Chapter 4)
QNX6 e

Conrad Meyer

Abstract The QNXG6 filesystem is present in Smartphones delivered by Blackberry
(e.g. Devices that are using Blackberry 10) and modern vehicle infotainment systems
that use QNX as their operating system. In 2015 QNX as an OS was used in over
50 million vehicles [6] and can hence be considered as one of the most important
operating systems in the automotive world. Today’s digital forensics tools don’t
recover a lot from this filesystem, have difficulties with different block sizes, or
even don’t support the filesystem at all. So it’s crucial for the forensic examiner to
understand the principles of this filesystem used. This chapter gives an overview of
how the filesystem generally stores the files and metadata to give the examiner the
chance to get the most information out of the evidence.

4.1 Introduction

This chapter gives an insight into the different structures and principles of the QNX6
filesystem developed by QNX.The filesystem was first introduced within QNX Neu-
trino 6.4 real-time operating system, which today is owned and developed by Black-
berry. It is a power-safe file system [7] and can withstand a sudden loss of power
without corrupting or losing data. This property is especially useful for the forensic
examiner, as it can easily happen that evidence (e.g. a vehicle or smartphone) loses
its power supply due to a battery pack running empty.

Conrad Meyer
Central Office for Information Technology in the Security Sector (ZITiS), Zamdorfer Strafle 88,
Munich, Bavaria e-mail: conrad.meyer@zitis.bund.de

© The Author(s) 2022 109
C. Hummert, D. Pawlaszczyk (eds.), Mobile Forensics — The File Format Handbook,
https://doi.org/10.1007/978-3-030-98467-0_4

mailto:conrad.meyer@zitis.bund.de
https://doi.org/10.1007/978-3-030-98467-0_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_4&domain=pdf

110 Conrad Meyer

Table 4.1: Standard Parameters of the QNX6 Filesystem

Parameter | Value | Remark
Max physical Size 2TB2
Supported Standard Logical Blocksizes|512, 1024, 2048, 4096 Bytes
Max Filename Length 510 bytes UTF-8

Table 4.1 shows the standard values that are regularly used when formatting a volume
with the QNXG6 filesystem. Note, that especially in-car infotainment systems, those
values can be different (e.g. larger blocksize). All the addressing inside the filesystem
is based on the blocksize, extracted out of the superblock.

The following sections will give the reader an insight into the binary structures
of the most important parts of the filesystem, like a superblock or inode and some
basic knowledge about the mechanism when files are deleted.

4.2 QNX6 Filesystem Structure

To understand the principle behaviour and main functions of the QNX6 filesystem,
the following chapter shows the structure of a volume and how files, directories
and metadata are linked. Volumes can be formatted in QNX6 in little-endian or
big-endian style. All the examples in the following show a QNX6 Volume formatted
with little endianness. Fig. 4.1 shows the main parts of a QNX6 filesystem and their
standard size and addresses. The system area contains the Bitmap of the allocated

- - D - - - .

Fig. 4.1: Layout of a QNX6 filesystem volume

and unallocated Blocks of the Filesystem. Each bit represents a Block. Suppose the
volume is formatted in the standard way. In that case, the volume will start with
a volume boot record, which contains standard ASCII coded bootloader messages
(Fig. 4.2), already giving a hint that the Volume is formatted with QNX.

! Attention

Sometimes, on non standard volumes a partition directly starts with the Superblock.

4 QNX6

Offset
00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000080
00000040

00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000180
00000120
000001B0O
000001CO
000001D0O
000001EQ
000001F0

EB
00
01
00
10
00
FF
00

18
FF
2E
oD
4F
oA
00
61
20
72
3R
03
AS
55
00
Cco
c3
66
06
DE
FF
00
00

10
80
50
00
00
00
FF
00

00
FF

73

CB

00

64
oD
T4
3C
1B
66
[#]
co
04
44
02
Fé
0o
00

00

D2
Do
[]v]
00
[+]v]
0o
00
0o
0o
0o
CF
eF
T0
41
S2
73
49
0o
75
OE
3F
RR
01

a
g8

53
BB
40
16
BE
75
00
[¢]v]

10
0o
00
o
00
oo
FF
oo
0o
FF
oD
20
6F
20
61
6E
76
On
74

8
8

Fé
B4
16
BB
OF
00
89
00
0o
F9
00
0o

00
20
[v]¥)
00
00
00
FF
0o
oo
FF
OR
4c
T2
45
64
67
61
55
&9
16
06
41
B8
os
cD

0o
B8
Qo
00
Qo
00
00
0o
00
0o
51
eF
T4
72
20
20
&C
6E
2D
11
03
CcD
00
0o
10
OE
0z
42
cs
F4
s]s]
Qo

EB

D E F

oc
00
00
00

CD

00
36
00
00
00
00
00
00
00
00
31
00
49
oD
72
&eD
53
6F
00
06
BE
FB
B8
BE
10
Cc3
44
B
CF
00
00
AL

@?
ealdion A P.6
PE

£

S

&

| vy I
v i QNX vl
.2b Boot Loader
Unsupported BI
©s RAM Erxor
Disk Read Error
Missing C5 Im
age Invalid OS

Image Unsuppo
rted Multi-Boot
: . 1]

t &2 8 u %
¢< »*0°af ' @
Usu &4 t , PZA,
PE1A%C» <&@ Ex
Ae es T satl
A~ At » - I ged
£ %@ %\ %| ED
fxp § -BI AvE

Byr ~AxA edye ef
¢s 8A uiuldey

Fig. 4.2: Sector 0 of a QNX6 Partition/Volume

111

In the following, we will have a closer look at all the structures above. We will follow
those structures to construct a file and its metadata out of the filesystem information.

The example filesystem is in little-endian mode.

4.2.1 Superblock

The filesystem maintains two Superblocks or global root blocks. One of those blocks,
called the working Superblock, manages the modified data, while the other one, the
stable Superblock, consists of the original version of all the blocks. Which Superblock
is the active one is determined by the 64-bit long serial number. The Superblock
with the higher serial is the active one. After all, active write operations are done,
and the integrity is checked, the former working superblock becomes the new stable
one by updating the serial number (old superblock serial +1).

112 Conrad Meyer

The superblock contains the global information of the filesystem. Table 4.2 contains
the offset address of the main features of the Superblock.

Table 4.2: Main Features and their Offset in the QNX6 superblock

Parameter |Offset in Superblock| ~ Size (bytes)

Serialnumber 0x8 8
creation timestamp 0x10 8
last access timestamp 0x14 8
Volume ID 0x20 16
Blocksize 0x30 4

Root Inode Inodes 0x48 array 16 x 4 bytes

Root Inode bitmap 0x98 array 16 x 4 bytes

Root Inode longfilenames O0xES8 array 16 x 4 bytes

! Attention

When used with the standard driver issued by Blackberry and the default settings,
you can determine the last access to the filesystem by selecting the stable superblock
(highest serial) and checking the access timestamp (assuming that system time is
used was valid). However, some non-standard drivers don’t touch this timestamp, so
for reliable results, you have to test the drivers from the System where the image
originated in each case!

The superblock contains three root inodes that point to the main parts of the filesys-
tem. The first array root inode contains the pointers to the inodes that contain the data
(files, directories, data). The second one contains the pointers to the bitmap of the
allocated blocks, and the third one is the pointers to the long filenames (filenames >
27 utf8 characters, up to 510 characters). The data inside those root inodes is shown
in Table 4.3. Those root inodes contain pointers to the corresponding filesystem
parts. If the level parameter is zero, the root inode has 16 direct pointers. By adding
another level, indirect pointers are added, as shown in Fig. 4.4. Each indirect pointer
then points to a block containing inodes or indirect 32-bit pointers, depending on
the defined number of levels. The actual data is always at the lowest level of the tree.
Given the value of blocks that such a tree can address is 16 * (block size in bytes / 4)
level 5o, for example, with a level value of 2, and a block size of 1024 bytes, already
1,048,576 blocks can be addressed.

4 QNX6

Offset 0 1 2 3 45 6 7 8 9 ABCDEF ANSI ASCII
00002000 (22 11 19 €8 46 DA 79 SA 23 00 00 00 00 00 00 00 ™ hFUys#
00002010 | 1E 00 00 00 43 94 €C 60 00 01 00 00 04 00 03 00 c 1
00002020 [f4 08 BE 35 56 35 4F 2B 8C 24 B2 EB CB 2A 42 90 [%5VS04@Se&t B
00002030 |00 10 00 00 00 1% 00 00 A7 16 00 00 F8 C7 00 00 § of
00002040 |7E 7F 00 00 Ol 00 00 00 00 80 OC 00 00 00 00 Q0 ~ €
00002050 |CD 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF | 990vyevesiey
00002060 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 990909099evvevey
00002070 |FF EF FF FF FF FF FF FF FF FF FF FF FF FF FF FF QUUYOUUTVOULOLTY
00002080 | FF EF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Yyyyvyyvvovevivy
00002090 |01 01 00 00 00 00 00 00 FF 18 00 00 00 00 00 00 ¥
000020A0 |00 00 00 00 Ol 00 00 00 FF FF FF FF FF FF FF FF Fea s d
00002080 |EFF EF FF FF FF EF EF FF FF FF FF FF FF FF FF FF SUVyeyivyovssvvy
000020C0 |FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF SUyyvvyvvovevivy
000020D0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF | 9y9900viviviviiy
000020E0 |00 01 00 00 00 00 00 00 00 BO 03 00 00 00 00 00 .
000020F0 73 7F 00 00 FF FF FF FF FF FF FF FF FF FF FF FF s Qyyyyovevyvy
00002100 |FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 9U9yvvvvyovevivy
00002110 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

00002120 FF EF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Q9Uyoyyvyovevevy
00002130 |01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00002140 |FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF | QU09000veeveviey
00002150 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF U0900000900909y
00002160 FF EF FF FF FF FF FF FF FF FF FF FF FF FF FF FF QUU900009evevesy
00002170 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF QUuyouyvsovevesy
00002180 00 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00002190 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000021A0 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000021B0 |00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00 QO

000021CO |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000021D0 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000021E0 |00 00 00 00 00 0O 00 00 00 00 00 00 0O 00 00 0O
_000021F0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Offset Title Value

2000 Magic p2111968

2004 Checksum 46 DATIOA

2008 Serial 23 00 00 00 00 00 00 00

2010 CTime 01.01.1970 00:00:30

2014 ATime 06.04.2021 17:02:59

2018 Flags 00010000

201C Version1 0400

201E Version2 0300

2020 Volumeld 9408 BE 3556 354F 2B 8C 24B2EB CB2A 4290

2030 BlockSize 0010 00 00

2034 Number of INodes 00190000

2038 Free INodes A7 1600 00

203C Number of Blocks F8C70000

2040 Free Blocks TE 7F 0000

2044 Allocation groups 01000000

Root Node

2048 size 00 80 0C 00 00 00 00 00

2050 Pointer CD 00 00 00 FF

2090 Levels 01

2091 Mode 01

2092 Spare 00 00 00 00 00 00

Fig. 4.3: An example of a QNX6 superblock.

Table 4.3: Structure of the root inodes

Parameter| Offset in root inode| ~ Size (bytes)
Size 0x0 8
Pointer 0x8 array 16 x 4 bytes
Levels 0x48 1
Mode 0x49 1

113

114 Conrad Meyer

Irﬂ 'M'
Block 1 Block 16
Ind. Ind.
1 R f Level 1
Ind. SN Ind. Level 2
Block 1 Block n
patablock [Datablock Data
1 n “Leaves”

Fig. 4.4: Tllustration of inode levels, here a level value of 3

4.2.2 Bitmap

The Bitmap block is used to determine whether a block in the filesystem is used
or not. Each bit in the bitmap represents a block. A value of 0 means the Block is
unused, 1 means that the Block is allocated. If the volume size is smaller than the
bits available in the Bitmap Block, the unused bits are stuffed with ones. The bitmap
incorporates two parts. First, system area 1 is split into two halves, where the upper
half is used by superblock 1, and the lower half is used by superblock 2. This bitmap
area contains the bitmap, inode and indirect addressing blocks of those structures.
Second, the bitmap of the blocks that are not used for the filesystem structure (bitmap
and inodes). The preallocation of the first system area block leads to the effect that
each superblock always works on its own filesystem structure, and to the point that
there is always a non-corrupted structure, even in the case of a sudden power loss (a
superblock is just becoming the stable one, if all write operations are done, see sect.
4.2.1).

Fig. 4.5 depicts the end of the used space of the bitmap pointed to in the example
superblock from Fig. 4.3. The bitmap comprises two blocks, starting at 0x3000,
and the volume contains a total of 0xC7F8 blocks. In Fig 4.5, the stuffing of the
unused space with ones therefore starts at 0x48FF: Bitmap starting address: 0x3000
+ number of blocks 0xC8f8 divided by 8 (each Block represented by 1 bit).

4 QNX6

Cffset
000037F0
00003800
00003810
00003820
00003830
00003840
00003850
00003860
00003870
00003880
00003890
000038A0
000038B0
000038C0
000038D0
000038E0
000038F0
00003500
00003510
00003920
00003930
000035940
00003950
00003960
00003570
000035980
00003990
000035A0

4.2.3 Inode

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
o]0}
00
o]0}
00
o]0}
00
[s]0}
00
00
[+]v}
00
00
00
[+]v}
00
[+]v}
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

2
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

Fig. 4.5: An example of a QNX6 Bitmap

3
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

4
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
Fo
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

]
00
0o
00
0o
00
0o
00
0o
00
0o
[+]v}
0o
00
0o
[+]v}
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

6
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

7
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

8

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

S
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

A B

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

00
o]0}
00
o]0}
00
o]0}
00
[s]0}
00
00
[+]v}
00
00
00
[+]v}
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

C
00
00
00
00
00
00
00
00
00
00
00
00
00
0o
00
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

D
00
alt]
00
alt]
Llv]
alt]
Llv]
alt]
Llv]
alt]
Llv]
00
(v
oly]
(v
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

E
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

F
00
0o
00
0o
00
0o
00
0o
00
0o
[+]v}
0o
00
0o
[+]v}
0o
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

YYYYYYTYYIYIYYY

115

On the lowest level of the root inode tree, in the "leaves", the direct inode data is
found. Depending on the level defined, also those inodes can address other indirect
inode addressing blocks. An inode contains a vast amount of data useful for the
forensic examiner, e.g. permissions, access time, change time, and modification
time. Table 4.4 shows the offsets and the size of the various parameters in an inode.

116 Conrad Meyer

Table 4.4: Structure of an inode

Parameter |Oﬁset| Size (bytes)

size 0x0 8

uid 0x8 4

gid 0xC 4
ftime 0x10 4
mtime 0x14 4
atime 0x18 4
ctime 0x1C 4
mode 0x20 2

blockpointer| 0x24 |array 16 x 4 bytes

Levels 0x54 1

status 0x49 | 1 (see table 4.5)

Table 4.5: inode status byte

Value| Status

Ox1 |directory
0x2 | deleted
0x3 | normal

As QNX OS is in line with the POSIX standards; also the timestamps are. The epoch
is the standard POSIX (or UNIX) epoch, the 01.01.1970, 00:00 UTC. From that
epoch, the timestamps are counted in seconds. The modified timestamp (mtime) is
the time of the last write operation on this specific file. The access timestamp (atime)
tells the examiner the time the file was last read. The change timestamp (ctime) is
changed when the permissions of a file are changed. So ctime can be changed without
achange in atime. The timestamp ftime is not fully referenced in the POSIX standard.
Like in many other filesystems, it is the timestamp when the file was created. The
inode 1 always contains the root directory, and inode counting starts with 1.

! Attention

When it comes to timestamps, the forensic expert has to pay attention to the reliability
of the timestamps given. This is especially true for QNX6. Not all timestamps are
actualised on some systems, as with QNX with the standard QNX6 file-system driver.
Whenever possible, tests with the system you are examining should be performed
(e.g. changing permissions, modifying files, etc.)!

4 QNX6

Cffset g 1 2 3 4 5 6 7 & 8 A B C D E F ANSI ASCII
00006360 |FF FF FF FF 00 03 00 00 Q0 00 00 00 00 00 00 00 | ¥¥¥¥
00006370 00 00 00 00 OC 00 00 QO ©QO0 00 DO 00 0C 00 00 00
00006380 00 10 00 00 0C 00 00 00 €O 00 00 00 00 00 00 0O
00006350 | F8 03 00 00 4D 93 6C €0 13 94 6C 60 4D 93 6C 60 & M™1° "1°M™1°
000063A0 ED 41 03 00 72 7F 00 00 FF FF FF FF FF FF FF FF | iA =
00006380 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF yyywvivovvvivivy
000063C0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF | ¥9uvevevvoevviiy
000063D0 FF FF FF FF FF FF FF FF FF FF FF EFF FF FF FF FF | SOUOPReevperviesy
0Q0C063E0 FF FF FF FF 00 03 00 00 Q0 00 00 00 00 00 00 00 ¥¥¥¥
000063F0 00 00 00 00 OC 00 00 00 @O0 00 00 00 00 00 00 OO
00006400 00 10 00 ©0O OC 00 00 €O €O 0O 00 OO0 QC Q0 00 00
Offset Title VYalue
360 Sae 0100000000200 20
363 Uid 20000000
236C Gid J00000 00
290 Fletme s 00:16:56
B4 Mad tme JLszn 165853
29 Acczssime 2604200 T2
530 Chargztime pavein] 16:58:53
33A] Made D4
2A2 EctMode E00
Elocsptr
Al BlockPr 0 T TF0000
3343 BlackPtr FFFFF FF
AT BlockPlr 2 FFFFFFF
380 BlockPr 3 F FFFFFF
E=L2 BlockPtr 4 FFFFFFF
388 BlockPr 5 FFFFFFF
8L BlockPr 6 F FFFFFF
20 BlockPtr 7 FFFFFFF
260 BlockPlr 8 FFFFFFF
23C8 BlockPr 9 FFFFFFF
A BlockPlr "0 FFFFFFF
201 BlockPtr *1 F FFFFFF
304 BlockPtr “2 FFFFFFF
303 BlockPrr °3 FFFFFFF
DT BlockPtr "4 FFFFFFF
2E0 BlockPlr *5 FFFFFFF
34 Flelevels o
i3] Status B
L6 Unkewn oo
2 Zero 30,0000 0000000 20 00 006000020320 200000 00009202)¢)

Fig. 4.6: An example of a QNX6 Inode.

4.2.4 Directories

117

Inodes with the status 0x3 point to a directory file system object that contains sub-
directories and file entries with names shorter than 27 UTF-8 characters. An entry
starts with the inode number of that entry, where you can find the metadata like
timestamps and the pointers to the Data or other directories, followed by a name

length field and the actual name. A directory always contains a "." and a ".." entry.
The "." entry contains the inode number of the directory inode, and the ".." entry

118

Conrad Meyer

contains the inode number of the parent directory inode. In the example Fig. 4.7,
those entries are both pointing to the same inode number because the directory

shown is the root directory.

Ctfset
0TF12FDO
QOT7F12FEQ
0T7F12FFO
07F13000
O7F13010
07F13020
0TF13030
OTE13040
0TF13050
QO7F13060
Q7F13070
0T7F13080
QO7F13020
07F130A0
0TF130B0
07F130C0
0T7F130D0
07F130EQ
OT7F130F0
07F13100
07F13110
QO7F13120
07F13130
07F13140
07F13150
07F131e0
0TF13170
07F13180
07F131%50
OT7F131A0

oo
00
oo

1 00

0o

1 00

00
00
oo
00
oo
00
0o
oo
00
00
oo
oo
00
00
0o
00
00
00
50
oo
73
00
73
00

s]s}
0o
00
00
00
00
00
00
s]s}
0o
00
00
00
00
00
ols}
o0
oo
00
00
00
00
00
ols}
&5
oo
€8
00
68
00

3
s]s}
e}
00
00
00
00
00
00
s]s}
e}
00
00
00
00
00
ols}
o0
oo
00
00
00
00
00
ols}
T2
oo
00
00
00
00

Table 4.6: Directory entry

Parameter |Offset|Size (bytes)

Inode number| 0x0 4
Namelength | 0x4 1
Name 0x5 | upto27

4 5 & 7 & 9 A B C D E
00 00 00 OO0 0O 00 00 00 00 00 00
Q0 00 00 00 00 OO0 Q0 00 00 Q0 00
00 00 00 OO 0O OO0 00 00 00 00 0O
01 2E 00 00 00 00 00 00 00 Q0 00
00 00 00 00 00 00 00 00 00 00 00
02 2E 2E 00 00 00 00 00 00 00 00
Q0 00 00 00 00 00 Q0 00 00 Q0 00
05 2E 62 oF 6©F 74 00 00 00 Q0 QO
00 00 00 OO0 0O 00 00 00 00 00 00
03 62 €9 6E 00 00 Q0 00 00 Q0 00
00 00 00 OO 0O OO0 00 00 00 00 0O
03 €5 74 €3 00 00 00 00 00 Q0 0O
00 00 00 00 00 00 00 00 00 00 00
04 €9 €6E 66 &F 00 00 00 00 00 00
Q0 00 00 00 00 00 Q0 00 00 Q0 00
03 eC &% &2 00 00 00 00 00 QO QO
00 00 00 00 00 00 00 00 00 00 00
03 &F 70 74 00 00 00 00 00 QO 0O
00 00 00 00 0O 00 Q0 00 00 00 00
03 75 73 72 00 00 00 00 00 00 0O
00 00 00 OO0 00 OO0 00 00 00 Q0 00
08 66 6C 61 73 68 2E T3 68 00 00
00 00 00 00 00 00 00 00 00 00 00
13 &6 6F 72 €D &1 T4 41 70 TO 43
73 2E 73 €8 00 00 00 00 00 00 00
OE €6 €F 72 €D 61 T4 42 6F &C &F
00 00 00 00 0O 00 Q0 00 00 00 00
OE 66 6F 72 €D 61 74 42 6F 6C &F
00 00 00 OO0 00 OO0 00 00 00 Q0 00
00 00 00 00 0O 00 Q0 00 00 00 00

F
e]s}
ele]
oo
00
00
0o
00
00
e]s}
ele]
oo
00
00
0o
00
oo
o0
oo
00
00
00
00
00
68
o0
31
00
32
00
00

flash.sh

formatAppCh

kFers.sh

.8h

.sh

formatBolol

formatBolo2

Fig. 4.7: An example of a QNX6 directory. Here, the root directory is shown.

A long directory entry has a different structure (Table 4.7). It includes the Inode, in
which the timestamps and pointers to the data are. Furthermore, the long filenames
inode Number, where the entry’s name is found, is noted in this structure. An example

of a long filename/directory entry is displayed in Fig. 4.8.

4 QNX6

Table 4.7: Long Directory entry

Parameter |Offset|Size (bytes)
Inode number 0x0 4
size 0x4 1
Long Filenames Inode Number| 0x8 4
checksum 0x12 | checksum

Dffset & 7 8 &« A B C D E F
O7F75000 00 00 00 00 00 00 00 00 00 00
07F75010 O 00 00 00 00 00 00 00 00 00 00
07F75020 2E 00 00 00 00 00 00
07F75030 00 00 00 0O 00 00 00 00 00 00 00
07F75040 €9 62 00 00 00 00 00 00 00 00 + 1ib
DTET5050 00 00 ©0 00 00 00 00 00 00 0O

DTF75060 |58 02 00 OO0 18 66 €9 6C €5 €6 €F 72 €D €1 74 €8 X fileformath
D7F75070 |€1 €E €4 €2 €F €F €B 2E €1 73 €3 €9 €9 00 00 00 andbook.ascii

O7F7508B0 | 5% 02 00 00 FF 00 00 00 2B 00 00 00 95 D8 €D SB | Y ¥ + ™Zm [
07F750%0 |00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 I

07F750A0 | Q0 00 €C Q0 OC 00 00 €0 OO0 OO 00 00 00 00 00 00

Fig. 4.8: An example of a QNX6 inode entry of a long filename

4.2.5 Long Filenames Inode

119

If a file or directories length is longer than 27 UTF-8 characters, the name is stored
in the long filenames node. Long filenames Inodes start counting with zero. The

structure is shown in Table 4.8, an example is Fig. 4.9.

Table 4.8: Long Filenames Inode

Parameter |Offset| Size (bytes)

2

filename length| 0x0
up to 510 bytes

filename 0x2

4.3 Example: Construction of a file

To understand how a file can be retrieved from the filesystem data, we will manually
find the file /usr/fileformathandbook.ascii with its content and metadata by using the

120 Conrad Meyer

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
24 00 66 69 6C 65 66 6F 72 €D €1 74 €8 61 6E 64 5 fileformathand
62 6F 6F 6B 76 €5 72 79 6C 6F 6E €7 6E 61 €D €5 bookverylongname
2E €1 73 €3 €9 €9 00 00 00 00 00 00 00 00 00 00 | .ascii
00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00

Fig. 4.9: An example QNX6 long filenames entry

filesystem information. We will begin the reconstruction from the root directory. As
already mentioned in the previous chapter, inode 1 contains the root directory. From
there, we will start finding the file in the filesystem structure. The first step is to
determine the valid stable superblock by the serial number. The superblocks inode
root block is shown in Fig. 4.10

Cffset 0 1 2 3 4 5 & 17 8 8§ A B C D E F ANSI
22 11 19 63 46 DA 79 9A 23 00 00 00 00 00 00 00 ™ hFUyS#
1E 00 00 00 43 94 6C 60 00 01 00 00 04 00 03 00 c~L*

94 08 BE 35 56 35 4F 2B 8C 24 B2 EB CB 2A 42 90 " %5VSO+ES<EE*B
00 10 00 00 00 19 00 00 AT 16 00 00 F8 C7 00 Q0

7E 7F 00 00 01 00 00 00 00 80 OC 00 00 00 00 QO
CD 00 00 00 FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
01 01 00 00 00 00 00 Q0 FF 18 00 00 00 00 00 0O

Fig. 4.10: Inode Root block used in the file reconstruction example

The root block tree has one level, meaning that we go on with the indirect inode
block in the next step. The formula can easily calculate the physical address of those
blocks:

blockaddress = blocknumber x blocksize + of fset

On standard QNX6 Volumes, the offset is the superblock size + the offset of the
beginning of the superblock. Thus, the first indirect inode block is located at 0xCD
* 0x1000 + 0x3000 = 0xD0000, where 0xCD is the block number, 0x1000 the
blocksize and 0x3000 the global offset due to the superblock with size 0x1000 and
start at 0x2000. From the indirect inode (Fig. 4.11), we can retrieve the number
0x03, and by this, the address of the first inode block, which is located at 0x6000.
The first inode in this block is the root inode. If we take the first block pointer,
0x7F10, of this inode, we get the address of the root directory: 0x7F13000. This root
directory, Fig. 4.13 is already familiar to us, as the second version of it is shown in
Fig. 4.7, but this time, it is the root directory maintained by the first superblock.
In the root directory, we take the inode number for the /usr directory, 0x08. With this
number, we go back to the first Inode Block, where the inode 8 is located at 0x6380
(0x6000, where inode 1 is located plus 7 * 0x80 offset, for the preceding inodes).
From that inode (Fig. 4.14) we can then calculate the /usr directory offset in the way
we already did for the root directory. The /usr directory is defined at block 0x7F72

4 QNX6 121

Offset o 1 2 3 4 5 6 7 8 % A B C D E F IST ASCII
000DO000 | 03 00 00 00 CF 00 00 00 DO 00 00 00 D1 00 00 00 i » W
000DO010 (D2 00 OO 00 D3 00 OO 00 D4 00 00O OO DS gogo oo &6 &6 & &
000D0020 | OB 00 00 00 D7 00 00 00 OD 00 00 00 OE 00 00 00 x

000D0030 |DA 00 0O 00 DB 00 00 OO0 DC 00 00 00 DD 00 0O 00 |G @ & ¥
000D0040 |13 00 00 00 DF 00 00 00 EO 00 00 00 16 00 00 00 8 a

000D0O050 17 00 00 00 18 00 00O OO0 19 00 00 00 1A 0O 00 0O
000D0060 1B 00 00 00 1C 00 00 00 1D 00 00 00 1lE 00 00 00

Fig. 4.11: Indirect inode block

Cffset o 1 2 3 4 5 & 7 g8 898 A B C D E F ANSI ASCII
00006000 00 10 00 00 00 00 00 00 0O 00 00 00 00 00 00 00
00006010 1E 00 00 00 CC 43 6D 38 10 94 6C €0 0OC 44 6D 38
00006020 FD 41 09 00 10 7F 00 00 FF FF FF FF FF FF FF FF
00006030 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00006040 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00006050 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00006060 FF FF FF FF 00 01 00 00 00 00 00 00 00 00 00 00
0000e070 00 00 00 00 00 OO OO OO 00 00 OO 0O 00 00 OO ©O
00006080 |00 10 00 00 00 Q00 00 00 0O 00 00 00 00 00 00 QO
00006090 1E 00 00 00 1E 00 00 00 1E 00 00 00 OC 44 6D 38 Dm8

Fig. 4.12: inode 1 which contains the pointers to the root diretory

Offset o 1 2 3 4 5 & 7 8 9 A B C D E F BNSI ASCII
07F13000 |01 00 00 00 O1 2E 00 00 0O 00 00 00 00 00 00 0O
07F13010 |00 00 00 00 00 0O 0O 00O 0O 00 00 00 00 00 00 00
07F13020 |01 00 00 00 02 2E 2E 00 00 00 00 00 00 00 00 0O
07F13030 |00 00 00 00 00 0O 0O 00 0O 00 00 00 00 00 0O 00

07F13040 |02 00 00 00 0S5 2E 62 €F &F 74 00 00 00 00 00 00 .boot
07F13050 |00 00 00 00 00 0O 00 00 0O 00 00 00 00 00 00 00

07F13060 |03 00 00 00 03 €2 69 6€E 00 00 00 00 00 00 00 00 bin
0OT7F13070 |00 00 00 00 00 0O 0D 00 00 00 00 QO 00 00 00 QO

07F13080 |04 00 00 00 03 €5 74 €3 00 00 00 00 00 00 00 00 etc
0O7F130%0 |00 00 00 00 00 0O 0D 00O 0O 00 00 QO 00 00 0O QO

O7F130A0 |05 00 00 00 04 €9 6E 66 &F 00 00 00 00 00 00 00 info
07F130B0 |00 00 00 00 00 QO 00 00 0O 00 00 00 00 00 00 0O

07F130C0 |06 00 00 00 03 6C 69 62 00 00 00 00 00 00 00 00 1ib
07F130D0 |00 00 00 00 00 QO 0D 00 0O 00 00 00 00 00 00 00

07F130E0 |07 00 00 00 03 6F 70 74 00 00 00 00 00 00 00 00 opt
07F130F0 |00 00 00 00 00 QO 0D 00 OO 00 00 00 00 00 00 QO

07F13100 08 00 00 00 03 75 73 72 00 00 00 00 00 00 00 0O usr
07F13110 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00 D!

07F13120 |1C 00 00 00 08 €66 6C 61 73 €8 2E 73 68 00 00 00 flash.sh

O7F13130 |00 00 0O 00 00 00 0O 00 0O 00 00 00 00 00 0O QO

Fig. 4.13: Root Directory

which is at offset 0x7F75000. Here we see now our filename and the corresponding
inode Number, where the metadata and pointer to the file content is.

We see that the fileformathandbook.ascii file has the inode number 0x258. Know-
ing this, we have to find the offset where this inode is defined. With a block size of
0x1000 and an inode size of 0x80, each inode block contains 0x20 inodes, so the
inode we are looking for is the 24th inode in inode block number 19. Going back to
Fig. 4.11, the 19 inode block is at physical block OxEO, calculated address 0OXxE3000

122 Conrad Meyer
Offset Title Value

6380 Size 00 1000 00 00 00 00 00

6388 Uid 00000000

638C Gid 00000000

63%0 File time 01.01.1970 00:16:56

6334 Mod. time 06.04.2021 16:58:53

6398 Access time 06.04.2021 17:0211

639C Change time 06.04.2021 16:58:53

63A0 Mode ED41

63A2 ExtMode 0300

0000€370 00 00 00 00 00 00 00 OO0 00 00 00 00 00 OO 00 00

0000€380 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00006390 F8 03 00 00 4D 93 6C €60 13 94 6C €0 4D 93 €éC 60 o M™1® "1°M™1°
00006320 |ED 41 03 00 72 7F 00 00 FF FF FF FF FF FF FF FF iA Foiiiivy
000063B0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 00000000090 009y
000063C0 | FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF §9y0U099yovvveey
000063D0 | EF FF EF EF FF FF FF FF EF FF EF EF FF FF FF EF §yy99999y900099y
0000€3E0 FF FF FF FF 00 03 00 00 00 00 00 00 00 00 00 00 ¥9¥¥

0000€3F0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Fig. 4.14: Inode 8, which has the pointer to the /usr directory in our example
Offsec 0 1 2 3 4 5 6 7 8 9 A B C D EF ANSI ASCII
07F75000 |08 00 00 00 01 2E 00 00 00 00 00 00 00 00 00 00

07F75010 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O

07F75020 |01 00 00 00 02 2E 2E 00 00 00 00 00 00 00 00 00

07F75030 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O

07F75040 | 2B 00 00 00 03 6C €9 62 00 00 00 00 00 00 00 00 =+ 1lib
07F75050 |00 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 0O

07F75060 | S8 02 00 00 18 66 69 6C 65 €6 6F 72 6D 61 74 68 X fileformath
07F75070 |61 6E €4 €2 6F 6F 6B 2E 61 73 €3 €9 69 00 00 00 andbook.ascii
07F75080 |S9 02 00 00 FF 00 00 00 2B 00 00 00 99 D8 €D 5B Y ¥ + >om[
07F75050 |00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O

Fig. 4.15: /usr directory with the entry of the file we are looking for

+ 0xB80 (24th inode in Block). In this inode, depicted in Fig. 4.16 we find all the
relevant filesystem metadata for this file and the pointers to the filesystem content.
Following now the pointers to the content, beginning with 0x19D, we can retrieve
the file block by block (Fig. 4.17).
After demonstrating the retrieval of the example file from the file system data, it
is easy to understand the next section, which shows the possibilities to reconstruct

deleted files.

4.4 Deleted Files

There are some possibilities to recover deleted files in a QNX6 Volume, depending,
when the file or directory was deleted and what happened with the filesystem in the
meanwhile. Deleting an entry (directory or file) in QNX6 means that the Status in

4 QNX6

Offset Title Yalue
E3B80 Size 9C 16 00 00 00 00 00 00
E3B88 Uid 00 00 00 00
E3BSC Gid 0000 0000
E3B90 File time 06.04.2021 16:57:31
E3B94 Mod, time 06.04.2021 17:02:39
E3B98 Access time 06.04.2021 17:02:56
E3B9C Change time 06.04.2021 17:02:39
E3BAD Mode FD 81
E3BA2 ExtMode 0100
Blockptr
E3BA4 BlockPtr 0 9D 010000
E3BAB BlockPtr 1 1C 320000
E3BAC BlockPtr 2 FF FFFFFF
E3BBD BlockPtr 3 FFFFFFFF
UOUESBEU TPFF T FEF FF OU U3 00U 00 UUT00T0UT 00T OUTOUTOUTOuU TYYYY
QO00E3B70 00 00 00 00 00O 00 00 00 ©O 00 00 00 00 00 00 00
QO0Q0E3B80 SC 16 00 00 00 00 00 Q0O ©O OO OO0 0O OO OO0 Q0 00
000E3B90 FB 92 6C 60 2F 94 6C 60 40 94 6C 60 2F 94 6C 60 @'1° /"1 @1 /"1"
QOQE3BAO FD 81 01 00 9D 01 00 00 1C 32 00 00 FF FF FF FF ¥
000E3BB0O FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
QO0QE3BCO EFESEENEFSEENFESEESEESFENSEES EES EENFESEESEESEENFE
QO00E3BDO FE FF FF FF FEF FF FE FE FF EF¥ FF EF¥ FF FF FE EF
QOQE3BEO FF FF FF FF 00 03 00 00 ©O0 00 00 00 0O 00 00 00
QO00E3BFO 00 00 00 OO0 OO 00 OO OO ©O 00 OO0 00 00 00 0O 00

Fig. 4.16: Inode entry of our example file

Offset 0 1 2 3 q 5 [7 8 9 A B C D E F ANSI ASCII
0O01SFFDO 00 00 Q0 00 00 QO QO 00O 0O 00 OO 00 QO 0O 0O QO
001SFFEOQ 00 00 00 00 00 00 0O 00 0O 00 00 00 0O 0O 00 00
0O01SFFFO 00 00 00 00 00 QO QO OO 0O 0O OO 00 QO 0OO 0O 00
00120000 E‘] 68 69 73 20 69 73 20 61 20 54 65 73 74 €66 69 This is a Testcfi
001A0010 €6C 65 20 66 €F 72 20 74 68 65 20 46 69 6C 65 20 1le for the File
001a0020 46 6F 72 €D €1 74 20 68 61 6E €4 62 6F €F €B 2E | Format handbook.
001A0030 20 54 68 €9 73 20 54 €5 T3 74 €6 €9 &C €5 20 eA This Testfile j
001a0040 75 73 74 20 72 65 70 65 61 T4 73 20 74 &8 65 20 | ust repeats the
001A0050 73 61 6D €5 20 74 65 78 74 20 6F 76 65 T2 20 61 same TeXt over a
00120060 6E 64 20 &6F 76 €5 72 20 61 €7 61 €9 6E 2E 20 54 nd over again. T
001A0070 €8 69 73 20 €9 73 20 61 20 54 65 73 74 66 69 6C his is a Testfil
001a0080 65 20 66 &F 72 20 74 &8 &5 20 46 €9 6C €5 20 46 e for the File F
001A0090 €6F 72 6D 61 74 20 65 61 6E 64 62 6F 6F 6B 2E 20 | ormat handbook.
001A00A0 54 68 69 T3 20 54 65 73 74 66 69 €C 65 20 77 €1l | This Testfile wa

Fig. 4.17: Content of our example file

123

an Inode switches to "deleted" (see Table 4.5) and that the entries inode number is
deleted from the directory as shown in Fig. 4.18. By this, it is not possible to recover
a file by its name, because there is no link anymore between the filename and the
inode containing the metadata and the pointers to the file content. If a directory is
updated after a file was deleted (e.g. a new file is added), the filesystem driver moves
the directory to another block. The filename is “lost” from the regular filesystem

124 Conrad Meyer

directory tree. Also, the blocks, which contain the content of the files are set to
unused in the bitmap, which means, they are free to be overwritten by other data.
Knowing this, there are still some possibilities to recover files, with and without their
respective names.

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F
O7FDT7FF0 |FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF @F
O7FDE000 |08 00 00 00 01 2E 00 00O 0O 00 00 00 0O 00 00 QO
07FD8010 |00 00 00 0O 00 00 00 OO 0O 00 00 OO 0O 00 00 QGO
07FDE020 |01 00 00 00 02 2E 2E 00 00 00 00 00 Q0 0O 00 00 .
07FDE8030 |00 00 00 0O 00 00 00 OO 0O 00 00 OO 0O 00 00 OO
07FDE040 2B 00 00 00 03 &C 69 62 00 00 00 00 00 00 00 00 + lib
07FD80O50 |00 00 00 0O 00 0O 00 OO 00 00 00 OO 00 00 00 QO
O7FDE0E0 00 00 00 00 18 €6 69 6C &5 €6 6F 72 €D €61 74 &8 fileformath
O7FDB070 |61 6E 64 62 6F 6F 6B 2E 61 73 63 69 €9 00 00 00 | andbook.ascii

O7FD80O80 |00 00 00 OO FF 00 00 OO 2B 00 00 00 99 D8 &D SB ¥ + gm|
07FD80S0 |00 00 00 0O 00 00 00 OO 0O 00 00 OO 00 00 00 QO
Offset: 7FD7FFF = 255 | Block:
00 01 2E 00 00 00 00 00 00 00 00 00 00

0 00 00 00O OO0 OO 00 00 00 OO 0O 00 00
00 00 00 00 00 00 00 00 00

(==
o
[=]
(X
(=]
=]
[
&

0
07FD8020 |01 00 00
O7FDE8030 |00 00 00 00 00 00 00 OO0 0O 00 00 00 QOO 00 00 0O

Q7FD8040 |(2B 00 00 00 03 6C 69 62 00 00 00 00 00 00 00 00 | + 1lib
Q7FD8050 |00 00 Q0 Q0 00 00 Q0 Q0 00 Q0 Q0 00 Q0 Q0 00 00

O7FD8060 |58 02 00 00 18 66 €69 6C €5 66 6F 72 6D 61 74 68 | X fileformath
Q7FD8070 61 6E 64 62 6F 6F 6B 2E 61 73 63 69 69 00 00 00 | andbook.ascii
O7FD8& 00 00 00 00 00 00 00 OO0 00 00 00 00 QO 00 00 00

Q7F] 90 |00 00 00 0O 00 00 OO OO 0O 00 00 00 OO QO 00 00

O7FD80AO |00 00 00 00 00 00 00 Q0 00 00 00 00 QO 00 00 00

QO7FD80BO 00 00 00 00 00 00 Q0 Q0O OO 00 00 00 OO QO 00 00

Fig. 4.18: Directory entry before (bottom) and after (top) deletion

The first possibility, if the file was just deleted recently, it may still be present in the
non-active filesystem structure of the second superblock. If this is the case, the file
can normally be fully recovered, even with its content (still, it is possible that the
content is not original).

Second, you can parse the inodes to recover files with their metadata without
the associated filename. This fact is quite problematic because the Blocks do not
necessarily still contain the files original data.

In conclusion, we see that the reconstruction of files is sometimes possible. How-
ever, compared to some other filesystems (e.g. NTES), there is a smaller possibility
to recover deleted files from the filesystem information. In some special cases where
you can prove the integrity of a file in another way (e.g. some packed/zipped files),
it is still helpful to take advantage of the inode structure and the possibility to put
together fragmented files from the pointers inside the inode.

4 QNX6 125

4.5 Forensic Tools supporting QNX6 filesystems

The Linux kernel includes a read-only driver for QNX6 (and QNX4) file systems.
Also, some mobile forensic tools like UFED physical analyzer support this file
system to a certain degree. Until today, those tools just support volumes formatted
with the standard values shown in Table 4.1. Lately, there have been some projects
in the Autopsy / Sleuthkit community to support QNX6, but until today, none of the
projects has come to an end.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the
chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Chapter 4 QNX6
	4.1 Introduction
	4.2 QNX6 Filesystem Structure
	4.2.1 Superblock
	4.2.2 Bitmap
	4.2.3 Inode
	4.2.4 Directories
	4.2.5 Long Filenames Inode

	4.3 Example: Construction of a file
	4.4 Deleted Files
	4.5 Forensic Tools supporting QNX6 filesystems

