
Chapter 4
QNX6

Conrad Meyer

Abstract The QNX6 filesystem is present in Smartphones delivered by Blackberry
(e.g. Devices that are using Blackberry 10) and modern vehicle infotainment systems
that use QNX as their operating system. In 2015 QNX as an OS was used in over
50 million vehicles [6] and can hence be considered as one of the most important
operating systems in the automotive world. Today’s digital forensics tools don’t
recover a lot from this filesystem, have difficulties with different block sizes, or
even don’t support the filesystem at all. So it’s crucial for the forensic examiner to
understand the principles of this filesystem used. This chapter gives an overview of
how the filesystem generally stores the files and metadata to give the examiner the
chance to get the most information out of the evidence.

4.1 Introduction

This chapter gives an insight into the different structures and principles of the QNX6
filesystem developed by QNX.The filesystem was first introduced within QNX Neu-
trino 6.4 real-time operating system, which today is owned and developed by Black-
berry. It is a power-safe file system [7] and can withstand a sudden loss of power
without corrupting or losing data. This property is especially useful for the forensic
examiner, as it can easily happen that evidence (e.g. a vehicle or smartphone) loses
its power supply due to a battery pack running empty.

Conrad Meyer
Central Office for Information Technology in the Security Sector (ZITiS), Zamdorfer Straße 88,
Munich, Bavaria e-mail: conrad.meyer@zitis.bund.de

109© The Author(s) 2022 

https://doi.org/10.1007/978-3-030-98467-0_4 

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics 

mailto:conrad.meyer@zitis.bund.de
https://doi.org/10.1007/978-3-030-98467-0_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_4&domain=pdf


110 Conrad Meyer

Table 4.1: Standard Parameters of the QNX6 Filesystem

Parameter Value Remark

Max physical Size 2 TB 2
Supported Standard Logical Blocksizes 512, 1024, 2048, 4096 Bytes

Max Filename Length 510 bytes UTF-8

Table 4.1 shows the standard values that are regularly used when formatting a volume
with the QNX6 filesystem. Note, that especially in-car infotainment systems, those
values can be different (e.g. larger blocksize). All the addressing inside the filesystem
is based on the blocksize, extracted out of the superblock.

The following sections will give the reader an insight into the binary structures
of the most important parts of the filesystem, like a superblock or inode and some
basic knowledge about the mechanism when files are deleted.

4.2 QNX6 Filesystem Structure

To understand the principle behaviour and main functions of the QNX6 filesystem,
the following chapter shows the structure of a volume and how files, directories
and metadata are linked. Volumes can be formatted in QNX6 in little-endian or
big-endian style. All the examples in the following show a QNX6 Volume formatted
with little endianness. Fig. 4.1 shows the main parts of a QNX6 filesystem and their
standard size and addresses. The system area contains the Bitmap of the allocated

Fig. 4.1: Layout of a QNX6 filesystem volume

and unallocated Blocks of the Filesystem. Each bit represents a Block. Suppose the
volume is formatted in the standard way. In that case, the volume will start with
a volume boot record, which contains standard ASCII coded bootloader messages
(Fig. 4.2), already giving a hint that the Volume is formatted with QNX.

•! Attention

Sometimes, on non standard volumes a partition directly starts with the Superblock.



4 QNX6 111

Fig. 4.2: Sector 0 of a QNX6 Partition/Volume

In the following, we will have a closer look at all the structures above. We will follow
those structures to construct a file and its metadata out of the filesystem information.
The example filesystem is in little-endian mode.

4.2.1 Superblock

The filesystem maintains two Superblocks or global root blocks. One of those blocks,
called the working Superblock, manages the modified data, while the other one, the
stable Superblock, consists of the original version of all the blocks. Which Superblock
is the active one is determined by the 64-bit long serial number. The Superblock
with the higher serial is the active one. After all, active write operations are done,
and the integrity is checked, the former working superblock becomes the new stable
one by updating the serial number (old superblock serial +1).



112 Conrad Meyer

The superblock contains the global information of the filesystem. Table 4.2 contains
the offset address of the main features of the Superblock.

Table 4.2: Main Features and their Offset in the QNX6 superblock

Parameter Offset in Superblock Size (bytes)

Serialnumber 0x8 8
creation timestamp 0x10 8

last access timestamp 0x14 8
Volume ID 0x20 16
Blocksize 0x30 4

Root Inode Inodes 0x48 array 16 x 4 bytes
Root Inode bitmap 0x98 array 16 x 4 bytes

Root Inode longfilenames 0xE8 array 16 x 4 bytes

•! Attention

When used with the standard driver issued by Blackberry and the default settings,
you can determine the last access to the filesystem by selecting the stable superblock
(highest serial) and checking the access timestamp (assuming that system time is
used was valid). However, some non-standard drivers don’t touch this timestamp, so
for reliable results, you have to test the drivers from the System where the image
originated in each case!

The superblock contains three root inodes that point to the main parts of the filesys-
tem. The first array root inode contains the pointers to the inodes that contain the data
(files, directories, data). The second one contains the pointers to the bitmap of the
allocated blocks, and the third one is the pointers to the long filenames (filenames >
27 utf8 characters, up to 510 characters). The data inside those root inodes is shown
in Table 4.3. Those root inodes contain pointers to the corresponding filesystem
parts. If the level parameter is zero, the root inode has 16 direct pointers. By adding
another level, indirect pointers are added, as shown in Fig. 4.4. Each indirect pointer
then points to a block containing inodes or indirect 32-bit pointers, depending on
the defined number of levels. The actual data is always at the lowest level of the tree.
Given the value of blocks that such a tree can address is 16 * (block size in bytes / 4)
𝑙𝑒𝑣𝑒𝑙 So, for example, with a level value of 2, and a block size of 1024 bytes, already
1,048,576 blocks can be addressed.



4 QNX6 113

Fig. 4.3: An example of a QNX6 superblock.

Table 4.3: Structure of the root inodes

Parameter Offset in root inode Size (bytes)

Size 0x0 8
Pointer 0x8 array 16 x 4 bytes
Levels 0x48 1
Mode 0x49 1



114 Conrad Meyer

Fig. 4.4: Illustration of inode levels, here a level value of 3

4.2.2 Bitmap

The Bitmap block is used to determine whether a block in the filesystem is used
or not. Each bit in the bitmap represents a block. A value of 0 means the Block is
unused, 1 means that the Block is allocated. If the volume size is smaller than the
bits available in the Bitmap Block, the unused bits are stuffed with ones. The bitmap
incorporates two parts. First, system area 1 is split into two halves, where the upper
half is used by superblock 1, and the lower half is used by superblock 2. This bitmap
area contains the bitmap, inode and indirect addressing blocks of those structures.
Second, the bitmap of the blocks that are not used for the filesystem structure (bitmap
and inodes). The preallocation of the first system area block leads to the effect that
each superblock always works on its own filesystem structure, and to the point that
there is always a non-corrupted structure, even in the case of a sudden power loss (a
superblock is just becoming the stable one, if all write operations are done, see sect.
4.2.1).

Fig. 4.5 depicts the end of the used space of the bitmap pointed to in the example
superblock from Fig. 4.3. The bitmap comprises two blocks, starting at 0x3000,
and the volume contains a total of 0xC7F8 blocks. In Fig 4.5, the stuffing of the
unused space with ones therefore starts at 0x48FF: Bitmap starting address: 0x3000
+ number of blocks 0xC8f8 divided by 8 (each Block represented by 1 bit).



4 QNX6 115

Fig. 4.5: An example of a QNX6 Bitmap

4.2.3 Inode

On the lowest level of the root inode tree, in the "leaves", the direct inode data is
found. Depending on the level defined, also those inodes can address other indirect
inode addressing blocks. An inode contains a vast amount of data useful for the
forensic examiner, e.g. permissions, access time, change time, and modification
time. Table 4.4 shows the offsets and the size of the various parameters in an inode.



116 Conrad Meyer

Table 4.4: Structure of an inode

Parameter Offset Size (bytes)

size 0x0 8
uid 0x8 4
gid 0xC 4

ftime 0x10 4
mtime 0x14 4
atime 0x18 4
ctime 0x1C 4
mode 0x20 2

blockpointer 0x24 array 16 x 4 bytes
Levels 0x54 1
status 0x49 1 (see table 4.5 )

Table 4.5: inode status byte

Value Status

0x1 directory
0x2 deleted
0x3 normal

As QNX OS is in line with the POSIX standards; also the timestamps are. The epoch
is the standard POSIX (or UNIX) epoch, the 01.01.1970, 00:00 UTC. From that
epoch, the timestamps are counted in seconds. The modified timestamp (mtime) is
the time of the last write operation on this specific file. The access timestamp (atime)
tells the examiner the time the file was last read. The change timestamp (ctime) is
changed when the permissions of a file are changed. So ctime can be changed without
a change in atime. The timestamp ftime is not fully referenced in the POSIX standard.
Like in many other filesystems, it is the timestamp when the file was created. The
inode 1 always contains the root directory, and inode counting starts with 1.

•! Attention

When it comes to timestamps, the forensic expert has to pay attention to the reliability
of the timestamps given. This is especially true for QNX6. Not all timestamps are
actualised on some systems, as with QNX with the standard QNX6 file-system driver.
Whenever possible, tests with the system you are examining should be performed
(e.g. changing permissions, modifying files, etc.)!



4 QNX6 117

Fig. 4.6: An example of a QNX6 Inode.

4.2.4 Directories

Inodes with the status 0x3 point to a directory file system object that contains sub-
directories and file entries with names shorter than 27 UTF-8 characters. An entry
starts with the inode number of that entry, where you can find the metadata like
timestamps and the pointers to the Data or other directories, followed by a name
length field and the actual name. A directory always contains a "." and a ".." entry.
The "." entry contains the inode number of the directory inode, and the ".." entry



118 Conrad Meyer

contains the inode number of the parent directory inode. In the example Fig. 4.7,
those entries are both pointing to the same inode number because the directory
shown is the root directory.

Table 4.6: Directory entry

Parameter Offset Size (bytes)

Inode number 0x0 4
Namelength 0x4 1

Name 0x5 up to 27

Fig. 4.7: An example of a QNX6 directory. Here, the root directory is shown.

A long directory entry has a different structure (Table 4.7). It includes the Inode, in
which the timestamps and pointers to the data are. Furthermore, the long filenames
inode Number, where the entry’s name is found, is noted in this structure. An example
of a long filename/directory entry is displayed in Fig. 4.8.



4 QNX6 119

Table 4.7: Long Directory entry

Parameter Offset Size (bytes)

Inode number 0x0 4
size 0x4 1

Long Filenames Inode Number 0x8 4
checksum 0x12 checksum

Fig. 4.8: An example of a QNX6 inode entry of a long filename

4.2.5 Long Filenames Inode

If a file or directories length is longer than 27 UTF-8 characters, the name is stored
in the long filenames node. Long filenames Inodes start counting with zero. The
structure is shown in Table 4.8, an example is Fig. 4.9.

Table 4.8: Long Filenames Inode

Parameter Offset Size (bytes)

filename length 0x0 2
filename 0x2 up to 510 bytes

4.3 Example: Construction of a file

To understand how a file can be retrieved from the filesystem data, we will manually
find the file /usr/fileformathandbook.ascii with its content and metadata by using the



120 Conrad Meyer

Fig. 4.9: An example QNX6 long filenames entry

filesystem information. We will begin the reconstruction from the root directory. As
already mentioned in the previous chapter, inode 1 contains the root directory. From
there, we will start finding the file in the filesystem structure. The first step is to
determine the valid stable superblock by the serial number. The superblocks inode
root block is shown in Fig. 4.10

Fig. 4.10: Inode Root block used in the file reconstruction example

The root block tree has one level, meaning that we go on with the indirect inode
block in the next step. The formula can easily calculate the physical address of those
blocks:

𝑏𝑙𝑜𝑐𝑘𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑏𝑙𝑜𝑐𝑘𝑛𝑢𝑚𝑏𝑒𝑟 ∗ 𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡

On standard QNX6 Volumes, the offset is the superblock size + the offset of the
beginning of the superblock. Thus, the first indirect inode block is located at 0xCD
* 0x1000 + 0x3000 = 0xD0000, where 0xCD is the block number, 0x1000 the
blocksize and 0x3000 the global offset due to the superblock with size 0x1000 and
start at 0x2000. From the indirect inode (Fig. 4.11), we can retrieve the number
0x03, and by this, the address of the first inode block, which is located at 0x6000.

The first inode in this block is the root inode. If we take the first block pointer,
0x7F10, of this inode, we get the address of the root directory: 0x7F13000. This root
directory, Fig. 4.13 is already familiar to us, as the second version of it is shown in
Fig. 4.7, but this time, it is the root directory maintained by the first superblock.
In the root directory, we take the inode number for the /usr directory, 0x08. With this
number, we go back to the first Inode Block, where the inode 8 is located at 0x6380
(0x6000, where inode 1 is located plus 7 * 0x80 offset, for the preceding inodes).
From that inode (Fig. 4.14) we can then calculate the /usr directory offset in the way
we already did for the root directory. The /usr directory is defined at block 0x7F72



4 QNX6 121

Fig. 4.11: Indirect inode block

Fig. 4.12: inode 1 which contains the pointers to the root diretory

Fig. 4.13: Root Directory

which is at offset 0x7F75000. Here we see now our filename and the corresponding
inode Number, where the metadata and pointer to the file content is.

We see that the fileformathandbook.ascii file has the inode number 0x258. Know-
ing this, we have to find the offset where this inode is defined. With a block size of
0x1000 and an inode size of 0x80, each inode block contains 0x20 inodes, so the
inode we are looking for is the 24th inode in inode block number 19. Going back to
Fig. 4.11, the 19 inode block is at physical block 0xE0, calculated address 0xE3000



122 Conrad Meyer

Fig. 4.14: Inode 8, which has the pointer to the /usr directory in our example

Fig. 4.15: /usr directory with the entry of the file we are looking for

+ 0xB80 (24th inode in Block). In this inode, depicted in Fig. 4.16 we find all the
relevant filesystem metadata for this file and the pointers to the filesystem content.

Following now the pointers to the content, beginning with 0x19D, we can retrieve
the file block by block (Fig. 4.17).

After demonstrating the retrieval of the example file from the file system data, it
is easy to understand the next section, which shows the possibilities to reconstruct
deleted files.

4.4 Deleted Files

There are some possibilities to recover deleted files in a QNX6 Volume, depending,
when the file or directory was deleted and what happened with the filesystem in the
meanwhile. Deleting an entry (directory or file) in QNX6 means that the Status in



4 QNX6 123

Fig. 4.16: Inode entry of our example file

Fig. 4.17: Content of our example file

an Inode switches to "deleted" (see Table 4.5) and that the entries inode number is
deleted from the directory as shown in Fig. 4.18. By this, it is not possible to recover
a file by its name, because there is no link anymore between the filename and the
inode containing the metadata and the pointers to the file content. If a directory is
updated after a file was deleted (e.g. a new file is added), the filesystem driver moves
the directory to another block. The filename is “lost” from the regular filesystem



124 Conrad Meyer

directory tree. Also, the blocks, which contain the content of the files are set to
unused in the bitmap, which means, they are free to be overwritten by other data.
Knowing this, there are still some possibilities to recover files, with and without their
respective names.

Fig. 4.18: Directory entry before (bottom) and after (top) deletion

The first possibility, if the file was just deleted recently, it may still be present in the
non-active filesystem structure of the second superblock. If this is the case, the file
can normally be fully recovered, even with its content (still, it is possible that the
content is not original).

Second, you can parse the inodes to recover files with their metadata without
the associated filename. This fact is quite problematic because the Blocks do not
necessarily still contain the files original data.

In conclusion, we see that the reconstruction of files is sometimes possible. How-
ever, compared to some other filesystems (e.g. NTFS), there is a smaller possibility
to recover deleted files from the filesystem information. In some special cases where
you can prove the integrity of a file in another way (e.g. some packed/zipped files),
it is still helpful to take advantage of the inode structure and the possibility to put
together fragmented files from the pointers inside the inode.



4 QNX6 125

4.5 Forensic Tools supporting QNX6 filesystems

The Linux kernel includes a read-only driver for QNX6 (and QNX4) file systems.
Also, some mobile forensic tools like UFED physical analyzer support this file
system to a certain degree. Until today, those tools just support volumes formatted
with the standard values shown in Table 4.1. Lately, there have been some projects
in the Autopsy / Sleuthkit community to support QNX6, but until today, none of the
projects has come to an end.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, 

distribution and reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes 

were made. 

       The images or other third party material in this chapter are included in the chapter’s Creative Commons 

license, unless indicated otherwise in a credit line to the material. If material is not included in the 

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or 

exceeds the permitted use, you will need to obtain permission directly from the copyright holder. 

http://creativecommons.org/licenses/by/4.0/

	Chapter 4 QNX6
	4.1 Introduction
	4.2 QNX6 Filesystem Structure
	4.2.1 Superblock
	4.2.2 Bitmap
	4.2.3 Inode
	4.2.4 Directories
	4.2.5 Long Filenames Inode

	4.3 Example: Construction of a file
	4.4 Deleted Files
	4.5 Forensic Tools supporting QNX6 filesystems


