page 0x02
index b-tree leaf page 0x0a
overflow page 0x00 (for db-size < 64GB)
freelist page 0x00 (first 8 bytes filled with zero-bytes)
pointer map 0x01 or 0x02 or 0x03 or 0x04 or 0x05
locking page 0x00 (only, if db-size > 1 GB)

A page with links to other pages only is called a b-tree interior page [80]. The record
nodes are saved in table b-tree leaf pages. Beyond this, a table can have multiple
indexes. An index contains links to normal table records to speed up searching and
sorting by specific fields. Whenever we create an index, SQLite creates a B-tree
structure to hold the index data as well. Similar to normal tables we can distinguish
between index b-tree interior pages as well as index b-tree leaf pages. When a data
record is too large for a single data leaf page, the excessive bytes are spilt onto so-
called overflow pages. Several overflow pages are filled at once to store large amounts
of data such as Binary Large OBjects (BLOBs). Together all overflow pages for one
record form a linked list. To capture all the data associated with a record, we need to
read all the pages. The payload for an record and the preceding pointer are combined
to form a cell.

Despite the five data page types, SQLite knows three more page classes. A
database file might contain one or more pages that are not in active use. Whenever
the last record is deleted from a page, this page is released. The freed page will
be reused when new pages are required and filled with new table contents. In the

132 Dirk Pawlaszczyk

meantime, all unallocated pages are stored in a so-called freelist (sect. 5.3). These
freelist pages are of particular forensic value since most of the removed content can
be found here.

A further not yet discussed page type are so-called pointer maps. A pointer
map has the function of not losing track when pages are moved from one position
in the database file to another. This page type is created whenever the database
is reorganized or cleaned up. A pointer map provides a lookup table to quickly
determine page types and their parents. However, this page type exists only in auto-
vacuum databases. The locking page is the last page type in SQLite. The first page of
this page class starts at byte offset 230 (1,073,741,824) and always remains unused.
Conversely, this means that a locking page only appears when the database size is
more extensive the 1 GB. Since it is empty, it has only a technical, but no forensic
value and is therefore not considered further.

We can usually determine the type of page by looking at the page’s first byte.
The flag-byte at offset 0 indicates the page class. Table 5.4 lists all the page types
discussed so far. However, not every database will include all of these types. With
the page size and type information at hand, an investigator can walk through the
database and identify all areas of interest.

5.2.1 The Database Header

Every forensic investigation starts with analysing the file header. The header contains
important information that will help us to carve for deleted records. The fields of
the header have a precisely defined size and position (see Fig. 5.2). The individual
(multi-byte) fields are encoded as big endian (BE) values.

Fig. 5.2: The SQLite Database Header Format and fields

5 SQLite 133

We will discuss the fields below and evaluate them in terms of their respective value
for a forensic investigation [80]:

• Each database starts with the header string. The magic header value is always set
to "SQLite format 3". We can use the header information to carve the beginning
of a database file on the binary level. Offset 15 marks the end of the magic
header string. It holds a special character, the null terminator (0x00).

• At offset 16, we can find a two-byte big-endian integer value representing the
database’s page size. The value in this field must be a power of two. The range
of values is between 512 and 32768. There is one exception: The value 0x0001
is viewed as a big-endian 1. It represents the value 65,536 - the largest possible
page size - since this number will not fit in a two-byte usually.

• The two flag bytes at offset 18 and 19 control the read and write permission
for the database. The values should typically always be either a 1 or a 2. For
the rollback journalling mode (sect. 5.4.2), both values are set to 1. In contrast,
number 2 in both fields indicates a WAL journalling mode (sect. 5.4.3). If the
write version has a value greater than 2, this database file must be accessed as
read-only. These two fields’ value can indicate whether other files (WAL file or
journal file) are present.

• The 1-byte integer value at offset 20 of the header is used to apply for certain
SQLite extensions. The number of bytes specified here reduces the usable area
within the page. In this way, for example, special salt or nonce values can be
stored for each page when using the cryptographic extension. This value is
usually 0. The value can be odd.

• The bytes on offset 21 to 23 have fixed values per definition. Maximum and
minimum payload fraction must be 64, 32. The byte for the leaf payload fraction
always holds the value 32.

• With each transaction carried out on the database, the 4-byte big-endian integer
at offset 24 is usually incremented by one. A process that wants to read data
from the database can determine whether there has been a change since the last
access.

• With the 4-byte integer on offset 28 stores the size of the in-header database in
pages. However, this value may differ from the file’s actual size when accessing
a database before version 3.7.0. Alternatively, you can determine the actual file
size and divide by the page size to infer this value.

• At offset 32, we can find a 4-byte big-endian integer which indicates the be-
ginning of the so-called freelist. As already pointed out, unused pages in the
database file are stored within this data structure. This field has a significant
meaning, as it allows us to access pages of the database that are no longer visi-
ble. It holds the offset of the first page of the list. If the value is zero, the list is
empty.

• At offset 36 represents the total number of entries on the freelist. Together with
the start address, one can thus automatically iterate over the released pages.

• Each change to the database schema, such as adding or deleting a table or
creating an index, automatically leads to an increment of the value at offset 40.

134 Dirk Pawlaszczyk

• The 4-byte value at offset 44 represents the format number. This field has a
value between 1 and 4. For a SQLite database created with the latest version of
the database, the value is always 4 and thus supports the more SQL commands.
Databases created before November 2005 usually have a value of 3 or less.

• The value default pages cache size at offset 48 queries or sets the suggested
maximum number of pages of disk cache for a database file.

• The 4-byte big-endian integer value at offset 52 is only used to manage pointer-
maps for auto vacuum-databases. A non-zero value means that this database file
contains pointer map-pages.

• All strings in the database are encoded with the same encoding. There are only
3 valid encodings: UFT8 (value 1), UTF16LE (value 2), UTF16BE (value 3).
For the analysis of the database, this field value must always be read first.

• The integer at offset 64 is true for incremental_vacuum and false for auto_vacuum
mode. A value is larger than 0 means that the database reclaims space after data
has been deleted. An autovacuum database thus contains few deleted artefacts -
if any. It is defragmented automatically.

• The Application ID at offset 68 can be set by the Application programmer. It is
not used by SQLite.

• Offset 92 covers the value of the change counter. The integer at offset 92 indicates
which transaction the version number is valid for.

• The 4-byte integer at offset 96 stores the SQLITE_VERSION_NUMBER value.
The version number of the database library with which changes were last made
to the database is noted here.

All remaining header bytes are reserved for future expansion. Consequently, we can
ignore them.

•> Important

As can be seen from what has been said, various header fields must be read and
analyzed as the first step of every examination. Thus, the page size (offset 16) and
the number of pages (offset 28) must always be determined, since we need to know
the structure and size of the database. In order to interpret the strings correctly, the
encoding must also be examined (offset 58). A look at the freelist entries at offset
32 and 36 tells us whether unused pages in the database exist. If we do not find
any references to free pages, it may be an auto vacuum database (offset 64). Using
the flags for transaction management at offset 18 or 19, we can also find out which
additional SQLite files may exist. This is of particular interest because these files
can also contain records of former transactions. Thus, old states of the database
have been overwritten in the meantime could be made visible again. The header’s
remaining information is more technical and is, therefore, less interesting for the
investigator.

5 SQLite 135

5.2.2 Storage Classes, Serial Types and Varint-Encoding

In order to understand the binary format of records we first need to clarify what
data types SQLite knows at the binary level and how they are encoded. Like most
other databases, SQLite uses strict typing. Therefore, each value stored is mapped
to one of the five storage classes (Table 5.2). The word storage class is just another
term for a data type. However, the latter is more commonly used in connection with
programming languages. SQLite supports storage classes for integers (INTEGER),
floating-point numbers (REAL), strings (TEXT), binary objects (BLOB), and other
numeric data such as dates (NUMERIC). The storage class thus determines how the
binary data is to be interpreted. Conceptually, each column of a table is assigned with
a specific affinity. The affinity denotes the preferred storage class for a column. The
data type of a column defines what value the column can hold. However, the SQL
standard knows several data type names for one SQLite storage class. For example,
there exist more than ten different integer data types in SQL. For texts, there exist
seven different types. Accordingly, each data type is mapped to exactly one storage
class.

A second essential aspect is a length occupied by a cell value. An integer, for
example, will consume a length between zero and a maximum of 8 Bytes. A floating-
point number is mapped to a 64-bit field. A text can have an arbitrary length. SQLite
uses the so-called serial types to map storage class and length. In simplified terms,
this type is a number. The concrete value of the number provides information about
the length of a cell value. At the same time, the storage class can be derived from the
numerical value. Table 5.3 lists all possible serial types. For serial types 0, 8, 9, the
value is zero bytes in length. The serial type is used whenever the type and length of
a cell must be determined. Usually, each table row has a corresponding header that
summarizes the serial bytes for each column. As a rule, a serial type occupies exactly
one byte. Especially with texts or BLOBs, this principle is sometimes deviated from
as soon as the numerical value’s length exceeds 127. In this case, additional bytes
may be added to map the serial type.

Table 5.2: Mapping from SQL types to SQLite storage classes [80]

SQL Data Type Storage Class

INT, INTEGER, INTUNSIGNED, LONG, TINYINT,
SMALLINT, MEDIUMINT, BIGINT, INT2, INT8 INTEGER
TEXT, CHARACTER, CLOB, VARCHAR, NCHAR,
NATIVE CHARACTER, VARYINGCHARACTER TEXT
REAL, DOUBLE, DOUBLEPRESICION, FLOAT REAL
NUMERIC, DEZIMAL, BOOLEAN, DATE, DTIME NUMERIC
BLOB (no datatype specified) BLOB

136 Dirk Pawlaszczyk

SQLite uses a particular encoding for storing serial types. The representation form
used is a variable-length integer (varint). SQLite version 3 uses this simple byte-
oriented encoding where each byte contains 7 bits of the integer being encoded.
The most significant bit (MSB) is a flag bit, indicating more bytes to follow. Since
most integers in a database have relatively small values, we can keep memory
consumption low this way. Storing with a fixed-length integer will mostly generate
unnecessarily many null bytes. Instead, SQLite uses a static Huffman encoding of
64-bit twos-complement integers that needs less space for small positive values. The
serial type varints for large strings and BLOBs might extend up to nine-byte varints.
The following illustration should once again make clear the storage principle of
varint-values:

1 Byte 0XXXXXXXX ..127
2 Bytes 1XXXXXXX 0XXXXXXXX ..16384
3 Bytes 1XXXXXXX 1XXXXXXX 0XXXXXXXX ..2097152
4 Bytes 1XXXXXXX 1XXXXXXX 1XXXXXXX 0XXXXXXXX ..268435456

Since texts have a variable size, and the length calculation is performed by a formula.
A numerical value above 12 or 13 can only occur with texts or BLOBs. An odd value
will be correspondingly for texts. On the other hand, if the value is even, then it is
the BLOB storage class. For example, to store the word Test, the value 21(0x15) -
2 * text length + 13 - is stored as the length specification. A JPEG file with, let us
say, the length of 109 Bytes would be encoded with the serial type number 230 since
𝑁 ∗2+12 is what we need to calculate for a binary object. However, since we cannot
map this value with 7 bits, we have to add a second byte for the varint:

decimal: 230 = 128 + 64 + 32 + 4 + 2
binary: 1110 0110
varint: 1000 0001 and 0110 0110 (2-Byte: 1X.. 0X..)

Thus, we must first calculate the respective length specification each time we need
to know the exact length of a table cell. The serial values 8 and 9 are noteworthy
features. They can be used to map the two values 0 or 1. An extra content byte is not
necessary in this case. With the information presented, we are now able to decode
the cells of a table row.

5.2.3 Decoding The SQLite_Master Table

A database schema is a set of data definitions that define the structural design of
a database. As already explained, the schema, or the master table, resides on the
database’s first page, just behind the header. Technically, it is a regular table [85].
Table 5.4 shows all columns and their meaning for the master table. The schema
table contains all database objects in the database and the statement used to create
each object. With the schema table’s help, all table names, the corresponding column
names and data types can be determined. Each table entry is opened by two additional
fields: the rowid and the payload (see Fig. 5.3). Both values are only visible on the

5 SQLite 137

Table 5.3: Serial Type Codes Of The Record Format [80]

Serial Type Size Meaning

0 0 Value is a NULL.
1 1 A 8-bit twos-complement integer.
2 2 A big-endian 16-bit twos-compl. integer.
3 3 A big-endian 24-bit twos-compl. integer.
4 4 A big-endian 32-bit twos-compl. integer.
5 6 A big-endian 48-bit twos-compl. integer.
6 8 A big-endian 64-bit twos-compl. integer.
7 8 A big-endian 64-bit floating point number.
8 0 integer 0 (schema format ≥ 4).
9 0 integer 1 (schema format ≥ 4).
10,11 variable Reserved for internal use. Variable size.
N≥12, even (N-12)/2 Value is a BLOB with (N-12)/2 bytes length.
N≥13, odd (N-13)/2 Value is a string in the text encoding and

(N-13)/2 bytes in length.
The nul terminator is not stored.

binary level. Any row of the master table and therefore every database object is
assigned to a unique, non-NULL, signed 64-bit integer - the rowid. This value is
used as the access key for the data in the underlying B-tree. On the binary level,
each table row starts with a rowid number greater than null. Most tables in a typical
SQLite database schema are rowid tables. A rowid table is defined as any table in
an SQLite schema that is not a virtual table and is not a WITHOUT ROWID table.
The rowid is not part of the table definition. A payload field that stores the length of
the record follows directly after the rowid.

Table 5.4: Structure of the sqlite_master table [85]

Column Name Description

type type of database object (table, index etc.)
name name of the database object
tblname table that the database object is connected to
rootpage root page
sql SQL statement used to create the database object.

Interestingly, we can find descriptions for tables that have already been removed.
If an object in the database is erased, the schema table’s corresponding record is
marked as removed. If a table is dropped, the rowid value for the line in question is
set to 0x0000. The entry that is no longer needed is only overwritten when a new
database object is added. In the meantime, the entry is still accessible. Figure 5.3
shows an example of a deleted entry for a table in hex mode. The table header and

138 Dirk Pawlaszczyk

all columns of the record are intact. Only the rowid value at Offset 3935 has been
wiped with zero bytes.

In the example below, the signature 0x7461626C65 represents the object type of
a table. The table name, i.e. ”users”, directly follows the type column. However, we
must parse and analyse the corresponding SQL statement from the fifth column to
get all column names and the corresponding type information.

Fig. 5.3: Record of a dropped table from the sqlite_master (example)

By analyzing the SQL statement, a storage class can be derived for each table column.
For the five columns of the table <users>, the following columns can be identified:
INT, TEXT, TEXT, INT, REAL. This type of vector can be considered as a kind
of fingerprint. Sometimes, a found record could be recovered, but it is not clear to
which table it belongs. With the help of the table’s signature derived in this way, an
assignment can still be made, even for a deleted record. Of course, this rule is not
always 100% accurate. It is not excluded that two tables have the same signature.
However, it can help us make an educated guess, which will be correct in most cases.

5.2.4 Page Structure

All records are stored on pages. Approaching the data of a table requires a leaf page
scan. To access the data, we must understand the structure of a page. Each page starts
with a header, with a total size of 8 bytes in the case of a data leaf page (see Fig. 5.4).
All header bytes are big-endian values. The header starts with the page type at offset
0. In the case of a leaf page, the page starts with the value 0x0D. It can be classified
from the other pages by reading this value. The 2-byte value at offset 1 marks the
beginning of the first free block on the page. A free block is created whenever a
record is deleted from the database. All free blocks are organized as a linked list,

5 SQLite 139

whereas the first two bytes of the free block point to the offset of the following free
block within the list. If the free block is the last on the chain, this value is zero. If we
want to identify deleted records, our search should start right here in the free block
list [80].

Fig. 5.4: Fields of a b-tree leaf page header

Another essential value is located directly behind the free block field at offset 3. The
16-bit twos-complement integer field is called number of cells. Its value indicates
how many active cells exist within the current page. In SQLite, the serial type header
and the values of a particular table row are combined into a structure called "cell".
So if we want to access a record, we need to locate the matching cell. Fortunately,
all cell offsets are stored in an array directly after the page header. Hence, to read a
regular record of a table, we need to iterate through the cell pointer field.

Fig. 5.5: Structure of a regular data leaf page (permanent and temporary)

The next header field at offset 5 provides the start-offset of the content area. A b-tree
leaf page is divided into regions (see Fig. 5.5). The cell content area is always located
at the bottom of the page. The header and the cell pointer array are always located
at the beginning of the page. Between them resides the unallocated space. As the
content area grows from the highest memory address towards the lower address,

140 Dirk Pawlaszczyk

overlapping the two mentioned regions is prevented. The concept is thus similar to
the management of heap and stack areas within memory management. The last value
in the header denotes the number of fragmented bytes. A free block requires at least
4 bytes of space. Areas between 1 to 3 bytes form a fragment and thus cannot hold
any data records.

Figure 5.6 shows an example of the header of a page on a binary level. In addition
to 15 cells, we can also find at least one free block of offset 3620(0x0E24). The
content area in this example starts at 0x0DEC. The cell pointer array is highlighted
in yellow. Interestingly, we can find five more cell pointers shown in red. The value
of the surplus cell offsets corresponds to the start offset of the cell content area.
From this, we can conclude that apparently, five other records must have existed on
the page in the past. Nevertheless, they have been deleted in the meantime. Thus, in
addition to the 15 regular records, there should be five more deleted records on the
page. However, the deletion turned the cells into free blocks. So, to find and restore
them, we need to examine each element of the free block list.

Fig. 5.6: Sample header and cell content array for a data leaf page

It is not always possible to find all deleted records by checking the free blocks. If a
record is deleted that resides directly at the unallocated area, the offset value for the
cell content area start is moved up in the direction to a higher address. Of course,
this address denotes the cell pointer offset of the next regular record. The data set is
thus moved to the unallocated area by changing the border. We must consider this
case in our search since this record will never appear in the free block list.

However, it gets even worse. If a complete page is deleted, SQLite typically wipes
the first 4 Bytes of the header with zeros. So, in this case, the offset for the first free
block is erased. Thus, we do not know where precisely the list begins. What does
this, in turn, mean for our search for hidden records? The best way to approach our
search for slack areas is to use the exclusion principle. Slack space is the leftover
storage that exists on a page when records do not need all the space which has been
allocated. Slack areas are always created when records are deleted. Hence, the total
amount of slack space can thus be calculated as shown in the equation below.

5 SQLite 141

slack space with (possible) deleted content = page content
- header (8 bytes)
- N times 2-Byte cell pointer
- fragmented bytes
- N times cell

If we exclude the regular, well-known areas of the page, we automatically access the
slack areas. Only the areas determined in this way can contain deleted data artefacts.
In any case, we must always consider the unallocated space and the free block
list when searching within the page. Fortunately, leaf pages are always structured
the same. However, there is a second type of leaf page, the index leaf page. In its
structure, this page corresponds to a regular data leaf page, except for one difference.
The index leaf page starts with the value 0x0A at offset 0. However, what has been
said so far also remains valid for the second type of page.

5.2.5 Recovering Data Records

Now that we know the location of the records, we can start reading them. This
information can be derived from the cell offset array (see the last section). Every
cell has the same structure (see Fig. 5.7). The cell header opens with a payload
value. It indicates the total size of the cell in bytes. This value does not include the
cell header itself. Normally, the payload field is followed by the rowid (see sect.
5.2.3). As already explained, the pseudo-column is usually generated automatically
by SQLite. It is used to enable efficient access via the table tree. However, not all
records have a rowid. For example, index records are created without this field. If the
option "WITHOUT ROWID" is part of the CREATE TABLE statement, this field
is also missing. Thus, the cell header has a minimum size of 1 byte for a mandatory
payload value. The values in the cell header and all other header fields are varint
values without a fixed size. So to read a record, we always have to read value by
value. Skipping or omitting bytes is not possible because the fields do not have a
fixed offset. The actual cell starts again with a header. This time, it is the header of
the data record.

The header size field indicates how many bytes the header contains. Its value
includes the actual header size byte. The individual serial types follow immediately.
Column by column, we must first determine the storage class and space for each
table cell. The header is followed directly by the actual data record. Since we operate
on a binary level, the exact length of each field to be read and the data types can only
be determined via the serial bytes in the header. However, it might be challenging
to determine the exact beginning or end of the column cell values without this
information. An intact header is, therefore, an essential prerequisite for successful
data recovery.

142 Dirk Pawlaszczyk

•> Information

The recovery of deleted data depends on the data management policy used. This, of
course, differs from application to application. We can distinguish three cases:

1. Wipe with zeros. The free block is completely overwritten with zero-bytes.
Recovery of data is impossible even if the removed area is identified.

2. Truncate or remove deleted area. The second policy is made on a small size of
data. It deletes the record itself, and there is no way even to trace the occurrence
of deletion. Some iPhone system files are handled this way.

3. Add to a free list. The last policy is to mark the record or page as free. The
data itself remains in the database. This procedure generates the least I/O-traffic
compared to the other two strategies. It is therefore used as the default behaviour
of SQLite.

In the case of a data record that has been deleted, it sometimes happens that the cell
header and parts of the record header are replaced with new information [59]. These
new data fields cover the free block’s length in bytes and the address of the following
free block. Since both pieces of information are mapped to a 16-bit fixed-length
integer, a total of four bytes of the respective cell are overwritten. In total, we can
discern six situations when dealing with a deleted record (see Table 5.5).

Many records are deleted without being marked or overwritten. As explained
earlier, some records are deleted by merely moving the cell content area’s border
upwards. Thus, the records slip into the unallocated area of the page. When clearing
the browser cache, for example, almost all entries are removed from a caching table.
Instead of first marking each record as deleted, the links to the affected pages are
deleted from the table tree. Anything else would be a time-consuming process.
Instead, the page as a whole is skipped. In both cases, however, the deleted records
remain intact. Complete reconstruction is, therefore, possible. Sometimes a record is
removed from the middle of the content area of an active page. In this case, the record

Fig. 5.7: Schematic structure of a data leaf cell

5 SQLite 143

Table 5.5: Recovery Situations

Wiped Data Recoverability

cell is intact (no wiped bytes) yes
payload bytes yes
payload bytes + rowid yes
payload bytes + rowid + header length yes
payload bytes + rowid + header length + 1st serial partly
two or more serial type are wiped no

is converted to a free block. Thus, the beginning is overwritten, at least partially. The
previously occupied space will be released for reallocation. This, in turn, can result
in different cases that influence the recoverability of the data record. Sometimes
only the payload got wiped. In another case, the payload field, together with rowid,
may be overwritten. We can mostly do without this field information. As long as
the rest of the cell record remains intact, we can read the required column lengths
and types and correctly interpret the data. Even a wiped header length field should
not be a big problem. This field only holds the total length of the header. It can be
reconstructed by summing the individual serial lengths. It gets tricky when columns
are also overwritten. Without a valid column type and length specification for our
first column, we cannot reconstruct the remaining columns correctly. However, the
first column of a table is often an ID column with a numerical value. Knowing the
length of the first column of a regular record on the same page can indirectly infer the
first column’s length for our destroyed record. Unfortunately, this rule does not work
in every case. For example, if the first column contains a text with variable length,
we will most likely not restore the record correctly. If more than one serial type has
been overwritten, reconstruction seems unlikely. We then have too many possible
lengths to consider. Strictly speaking, the number of possible lengths for a column
grows exponentially with the number of overwritten length or type information in
the header.

Figure 5.8 shows the content area of a data leaf page. There are a total of three
records on the page. The cells are located at the end of the page. Remember, the
cell content area always grows from higher towards the lower address. The record in
the middle is deleted. The records before and after it are intact. Cell header, record
header and all data are unaltered. Even without knowledge of the table, it can be
deduced from the serial types alone that it is a table with apparently two columns.
The first column can store integers (serial types 0𝑥02 resp. 0𝑥03). The second column
is a string since the value is odd and greater than 13 (see sect. 5.2.2).

We can see that the second of the three data cells have been deleted because the
first 4 bytes of the data set have been overwritten with the free block identifier. The
identifier is 0𝑥0000000𝐶. The first two bytes have the value 0𝑥0000. From this, we
can conclude that it is the last free block within the page. The second half of the
identifier tells us something about the length of the free block. It is exactly 12 bytes
(0𝑥000𝐶). The free block is outlined in red in the illustration. As we can see, the actual

144 Dirk Pawlaszczyk

Fig. 5.8: Example data page with three records (one is wiped)

data fields of the deleted record are still intact. However, the PPL-field, ROWID,
header length byte, and the first column’s serial type are no longer accessible. The
serial type of the second column is not wiped. From the length specification of the
free block and the knowledge about the length of the second column, we can infer
the length of the first column in this case. Accordingly, the first column of our data
set can only be 2 bytes in size:

length of the first column field =
12 byte (total free block length)
- 5 (0x15 -13 / 2) (length of text column)
- 4 (free block identifier)
- 1 (serial type byte for 2nd column)

Thus, we can recover deleted content in many cases, even when parts of the header
have been overwritten.

5.3 Accessing The Freelist

As soon as the last record on a page is deleted, it is transferred to the free list. At
the same time, the link within the table tree is removed. From now, the page cannot
be accessed from an active table. However, it can be assigned to a new table at any
time. Meanwhile, the content of the page is still accessible. Usually, it is not wiped or
replaced with random values. The pages are just sitting on the free list, waiting to be
used again. Like the slack areas in the standard database pages, these unused pages
may contain forensically exciting values such as chat protocols, short messages, or
web pages visited [61].

The freelist is a simple linked list consisting of trunk pages 5.9. Each trunk page
initially contains a 4-byte integer pointer referencing to the next trunk page in the list

5 SQLite 145

Fig. 5.9: Schematic principle of a freepage trunk list

[80]. A zero-byte value means that this is the last trunk page in the list, and the list
ends here. The second 4-byte value in a trunk page contains the number of leaf page
offsets. To analyse all the list pages, we must first visit each trunk page and query
the offsets stored. Nevertheless, where do we have to start our search for freelist
treasures?

The starting address for the freelist can be calculated very easily [59]. We must
first determine the start offset of the first trunk page from the header at offset 32 of
the database. Second, we need the page size. The latter can also be determined from
the header. From these two values, we can calculate the actual offset of the first trunk
page:

offset of 1st trunk page = (trunk page number - 1) * page size.

A trunk page consists of an array of 4-byte big-endian integers. As pointed out, the
first 4 bytes of the trunk page header references the next trunk page within the list.
The next, a four-byte big-endian integer holds the length of the leaf pointer array
of the current page. With these two pieces of information at hand, we can quickly
iterate over the array’s entries.

The basic algorithm is shown in Listing 1. An example of a trunk page will
illustrate what has been said so far (see Fig. 5.10). In addition to the reference to the
next trunk page at offset 0, the number of page pointers to follow is visible (offset 4).
The offset of the first free page can be found directly behind the two header integers
at Offset 8. The second pointer is exactly 4 bytes behind. In the example, there are
a total of 555 entries on the TrunkList page. The data size is therefore 8 + 555 *
4 = 2228 bytes. Thus, all unused pages can be found and accessed with linear time
complexity with the described algorithm.

146 Dirk Pawlaszczyk

Algorithm 1 Freelist Page Recovery
⊲ Input: SQLITE 𝑑𝑏 filepointer

1: read 𝑝𝑎𝑔𝑒𝑠𝑖𝑧𝑒 ← 4 byte BE on byte 0x10
2: read trunk ← for the first freelist trunk on byte 0x20
3: while trunk ≠ null do
4: 𝑠𝑡𝑎𝑟𝑡 = (4 Byte BE in offset - 1) * 𝑝𝑎𝑔𝑒𝑠𝑖𝑧𝑒.
5: 𝑑𝑏.seek(𝑠𝑡𝑎𝑟𝑡) ⊲ go to start of the trunk page
6: read trunk ← for the next freelist trunk page (4 Byte BE)
7: read 𝑙𝑒𝑛𝑔𝑡ℎ ← number of cell entries (4 Byte BE)
8: for 𝑗 = 0, 1, . . . , 𝑙𝑒𝑛𝑔𝑡ℎ − 1 do ⊲ iterate over trunk page array
9: 𝑑𝑏.seek(𝑠𝑡𝑎𝑟𝑡 + 8 + (4 ∗ 𝑗))

10: read freepage ← next free page number
11: fpstart = (freepage - 1) * 𝑝𝑎𝑔𝑒𝑠𝑖𝑧𝑒.
12: 𝑑𝑏.seek(fpstart) ⊲ go to start of next free page
13: readPage() ⊲ start analyzing the hidden page
14: end for
15: end while

Fig. 5.10: start of a freelist trunk page (example)

5.4 More Artefacts

As explained earlier, SQLite manages all records in a single database file. However,
access management, transaction handling, and integrity protection are performed
with the help of primarily additional temporary files [84]. Despite the main database
file, SQLite uses nine distinct types of temporary files (see Fig. 5.11). Below we will
take a look at the other file types of SQLite. The focus is on searching for records no
longer in the regular database but can still be found in one of those files.

5.4.1 Temporary File Types

SQLite creates several temporary files when managing the database. A transient
database, for example, is a temporarily created file when the database is reorganized.

5 SQLite 147

Data pages that are no longer required are removed. The whole process is comparable
to the defragmentation of a hard disk. Pages are joined together, and gaps are closed.
Then, the temporary file’s content is copied back into the original database file, and
the temporary file is deleted. However, this file type is generated only for databases
for which the VACUUM property is activated. Since the database copy is deleted
immediately afterwards, it is not easy to locate it on the disk. However, it might be
possible to find old page versions of the database on the medium through carving.
From time to time, SQLite makes use of transient indices. Each index is therefore
stored in a separate temporary file. For example, if the ORDER-BY or GROUP-BY
clause is used in an SQL statement, a corresponding index file is created to manage
the intermediate results. The index is automatically deleted at the end of the statement
that uses it.

In the case of complex SQL statements, partial queries are sometimes stored in a
temporary file. In SQLite, this method is called "materializing" the subquery. This is
the case, for example, with large SQL INNER JOIN statements. The query optimizer
decides for which query a separate swap file is created.

Database users can create a temporary table using the "CREATE TEMP TABLE"
command. Since this unique table is created only for a particular database connection
and is not visible to other database users, it is swapped out to a separate file. Again,
the temporary database file used to store temporary tables is removed automatically
when the database connection is closed. When SQLite performs a transaction with
multiple statements, a Statement Journal File can be used to undo individual steps.
Assume that by executing a statement, 100 rows of a table are modified. After half
of the records have been modified, the execution must be aborted due to an error.
The rows of the database that have been modified so far are written back with the
statement journal’s help. All five of the temporary file formats discussed can contain
data or temporary results of the database transactions. However, these data are highly
volatile. In most cases, the temporarily stored results are already deleted when the
statement is finished. Thus, it is not very likely for an investigator to come into
contact with such artefacts. We will, therefore, not consider them further.

There are four remaining file types in SQLite. Unlike the formats discussed so
far, these are files that are often encountered when examining a database. These files
are Rollback Journals, Write-ahead Logs, Shared-Memory Files as well as Super
Journals. They can usually be found in the same directory as the actual database file.
Admittedly, the data stored in it is also classified only temporary within the official
documentation of SQLite. However, the data stored in them is updated or overwritten
much less frequently. We almost always find one of these file types. For this reason,
these are also listed under the heading other permanent files in Fig. 5.11. Thus, the
chance to acquire data from these files is much more likely. However, in some cases,
the use of one file format excludes the use of the second. For example, the shared
memory file and write-ahead log are usually found together. In contrast, the rollback
journal is only found in a directory if the first-mentioned files are absent. Of the file
formats mentioned above, super journals are relatively rare. The files are created only
in transactions where multiple databases are updated simultaneously in an atomic
transaction. Accordingly, without a super-journal in place, transaction commit on

148 Dirk Pawlaszczyk

Fig. 5.11: The SQLite file types (permanent and temporary)

a multi-database transaction would be atomic for each database individually, but
it would not be atomic across all databases. Due to the relatively low usage level,
we will not take a closer look at this file format. Instead, we will focus on the two
remaining journal formats. Besides availability and confidentiality, data integrity
forms a central goal of every database system. SQLite is no exception. SQLite
maintains its integrity by using journals and transactions. Below we will examine
the two integrity protection techniques offered by SQLite in more detail: Write-ahead
logs and Rollback Journals [80],[32].

5.4.2 Rollback Journals

The idea behind the rollbacks is simple: If a database gets into an inconsistent state
due to write access, it is reset to the last valid state. To implement atomic commit and
rollback capabilities, SQLite offers a file called rollback journal. Rollback refers to
resetting the individual processing steps of a database transaction [79]. The system
is thus wholly returned to the state before the start of the transaction. In the case
of SQLite, a copy is first created for all database pages possibly affected by the
transaction and stored in the rollback journal. If something goes wrong during
transaction processing, the database can always be reset to the last valid state if
required. Note: SQLite permanently stores the entire page in the journal file, even if
the transaction modifies only a single record.

A journal file is usually created when a new transaction is started and deleted after
the transaction is completed. Although this is the default behaviour, in many cases,
there is a deviation from this approach. For example, if the application developer
activates the exclusive locking mode for a database, then the rollback journal is not

5 SQLite 149

immediately deleted. An application can enable the exclusive locking mode by using
the following pragma-statement:

PRAGMA locking_mode=EXCLUSIVE;

In this case, the journal file may be truncated, or the file’s header may be wiped
with zero bytes. Which behaviour of this occurs depends on the SQLite version
used. However, the file is preserved in any case as long as the locking mode is
activated. Fortunately, many applications that use rollback journals for transaction
safety operate in this mode, reducing unnecessary IO operations. The same behaviour
as is seen in EXCLUSIVE locking mode can also be reached by setting the journal
mode pragma to PERSIST instead of DELETE which is the default behaviour in
SQLite:

PRAGMA journal_mode=PERSIST;

No matter which of the two modes is activated, an investigator can restore the old
execution states of the database. In this way, data records that may have been deleted
in the meantime can be made visible again.

•! Attention

The rollback journal file is always located in the same directory as the actual
database. One can quickly identify the journal by the file name: It has the same name
as the database but with the extension "-journal". Thus, the name of a journal file
is precisely eight characters longer than the original name of the database [84].

A rollback journal is a binary format. Just like the main database file, it contains a
small header. The header has a fixed size of a maximum of 28 bytes. The individual
header fields and their meanings are shown in Table 5.6. Next to the Magic Header
String, information about the total number of database pages stored in the journal.
The header also records the original size of the database file. So if a change causes
the database file to grow, we will still know the original size of the database. Unfor-
tunately, the fields carried in the header are usually automatically overwritten after a
COMMIT and wiped with null bytes. Thus, we will rarely be able to recover useful
information from it. However, the header is usually preserved if a transaction cannot
be completed due to a power down.

The journal file has a preset page size. The value can be determined via the offset
20 in the header. Even if this value can no longer be determined due to wiping, there
is a way out. The default value of the first sector is 512. The remaining space of the
first journal page is filled with zero bytes. Since the default page size is 512 bytes,
the header is thus always followed by a padding area of zero bytes. After the header
and padding area, zero or more page records will follow. Such a record contains
a copy of precisely one database page. Additionally, each record is introduced by
a one-field header. Only with this value, SQLite can reset the correct page in the
database in case of a rollback. On offset four, the original content of the database

150 Dirk Pawlaszczyk

Table 5.6: Rollback Journal Header Format

Offset Size Description

0 8 Header string: 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7
8 4 The "Page Count" - The number of pages in the next segment of the journal
12 4 A random nonce for the checksum
16 4 Initial size of the database in pages
20 4 Size of a disk sector.
24 4 Size of pages in this journal.

page follows. The journal page record ends again with a 4-byte big-endian value.
It holds the checksum for this page. The value is used to guard against incomplete
write operations.

Table 5.7: Rollback Journal Page Record Format [80]

Offset Size Description

0 4 The page number in the database file
4 N Original content of the page prior to the start of the transaction
N+4 4 Checksum

Since the header is always reset for each new transaction, the page records directly
following the header are always the most current. However, journal records of past
transactions can still be stored in the same journal. For example, suppose a transaction
changed ten database pages. The following transaction only rewrote five pages. In
that case, the database subsequently contains the database’s state before the last
transaction plus five more pages from the previous. The following example shows
the beginning of the second journal page of a rollback file:

0x1200	61746506 BAC4E54E 0000000B 0D000000	ate....N........
0x1210	0B0E2C00 0F620F35 0FC20F96 0F0E0EFD	..,..b.5........
0x1220	0ED10EB8 0E9A0E5A 0E2C0000 00000000Z.,......

0xBAC4E54E -> Checksum of the 1st journal records
0x0000000B -> page 11 in the database (start of the 2nd journal)
0x0D000000 -> start of a data leaf page (snapshot)

The start of 2nd journal record can be calculated as follows:

0x0200 1st sector (header + padding area) - 512 byte
+ 0x0004 page record page number (record start) - 4 byte
+ 0x1000 1st page in journal - 4096 byte
+ 0x0004 checksum of 1st journal page (record end) - 4 byte

0x1208 start offset of the 2nd journal record

5 SQLite 151

The example shows the end of the first journal page and the beginning of the second
journal frame. While the green highlighted value at offset 0x1204 still belongs to the
first journal page, the value at offset 0x1208 already initiates the next journal record.
Generically, the address of each journal could be determined as follows:

Record𝑠𝑡𝑎𝑟𝑡(N+1) = size of 1st sector + N × (page size + 8)

However, how can we determine whether the database’s journal page belongs to the
last transaction or is not perhaps older? A different random nonce is used each time
a transaction is started to minimize the risk that unwritten sectors might by chance
contain data from the same page that was a part of prior journals. The last nonce is a
4 Byte integer value and can be found at offset 12 in the journal header. By changing
the nonce for each transaction, stale data will still generate an incorrect checksum.
Since the entire page is always saved from the database, we can restore the actual
data described in section 5.2.5.

5.4.3 Write-Ahead Logs

As pointed out in the last section, a copy of the data page to be changed is first
created before writing directly into the database file in a classic rollback journal
[86]. Version 3.7.0 of the SQLite database engine introduced an alternative concept
for transaction management [84]. With write-ahead logs (WAL), this procedure is
reversed. The content of the original database file is not changed. Instead, every
change is appended into a separate WAL file. It works like a roll-forward journal. All
changes are first written to the WAL file. Even a COMMIT does not automatically
update the database file [79]. If, for example, other reading database connections exist
simultaneously, they can operate as usual on the original unaltered data. Meanwhile,
a concurrently running write process stores its changes into the WAL file. Moving
the WAL file transactions back into the database is called a checkpoint. Usually,
SQLite does a checkpoint automatically. If the WAL size reaches a threshold size
of 1000 pages, a checkpoint is triggered by default. As soon as we examine a
database that works in WAL mode, we must also analyse the included WAL archive.
Simultaneously, this also means that we may have different versions of the same
database page in the main database and the WAL file. As long as no checkpoint has
been carried out, the WAL file exclusively contains the latest changes. The database
is, therefore, still in an old state. If we look at both files together, we can get a
consistent view [86].

To access the content of a WAL file, all we have to do is open the corresponding
database file. When opening a WAL mode database, the WAL file’s content is auto-
matically transferred back to the database. In other words, a checkpoint is executed.
However, this procedure is usually not recommended for various reasons. With this
approach, old artefacts that are evidentially valuable to the investigator could be
overwritten and thus lost. Moreover, we would be violating a fundamental rule of
any forensic investigation: Never change the evidence.

152 Dirk Pawlaszczyk

•> Important

It is best not to work with a standard database viewer when evaluating a database
in WAL mode. Even by opening the database, one risks losing old data due to
checkpointing.

But how should we proceed then? One possibility is the use of a special forensic
database browser. An example would be the FQLite1 browser. This program reads the
database and the WAL file separately. Since access is read-only, all data is preserved.

•! Attention

A particular database will use either a rollback journal or a write-ahead log. It is
not possible to use both at the same time. The write-ahead log is always located in
the same directory as the actual database. One can quickly identify the journal by
the file name: It has the same name as the database but with the extension "-wal".

Let us now turn to the actual structure of the file. The WAL file starts with a header.
Zero or more so-called WAL-frames follow it. Just as with the rollback journal, a
frame represents the altered content of exactly one page of the database. The file
header has a size of exactly 32 bytes. It starts with a 4 byte long Magic Number (see
Table 5.8). At offset 4 follows the file format version. Again, this is a 4-byte unsigned
integer value. The size of one page of the database is stored at offset 8. Using the
field checkpoint sequence number at offset 12, we can again determine how many
checkpoints have already been executed since their creation.

Table 5.8: WAL Header Format [86]

Offset Size Description

0 4 Magic number. 0x377f0682 or 0x377f0683
4 4 File format version. For example 3007000.
8 4 Database page size. Example: 1024
12 4 Checkpoint sequence number
16 4 Salt-1: random integer incremented with each checkpoint
20 4 Salt-2: a different random number for each checkpoint
24 4 Checksum-1: First part of a checksum on the first 24 bytes of header
28 4 Checksum-2: Second part of the checksum on the first 24 bytes of header

The last fields of the header form two salt values and two checksum values. Using
these fields, we can determine which frames belong to the current checkpoint and

1 https://github.com/pawlaszczyk/fqlite

https://github.com/pawlaszczyk/fqlite

5 SQLite 153

have not yet been transferred to the database. Figure 5.12 shows an example of the
header of a WAL archive in FQLite.

Each WAL frame also starts with a header [84]. The structure of the header with
its fields is shown in Table 5.8. The header consists of exactly six big-endian values,
each with a size of 4 bytes. The first object is the page number this frame is assigned.
Using the page number, we can identify the place in the database where the change
takes effect. The value at offset four can be used to determine whether a COMMIT
was performed. A value other than 0 is a so-called commit frame. Let us remember
that a COMMIT does not automatically update the database. Like the header of the
WAL file, each frame header ends with two salt values and two checksums. The four
big-endian 32-bit unsigned integer values are located from Offset 8 to 24.

Fig. 5.12: View on a WhatsApp-DB WAL-Header with FQLite Carving Tool

A WAL archive always grows from the beginning. It can cause frames from different
checkpoints to appear in the same file, whereas current ones are always at the file’s
beginning. Fortunately, we can use the mentioned salt values to determine relatively
quickly whether the frame under consideration is valid or whether it belongs to
an older state already transferred to the database. Whether a frame is valid can be
determined as follows [86]:

1. The Salt-1 and Salt-2 values from the header must both match the values in the
respective frame.

2. The 8-byte checksum in the frame must match the cumulative checksum over
the first 24 bytes of the WAL header plus the first 8 bytes and the contents of all
previous frames.

If a checkpoint was executed successfully, the WAL file is reset afterwards. In this
case, the salt values are overwritten. The value of salt-1 is incremented, while a

154 Dirk Pawlaszczyk

Table 5.9: WAL Frame Header Format [86]

Offset Size Description

0 4 Page number
4 4 For commit records, the size of the database file in pages after the commit.

For all other records, zero.
8 4 Salt-1 copied from the WAL header
12 4 Salt-2 copied from the WAL header
16 4 Checksum-1: Cumulative checksum up through and including this page
20 4 Checksum-2: Second half of the cumulative checksum.

new random value is assigned to salt-2. Previously valid frames are automatically
discarded due to this procedure. However, the previous frames usually remain in
the archive due to the I/O- operations when the file is truncated. Thus, there is an
excellent chance to make past states of database pages visible again with the help of
the WAL file.

Let us take a look at how write-ahead logs work. Figure 5.13 shows the frames list
of a WAL file. Below the header field for the Salt-1 value, several frames are shown.
All frames with matching salt values belong to the same checkpoint. The first seven
frames thus form a unit. The remaining frames are part of an older checkpoint. As
we can see, the salt in the header matches the salt in the first unit. Accordingly, the
pages have not yet been transferred to the database. In other words, the WAL file
contains the latest version of page 2,4,6,18. The pages within the database are out of
date. The next checkpoint is usually executed when opening the database, and these
data records are transferred to the database. Since WAL files always work at a page
level, the complete database page is updated. Remember, the salt value changes for
each checkpoint. Thus the Salt-1 field in the header is discarded afterwards.

Interestingly, page 6 has been updated three times. When a checkpoint occurs,
each page will be written back to the database in the same order written to the WAL
file. Pages are written from the start of the WAL file. Accordingly, the update order
would be 2,6,4,12,6,18,6. This allows a timeline to be created, starting with the first
to the last update step.

5.5 Conclusions

The SQLite database format has great importance in the field of mobile forensics.
In this chapter, we have therefore tried to take a look behind the scenes. As quickly
became apparent, the file format of SQLite has some similarities to a classic file
system, where files are usually stored in blocks. Instead of blocks or clusters, data
content in SQLite is managed in pages. As has been shown, even records are often
recoverable after they have been deleted. Analogous to a file system, these are usually

5 SQLite 155

Fig. 5.13: Frame list of a WAL file (example)

not wiped but merely marked as deleted. However, we do not manage files but data
sets.

We further identified different slack spaces of an SQLite database. Besides free
blocks and the unallocated space, we can find deleted records, especially in the
freelist area of the database. The carving techniques discussed within this chapter
can help make these data sets visible again in many cases.

Of the temporary file-formats considered, rollback journals and the WAL files
are of particular interest to the investigator, as they may contain old or previously
altered data. However, special care must be taken when acquiring data from these
files. Thus, the data stored in a WAL file can be reconstructed manually or with
specialized forensic tools. Using an ordinary SQLite reader, on the other hand, can
lead to the loss of data.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Chapter 5 SQLite
	5.1 Introduction
	5.2 The SQLite File Structure
	5.2.1 The Database Header
	5.2.2 Storage Classes, Serial Types and Varint-Encoding
	5.2.3 Decoding The SQLite_Master Table
	5.2.4 Page Structure
	5.2.5 Recovering Data Records

	5.3 Accessing The Freelist
	5.4 More Artefacts
	5.4.1 Temporary File Types
	5.4.2 Rollback Journals
	5.4.3 Write-Ahead Logs

	5.5 Conclusions

