Skip to main content

Feeding Strategies of Baleen Whales Through a Behavioral Ecology and Evolutionary Lens

  • Chapter
  • First Online:
Ethology and Behavioral Ecology of Mysticetes

Part of the book series: Ethology and Behavioral Ecology of Marine Mammals ((EBEMM))

Abstract

Baleen whales are some of the largest animals to have lived on the planet. They have evolved a feeding mechanism that allows for large amounts of prey-laden water to be processed, which in turn promotes extraordinary energetic gains and helps promote the evolution of gigantic body size. To contextualize the feeding strategies that baleen whales exhibit, it is imperative to first understand the evolution of baleen and filter feeding, how and why it developed, and how it has provided the foundation for the behaviors that are observed today across a range of species in varying habitats. Our first glimpses into baleen whale underwater foraging behavior initially came from a combination of at-sea visual observations and thorough examination of the anatomy and functional morphology of feeding structures in fossil and extant species. More recently, biologging tools have opened new doors to quantify and measure the biomechanics, timing, rates, organization, performance, and energetics of feeding behavior. Most importantly, this emergent technology has allowed researchers to understand how baleen whale behavior is influenced by and relates to their environment and prey. These insights are fundamentally changing our understanding of the roles of baleen whales in ocean ecosystems and provide valuable information for mitigating the negative impacts that human activity has on the health of baleen whales. The continued development of technologies provide greater opportunity to learn how we can use these mammalian giants as sentinels of ocean health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahms B, Hazen EL, Aikens EO, Savoca MS, Goldbogen JA, Bograd SJ, Mate BR et al. (2019) Memory and resource tracking drive blue whale migrations. J Proc Natl Acad Sci 201819031. https://doi.org/10.1073/pnas.1819031116

  • Allen AN, Goldbogen JA, Friedlaender AS, Calambokidis J (2016) Development of an automated method of detecting stereotyped feeding events in multisensor data from tagged rorqual whales. Ecol Evol 6(20):7522–7535. https://doi.org/10.1002/ece3.2386

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumgartner MF, Mate BR (2003) Summertime foraging ecology of North Atlantic right whales. Mar Ecol-Prog Ser 264:123–135. https://doi.org/10.3354/meps264123

    Article  Google Scholar 

  • Cade D, Seakamela M, Findlay K, Fahlbusch J, Kahane-Rapport S, Oestreich W, Calambokidis J et al (2020) The Patchy distribution of Krill within temporally transient large swarms drives collective exploitation by Super Groups of Rorqual Whales. Paper presented at the Ocean Sciences Meeting 2020

    Google Scholar 

  • Calambokidis J, Munger LM, Soldevilla MS, Ferguson MC, Havron AM, Camachots DL, Hildebrand JA (2014) Seasonal distribution and abundance of cetaceans off Southern California estimated from CalCOFI cruise data from 2004 to 2008. Fish Bull 112(2–3):198–220. https://doi.org/10.7755/fb.112.2-3.7

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9(2):129–136

    Article  CAS  Google Scholar 

  • Cotte C, Guinet C, Taupier-Letage I, Mate B, Petiau E (2009) Scale-dependent habitat use by a large free-ranging predator, the Mediterranean fin whale. Deep-Sea Res Part I-Oceanogr Res Pap 56(5):801–811. https://doi.org/10.1016/j.dsr.2008.12.008

    Article  Google Scholar 

  • Croll DA, Acevedo-Gutiérrez A, Tershy BR, Urbán-Ramı́rez J (2001) The diving behavior of blue and fin whales: is dive duration shorter than expected based on oxygen stores? Compar Biochem Physiol Part A Mol Integr Physiol 129(4):797–809

    Google Scholar 

  • Croll DA, Marinovic B, Benson S, Chavez FP, Black N, Ternullo R, Tershy BR (2005) From wind to whales: trophic links in a coastal upwelling system. Mar Ecol Prog Ser 289:117–130. https://doi.org/10.3354/meps289117

    Article  Google Scholar 

  • Curtice C, Johnston DW, Ducklow H, Gales N, Halpin PN, Friedlaender AS (2015) Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula. Mov Ecol 3(1):13. https://doi.org/10.1186/s40462-015-0041-x

  • Espinasse B, Zhou M, Zhu YW, Hazen EL, Friedlaender AS, Nowacek DP, Carlotti F et al (2012) Austral fall-winter transition of mesozooplankton assemblages and krill aggregations in an embayment west of the Antarctic Peninsula. Mar Ecol Prog Ser 452:63–80. https://doi.org/10.3354/meps09626

  • Fossette S, Abrahms B, Hazen EL, Bograd SJ, Zilliacus KM, Calambokidis J, Croll DA et al (2017) Resource partitioning facilitates coexistence in sympatric cetaceans in the California Current. Ecol Evol 7(21):9085–9097. https://doi.org/10.1002/ece3.3409

  • Friedlaender AS, Halpin PN, Qian SS, Lawson GL, Wiebe PH, Thiele D, Read AJ (2006) Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar Ecol Prog Ser 317:297–310. https://doi.org/10.3354/meps317297

    Article  Google Scholar 

  • Friedlaender AS, Hazen EL, Nowacek DP, Halpin PN, Ware C, Weinrich MT, Wiley D et al (2009) Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution. Mar Ecol Prog Ser 395:91–100. Retrieved from <Go to ISI>://WOS:000273383900007

    Google Scholar 

  • Friedman M, Shimada K, Martin LD, Everhart MJ, Liston J, Maltese A, Triebold M (2010) 100-million-year dynasty of giant planktivorous bony fishes in the mesozoic seas. Science 327(5968):990–993. https://doi.org/10.1126/science.1184743

    Article  CAS  PubMed  Google Scholar 

  • Friedlaender AS, Herbert-Read JE, Hazen EL, Cade DE, Calambokidis J, Southall BL, Goldbogen JA et al (2017) Context-dependent lateralized feeding strategies in blue whales. Curr Biol 27(22):R1206–R1208. Retrieved from <Go to ISI>://WOS:000415815800005

    Google Scholar 

  • Goldbogen JA (2010a) Mechanics and energetics of rorqual lunge feeding (Ph.D.). University of British Columbia, Vancouver, BC

    Google Scholar 

  • Goldbogen JA (2010b) The ultimate mouthful: lunge feeding in rorqual whales. Am Sci 98(2):124–131. Retrieved from <Go to ISI>://WOS:000274615200021

    Google Scholar 

  • Goldbogen JA (2018) Physiological constraints on marine mammal body size. Proc Natl Acad Sci USA 115(16):3995–3997. https://doi.org/10.1073/pnas.1804077115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldbogen J, Madsen P (2018) The evolution of foraging capacity and gigantism in cetaceans. J Exp Biol 221(11):jeb166033

    Google Scholar 

  • Goldbogen JA, Pyenson ND, Shadwick RE (2007) Integrating morphology, behavior and phylogeny to determine the mechanics and energetics of rorqual lunge-feeding. J Morphol 268(12):1079–1079. Retrieved from <Go to ISI>://WOS:000251266000182

    Google Scholar 

  • Goldbogen JA, Calambokidis J, Oleson EM, Potvin J, Schorr G, Shadwick RE (2010) Big heads, big gulps and high drag: mechanics and energetics of rorqual lunge feeding. Integr Compar Biol 50:E62–E62. Retrieved from <Go to ISI>://WOS:000280297000248

    Google Scholar 

  • Goldbogen JA, Calambokidis J, Oleson E, Potvin J, Pyenson ND, Schorr G, Shadwick RE (2011) Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J Exp Biol 214(Pt 1):131–146. https://doi.org/10.1242/jeb.048157

    Article  CAS  PubMed  Google Scholar 

  • Goldbogen JA, Calambokidis J, Croll DA, McKenna MF, Oleson E, Potvin J, Tershy BR et al (2012) Scaling of lunge-feeding performance in rorqual whales: mass-specific energy expenditure increases with body size and progressively limits diving capacity. Funct Ecol 26(1):216–226. https://doi.org/10.1111/j.1365-2435.2011.01905.x

  • Goldbogen JA, Friedlaender AS, Calambokidis J, McKenna MF, Simon M, Nowacek DP (2013) Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63:90–100

    Article  Google Scholar 

  • Goldbogen J, Cade D, Boersma A, Calambokidis J, Kahane‐Rapport S, Segre P, Friedlaender A et al (2017a). Using digital tags with integrated video and inertial sensors to study moving morphology and associated function in large aquatic vertebrates. Anatom Rec 300(11):1935–1941

    Google Scholar 

  • Goldbogen J, Cade D, Calambokidis J, Friedlaender A, Potvin J, Segre P, Werth A (2017b) How baleen whales feed: the biomechanics of engulfment and filtration. Ann Rev Mar Sci 9:367–386

    Article  CAS  Google Scholar 

  • Goldbogen JA, Cade DE, Wisniewska DM, Potvin J, Segre PS, Savoca MS, Pyenson ND (2019) Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366(6471):1367–1372. https://doi.org/10.1126/science.aax9044

  • Hain JHW, Ellis SL, Kenney RD, Clapham PJ, Gray BK, Weinrich MT, Babb IG (1995) Apparent bottom feeding by humpback whales on Stellwagen Bank. Mar Mamm Sci 11(4):464–479

    Article  Google Scholar 

  • Hazen EL, Friedlaender AS, Goldbogen JA (2015) Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci Adv 1(9):e1500469. https://doi.org/10.1126/sciadv.1500469

  • Hazen EL, Friedlaender AS, Thompson MA, Ware CR, Weinrich MT, Halpin PN, Wiley DN (2009) Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae. Mar Ecol-Prog Ser 395:75–89. https://doi.org/10.3354/meps08108

    Article  Google Scholar 

  • Heide-Jorgensen MP, Laidre KL, Wiig O, Jensen MV, Dueck L, Maiers LD, Hobbs RC et al (2003) From Greenland to Canada in ten days: tracks of bowhead whales, Balaena mysticetus, across Baffin Bay. Arctic 56(1):21–31. Retrieved from <Go to ISI>://WOS:000182434600003

    Google Scholar 

  • Irvine LM, Mate BR, Winsor MH, Palacios DM, Bograd SJ, Costa DP, Bailey H (2014). Spatial and temporal occurrence of blue whales off the U.S. West Coast, with implications for management. PLoS One 9(7):e102959. https://doi.org/10.1371/journal.pone.0102959

  • Johnston C, Berta A (2011) Comparative anatomy and evolutionary history of suction feeding in cetaceans. Mar Mamm Sci 27(3):493–513. https://doi.org/10.1111/j.1748-7692.2010.00420.x

    Article  Google Scholar 

  • Jonsen ID, Flenming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86(11):2874–2880. Retrieved from <Go to ISI>://000233419600004

    Google Scholar 

  • Jonsen ID, Basson M, Bestley S, Bravington MV, Patterson TA, Pedersen MW, Wotherspoon SJ et al (2013) State-space models for bio-loggers: a methodological road map. Deep Sea Res Part II: Top Stud Oceanogr 88–89:34––46. https://doi.org/10.1016/j.dsr2.2012.07.008

  • Jurasz CM, Jurasz VP (1979) Feeding modes of the humpback whale, Megaptera novaeangliae, in southeast Alaska. Sci Rep Whales Res Inst 31:69–83

    Google Scholar 

  • Kennedy AS, Zerbini AN, Vasquez OV, Gandilhon N, Clapham PJ, Adam O (2014) Local and migratory movements of humpback whales (Megaptera novaeangliae) satellite-tracked in the North Atlantic Ocean. Can J Zool 92(1):9–18. https://doi.org/10.1139/cjz-2013-0161

    Article  Google Scholar 

  • Kirchner T, Wiley DN, Hazen EL, Parks SE, Torres LG, Friedlaender AS (2018) Hierarchical foraging movement of humpback whales relative to the structure of their prey. Mar Ecol Prog Ser 607:237–250. https://doi.org/10.3354/meps12789

    Article  Google Scholar 

  • MacNeilage PF (2013) Vertebrate whole-body-action asymmetries and the evolution of right handedness: a comparison between humans and marine mammals. Dev Psychobiol 55(6):577–587

    Article  Google Scholar 

  • Marx FG, Uhen MD (2010) Climate, critters, and cetaceans: cenozoic drivers of the evolution of modern whales. Science 327(5968):993–996. https://doi.org/10.1126/science.1185581

    Article  CAS  PubMed  Google Scholar 

  • Mate BR, Krutzikowsky GK, Winsor MH (2000) Satellite-monitored movements of radio-tagged bowhead whales in the Beaufort and Chukchi seas during the late-summer feeding season and fall migration. Can J Zool 78(7):1168–1181. https://doi.org/10.1139/cjz-78-7-1168

    Article  Google Scholar 

  • Mate B, Mesecar R, Lagerquist B (2007) The evolution of satellite-monitored radio tags for large whales: one laboratory’s experience. Deep Sea Res Part II 54(3–4):224–247. https://doi.org/10.1016/j.dsr2.2006.11.021

    Article  Google Scholar 

  • Nowacek DP, Friedlaender AS, Halpin PN, Hazen EL, Johnston DW, Read AJ, Zhu Y et al (2011a) Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula. PLoS One 6(4):e19173. https://doi.org/10.1371/journal.pone.0019173

  • Nowacek DP, Friedlaender AS, Halpin PN, Hazen EL, Johnston DW, Read AJ, Zhu Y et al (2011b) Super-aggregations of Krill and Humpback Whales in Wilhelmina Bay, Antarctic Peninsula. Plos One 6(4). e1917310.1371/journal.pone.0019173

    Google Scholar 

  • Norris KS, Villa–Ramirez B, Nichols G, Würsig B, Miller K (1983) Lagoon entrance and other aggregations of gray whales (Eschrichtius robustus). pp. 259–293. In: Payne R (ed) Communication and behavior of whales. Westview Press, Boulder

    Google Scholar 

  • Oestreich WK, Fahlbusch JA, Cade DE, Calambokidis J, Margolina T, Joseph J, Ryan JP et al (2020) Animal-borne metrics enable acoustic detection of blue whale migration. Curr Biol. https://doi.org/10.1016/j.cub.2020.08.105

  • Oliver JS, Kvitek RG (1984) Side-scane sonar redords and diver observations of the gray whale feeding grounds. Biol Bull 176:264–269

    Article  Google Scholar 

  • Parks SE, Warren JD, Stamieszkin K, Mayo CA, Wiley D (2011) Dangerous dining: surface foraging of North Atlantic right whales increases risk of vessel collisions. Biol Lett. https://doi.org/10.1098/rsbl.2011.0578

  • Potvin J, Werth AJ (2017) Oral cavity hydrodynamics and drag production in Balaenid whale suspension feeding. PloS one 12(4):e0175220

    Google Scholar 

  • Rockwood RC, Elliott ML, Saenz B, Nur N, Jahncke J (2020) Modeling predator and prey hotspots: Management implications of baleen whale co-occurrence with krill in Central California. PLoS ONE 15(7):e0235603. https://doi.org/10.1371/journal.pone.0235603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum HC, Maxwell SM, Kershaw F, Mate B (2014) Long-range movement of humpback whales and their overlap with anthropogenic activity in the South Atlantic Ocean. Conserv Biol 28(2):604–615. https://doi.org/10.1111/cobi.12225

    Article  PubMed  Google Scholar 

  • Slater GJ, Price SA, Santini F, Alfaro ME (2010) Diversity versus disparity and the radiation of modern cetaceans. Proc R Soc b Biol Sci 277(1697):3097–3104. https://doi.org/10.1098/rspb.2010.0408

    Article  Google Scholar 

  • Slater GJ, Goldbogen JA, Pyenson ND (2017a) Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc R Soc B Biol Sci 284(1855). https://doi.org/10.1098/rspb.2017.0546

  • Slater GJ, Goldbogen JA, Pyenson ND (2017b) Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc R Soc B 284(1855):20170546

    Article  Google Scholar 

  • Torres LG, Orben RA, Tolkova I, Thompson DR (2016) Animal movement analysis through residence in space and time. Peer J Preprints 4:e2480v1. https://doi.org/10.7287/peerj.preprints.2480v1

  • Tsai CH, Fordyce RE (2015) The earliest gulp-feeding mysticete (Cetacea: Mysticeti) from the oligocene of New Zealand. J Mamm Evol 22(4):535–560. https://doi.org/10.1007/s10914-015-9290-0

    Article  Google Scholar 

  • van der Hoop JM, Nousek-McGregor AE, Nowacek DP, Parks SE, Tyack P, Madsen PT (2019) Foraging rates of ram-filtering North Atlantic right whales. Funct Ecol 33(7):1290–1306. https://doi.org/10.1111/1365-2435.13357

    Article  Google Scholar 

  • Ware C, Arsenault R, Plumlee M (2006) Visualizing the underwater behavior of humpback whales. IEEE Comput Graphics Appl 26(4):14–18. https://doi.org/10.1109/mcg.2006.93

    Article  Google Scholar 

  • Ware C, Friedlaender AS, Nowacek DP (2011) Shallow and deep lunge feeding of humpback whales in fjords of the West Antarctic Peninsula. Marine Mammal Sci 27(3):587–605

    Google Scholar 

  • Ware C, Wiley D, Friedlaender AS, Weinrich M, Hazen EL, Bocconcelli A, Abernathy K et al (2013) Bottom side-roll feeding by humpback whales (Megaptera novaeangliae) in the southern Gulf of Maine, U.S.A. Mar Mammal Sci. https://doi.org/10.1111/mms.12053

  • Weinstein BG, Double M, Gales N, Johnston DW, Friedlaender AS (2017) Identifying overlap between humpback whale foraging grounds and the Antarctic krill fishery. Biol Conserv 210, Part A:184–191. https://doi.org/10.1016/j.biocon.2017.04.014

  • Weinstein BG, Friedlaender AS (2017) Dynamic foraging of a top predator in a seasonal polar marine environment. Oecologia. https://doi.org/10.1007/s00442-017-3949-6

    Article  PubMed  Google Scholar 

  • Wiley D, Friedlaender A, Weinrich M, Bocconcelli A, Cholewiak D, Thompson M, Ware C (2011) Underwater components of humpback whale bubble-net feeding behaviour. Behaviour 148(5):575–602. https://doi.org/10.1163/000579511x570893

    Article  Google Scholar 

  • Woodward BL, Winn JP (2006) Apparent lateralized behavior in gray whales feeding off the central British Columbia coast. Mar Mammal Sci 22(1):64–73. Retrieved from <Go to ISI>://WOS:000234942300006

    Google Scholar 

Download references

Acknowledgements

I thank my friends, colleagues, mentors, and students with whom I have shared innumerable conversations about science, marine mammals, and our natural world. You have all inspired me and taught me so much more than I ever thought I could learn. I am grateful for your advice and wisdom, your ideas and thoughts, and most of all your support. My thanks to the funders and granting agencies that have supported the numerous field projects that are represented throughout this chapter. And to Caroline, thank you for giving me the shoulders to stand on.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari S. Friedlaender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Friedlaender, A.S. (2022). Feeding Strategies of Baleen Whales Through a Behavioral Ecology and Evolutionary Lens. In: Clark, C.W., Garland, E.C. (eds) Ethology and Behavioral Ecology of Mysticetes . Ethology and Behavioral Ecology of Marine Mammals. Springer, Cham. https://doi.org/10.1007/978-3-030-98449-6_5

Download citation

Publish with us

Policies and ethics